Автор книги: Дмитрий Козлов
Жанр: Техническая литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 2 (всего у книги 13 страниц) [доступный отрывок для чтения: 4 страниц]
2. Абразивные материалы
Абразивные материалы приводятся в движение благодаря компрессору, хранятся и дозируются посредством струйного аппарата, перемещаются по рукаву и разгоняются с помощью сопла. Все элементы важны, но именно абразивы являются основным инструментом при выполнении работ.
Выбор соответствующего абразива крайне важен для получения желаемой отделки в течение выделенного времени и в рамках бюджета. В случае использования неподходящего абразивного материала можно получить некачественную отделку, что помешает выполнению всех работ и приведёт к необходимости дорогостоящей повторной обработки.
Во многих случаях причиной некачественно нанесённого покрытия является использование неподходящего абразивного материала. Самое лучшее оборудование не сможет компенсировать применение абразива, который не предназначен для выполнения данного вида работ.
Используйте высококачественные абразивные материалы, предназначенные для струйной обработки. Материалы, добытые с берегов рек или каменоломен (если они не были соответствующим образом промыты, просеяны и фракционированы), приведут к неприемлемому результату (смотрите Приложение 2 с «Таблицей сравнения абразивных материалов».
Свойства
Существует три вида абразивных материалов: природного происхождения, производственного и из побочных продуктов.
К природным абразивам относятся минеральные, такие как песок, кремень, гранат, цирконий и другие минералы.
Произведённые абразивы изготавливаются специально для струйной обработки. Среди них: колотая дробь и дробь литая, пластик, пшеничный крахмал, стеклянные шарики, оксид алюминия, карбид кремния и другие.
Абразивоструйные материалы на основе побочных продуктов являются результатом производственных процессов. Среди них – шлак, получаемый при выплавке металла или при производстве электроэнергии, а также материалы из продукции сельского хозяйства, используемой в пищевой индустрии.
В прошлом при проведении струйной очистки на открытом воздухе стремились использовать дешёвые абразивные материалы, такие, как песок. Однако нельзя использовать абразивы, которые содержат более одного процента свободного кварца. Кварцевая пыль может привести к серьёзным заболеваниям органов дыхания и летальному исходу. По возможности, следует применять рекуперируемый абразив. Рекуперируемые абразивные материалы, как правило, содержат меньше свободного кварца и не образуют большого количества пыли.
Для снижения затрат на абразивные материалы следует выбирать прочный, подходящий для многократного использования, абразивный материал. Сегодня такие средства, как абразивоструйные аппараты с замкнутым циклом, вакуумное оборудование для сбора материала и портативные средства ограничения распространения материала помогают обеспечить эффективную регенерацию.
Размер
Размер гранул абразивоструйного материала имеет огромное значение для достижения равномерного рельефа и обеспечения желаемой текстуры поверхности. Производители абразивных материалов используют несколько совершенно различающихся систем для описания размера своей продукции.
Дробь и другие сферические материалы измеряются в тысячных долях дюйма, и размер выражается целыми числами. Некоторые производители для описания размера продукции используют числа, которые могут и не относиться к номеру сита (меша).
Обычно остроугольные абразивы и стеклянные шарики измеряются в соответствии с системой мер, относящейся к ситу, и выражаются в «номере сита» или «микронах». Под номером сита (мешем) понимается количество отверстий на дюйм в сите; в микронах выражается размер просеиваемых частиц. Поэтому, чем больше номер сита, тем меньше гранулы и, чем больше микрон, тем больше гранулы.
Например, через отверстия в сите номер 20 проходят частицы размером 850 микрон и менее, а через сито номер 40 проходят частицы размером 425 микрон. Поэтому большая часть гранул в абразивном материале с номером сита 20/40 будет иметь размер между 850 и 425 микрон, и лишь небольшая часть – немного больше или меньше. Никакая из систем рассеивания абразивных материалов не будет абсолютно точной, но производители, следящие за качеством продукции, обеспечивают 95 % гранул в заявленных пределах.
Соответствие заявленному размеру приобретает первостепенную значимость, когда производитель покрытия требует заданный профиль. Гранулы превышающего размера врезаются слишком глубоко, и над поверхностью остаются высокие пики. Это приводит к появлению ржавчины. В случае нанесения более толстого слоя краски, чтобы закрыть высокие пики, происходит потеря времени и средств.
Гранулы меньше заданного размера и пыль снижают производительность, не очищают поверхность и не дают поверхности требуемую насечку.
Для получения желаемой обработки нужно выбирать соответствующую фракцию гранул. Крупные гранулы используются для удаления нескольких слоёв краски, сильной коррозии или остатков цементного раствора и оставляют глубокий профиль. С помощью гранул среднего размера удаляются поверхностная ржавчина, неплотная краска или тонкий слой прокатной окалины. Небольшие гранулы образуют неглубокий профиль и идеальны для струйной обработки тонких металлических изделий, дерева, пластика и других чувствительных поверхностей.
Крупные гранулы не всегда чистят быстрее, чем маленькие. Хотя они и врезаются в поверхность глубже, при очистке абразивными материалами крупной фракции о квадратный сантиметр площади ударяется меньше частиц, и поэтому некоторые зоны поверхности будут не обработаны. Перед началом работы необходимо провести тестирование абразивов разной фракции на небольших участках поверхности. После этого измеряется профиль для определения того, какой из них больше соответствует техническому заданию.
При использовании рекуперируемых материалов рабочий объём необходимо регулярно пополнять для обеспечения соответствующей обработки и оптимальной производительности. Новый абразивный материал наносит однородный рельеф, но с каждым рабочим и регенерационным циклом частицы становятся меньше. Если оставить данный процесс без контроля, то уменьшение размера частиц приведёт к уменьшению глубины профиля и замедлению скорости очистки.
Для того чтобы этого не произошло, оператор должен проводить мониторинг качества обработки поверхности и периодически добавлять рассчитанное количество нового абразивного материала. Размер гранул полученной рабочей смеси будет средним между размерами нового и использованного абразива. Никогда не пытайтесь повторно использовать одноразовые абразивные материалы. Такие материалы разбиваются в пыль после первого цикла.
Для гарантии равномерной обработки поверхности необходимо следить за рабочей смесью. Это имеет ключевое значение при дробеструйной обработке в автомобиле– и авиастроении и при подготовке поверхности для сложных покрытий.
Форма
Разная форма абразивных материалов приводит к разному профилю поверхности. Частицы остроугольных абразивов имеют неправильную форму, с гранями и острыми краями, что позволяет удалять покрытия и оставлять чёткие пики и углубления. При работе с округлыми частицами образуются ямки. Некоторые округлые материалы продолговаты по своей форме и оставляют удлинённые вмятины.
Виды остроугольных абразивных материалов сильно отличаются друг от друга: некоторые имеют более угловатую форму, чем другие. Например, песок бывает круглый, продолговатый и угловатый. Морской и речной песок – более округлый или продолговатый, ввиду эрозионного воздействия воды. Песок из карьеров – угловатый и обладает режущим действием.
Остроугольные абразивы лучше подходят для удаления толстых слоёв краски и коррозии. Округлые материалы более эффективны для удаления прокатной окалины и лёгких загрязнений. Они используются для дробеструйного упрочнения с целью снятия напряжения поверхности. При упрочнении образуется одинаково спрессованная поверхность, что усиливает пружины и другие металлы, подверженные напряжению.
Плотность
Плотность – это отношение массы к объёму. Например, песок весит около 1,5 кг/л, колотая дробь – около 3,8 кг/л, скорлупа грецких орехов – всего 0,7 кг/л.
Плотность абразивного материала менее важна, чем другие его характеристики, кроме случаев, когда плотность материалов, сходных по другим параметрам, сильно отличается. Чем более плотный материал, тем больше энергии каждая частица передаёт поверхности. Разница плотности песка и шлака существенна и составляет 2,0 кг/л, разница между шлаком и колотой дробью достаточно значима – 2,4 кг/л. При прочих равных условиях более плотные частицы делают более глубокий профиль, что не всегда может быть желательно. Более плотные частицы эффективнее удаляют стойкие или твёрдые покрытия.
Твёрдость
Воздействие абразивного материала на обрабатываемую поверхность определяется его твёрдостью. Если абразив твёрже субстрата, то он оставит профиль на поверхности. Если он мягче поверхности, но твёрже покрытия, то он удаляет покрытие. Если он мягче покрытия, то он очищает грязь с поверхности без удаления покрытия.
Твёрдость абразивного материала измеряется по шкале Мооса (за исключением стальных абразивов). По данной шкале степень твёрдости определяется значениями от 1 до 10. При этом 1 означает, что материал мягкий как тальк, а 10 – твёрдый, как алмаз. Наиболее распространенные абразивные материалы варьируются по твёрдости – от мягких натуральных материалов до сверхтвёрдого карбида кремния.
Стальная крошка и дробь измеряются в Роквеллах по шкале С (и обозначаются Rc). Как правило, стальные абразивы и дробь варьируются от мягких, со значением 35 Rc, до твёрдых – 65 Rc.
Твёрдые абразивы эффективнее в сложных случаях – при удалении ржавчины и прокатной окалины, а мягкие абразивы больше подходят для очистки или снятия покрытий.
Ломкость
Под ломкостью понимается хрупкость абразивных материалов, или их способность крошиться на мелкие части при ударе о поверхность. Чем больше ломкость абразива, тем меньшее количество раз он может быть использован повторно и тем больше он производит пыли.
Ввиду присутствия кварца в составе песка, он обладает большой ломкостью и никогда не допускает повторного использования. При первом использовании более 70 % песка превращается в пыль. Песок, который содержит кварц в свободном виде, образует опасные для здоровья кварцевые частицы. Люди, не защищённые от кварцевой пыли, могут быть подвержены очень болезненному, зачастую приводящему к летальному исходу заболеванию – силикозу.
Большая часть изготавливаемых или являющихся побочным продуктом абразивов может быть повторно использована ограниченное число раз. Это же касается и некоторых природных абразивов, таких как гранатовая крошка и кремень. Шлак от никелевого и медного производств разбивается на годные к повторному использованию более мелкие частицы. Стальная крошка очень устойчива и может пройти 200 и более циклов.
Возможность рекуперации зависит от многих переменных, включая давление воздуха, твёрдость поверхности и эффективность оборудования. Степень ломкости, указанная в «Таблице сравнения абразивных материалов» в Приложении 2, приведена только для целей сравнения. Более точную информацию о возможности повторного использования необходимо запросить у поставщика абразивных материалов.
Наиболее распространённые струйные абразивы
Песок широко используется благодаря своей доступности, эффективности и низкой стоимости. Основным недостатком песка является его пылеобразование.
Всего лишь после первого цикла большая часть песка превращается в пыль. При струйной обработке кварцевым песком образуется мелкая кристаллическая кварцевая пыль, которая присутствует в воздухе на протяжении долгого времени и, как было доказано, представляет серьёзную угрозу для здоровья при её вдыхании.
Запрещается проводить обработку песком или любым другим абразивом, который содержит более 1 % кварца в свободном виде.
Администрация по безопасности и гигиене труда (OSHA) требует выполнения федеральных правил, в соответствии с которыми ограничивается воздействие кварца в кристаллической форме на работников (OSHA 2206, General Industry Standards Part 1910, Subpart Z, Paragraph 1910.1000).
Администрация OSHA требует, чтобы все операторы струйных аппаратов и другие лица вблизи места проведения работ были одеты в исправные, одобренные NIOSH респираторы с подачей воздуха во время и после проведения работ по струйной очистке, пока окружающий воздух не будет протестирован и очищен от взвешенных частиц.
В различных частях России имеются залежи минерального песка (ставролит, оливин и т. д.), циркония и подобных материалов. Они, как правило, изготавливаются с более мелкой фракцией. Благодаря высокой плотности, около 2 кг/л, и прочности, они идеально подходят для очистки новой и слегка ржавой поверхности (соответствует степени загрязнения B по стандарту ISO 8501-3). Большая часть видов минерального песка содержит кварц в свободном виде, то есть кварц, который высвобождается из частиц песка во время струйной обработки. Если содержание кварца в свободном виде превышает 1 %, абразив не следует использовать для струйной очистки.
Гранатовая крошка и кремень являются очень твёрдыми и острыми материалами, которые хорошо подходят для удаления твёрдых поверхностных материалов и оставляют глубокий профиль. Оба материала могут быть возвращены в систему, просеяны и использованы заново. Гранат содержит лишь незначительное количество кварца в свободном виде, однако кремень обладает очень высоким содержанием кварца в свободном виде – 90 % и более, поэтому никогда не должен использоваться для струйной обработки. У граната насыпная плотность составляет 2,1 кг/л.
Абразивные материалы на основе побочных продуктов, такие как шлак и некоторые натуральные материалы, получаются в результате процесса, не имеющего отношения к обработке поверхности, но доказали свою высокую эффективность при применении в качестве материала для струйной очистки.
Шлаки получают из двух основных источников – при плавке металла (шлак никеля и меди) и работе котельных на электростанциях (шлак угля). Шлаки стали больше использоваться ввиду своих исключительных чистящих характеристик, доступности, низкому содержанию кварца (менее 1 %), широкому диапазону фракций и относительно низкой стоимости.
Твёрдые угловатые частицы шлаков развивают большую скорость и обладают повышенной разрезающей способностью, благодаря чему их можно применять для широкого спектра задач. В некоторых случаях даже требуется уменьшение давления в сопле, чтобы предотвратить застревание частиц в стали.
Абразивы из шлаков характеризует относительно высокая ломкость, что приводит к образованию пыли и ограничивает возможность их повторного использования. Перед проведением работ шлак нужно проверять на присутствие загрязнителей.
Купрошлак – это продукт, получаемый из гранулированных шлаков медеплавильного производства. В различных отраслях промышленности купрошлак знают под различными наименованиями. Это – минеральная дробь, шлифзерно, купершлак. Купрошлак – наиболее распространенный вид абразива на сегодняшний момент. Существует аналогичный абразив, изготавливаемый из гранулированных шлаков никелевого производства – никельшлак, его отличает более высокая твердость, а в остальном он схож с купрошлаком.
Основное преимущество купрошлака в сравнении с другими абразивными материалами – отношение цены к качеству очищаемой поверхности. Гранулы купрошлака имеют высокую твердость (6,5 по шкале Мооса) и острую угловатую форму, что позволяет достичь степени очистки Sa 3 (чистый металл без включений ржавчины и старых покрытий). Купрошлак хорошо профилирует поверхность (насечка 20—140 мкм), что благоприятно сказывается на адгезии. Купрошлак предназначен для удаления старых покрытий, окалины и ржавчины с металлических, кирпичных, бетонных, каменных поверхностей перед нанесением защитного покрытия, для удаления старых покрытий, разрушенных и размороженных участков при ремонте, а также перед окраской.
Работа с купрошлаком не наносит вреда ни здоровью людей, ни состоянию окружающей среды. Данный абразив не запрещен к использованию экологическими и санитарными органами даже на территории населенных пунктов. Абразив не содержит кварц в чистой форме, что предохраняет от силикоза, профессионального заболевания абразивоструйщиков.
Фракционный состав гранул купрошлака колеблется в пределах 0,1–3,5 мм.
Купрошлак имеет высокую удельную массу. Так как удельная плотность частиц купрошлака выше по сравнению с большинством абразивных материалов, то и кинетическая энергия удара частиц о поверхность больше. Рекуперация абразива может достигать пяти раз, но при этом размер частиц будет уменьшаться, а количество примесей будет увеличиваться, что приводит к снижению качества чистки. Более мелкая фракция купрошлака подойдет для очистки мягких металлов, таких, как алюминий. Купрошлак наиболее востребован при агрессивных видах очистки, для профилирования и удаления глубокой коррозии, для повседневной очистки.
Обработка поверхностей купрошлаком может осуществляться как привычным абразивоструйным методом, так и гидроабразивным (подача воды в абразивную струю через специальное сопло), или пламенно-абразивным методом.
Существует несколько видов натуральных абразивных материалов. Скорлупа грецкого ореха и сердцевина кукурузного початка – одни из самых популярных материалов. Натуральные абразивы лёгкие (0,6 кг/л) и мягкие (значение 3 по шкале Мооса). При использовании со специальным оборудованием и при внимательном отношении к методике, с помощью натуральных материалов, можно удалять краску с дерева, пластика, тонкостенных металлов и других твёрдых поверхностей. Эти материалы используются для очистки электромоторов без повреждения статора и изоляции проводов.
Среди изготавливаемых абразивов можно отметить стальную крошку и дробь, оксид алюминия, карбид кремния, пластик, стеклянные шарики и другие.
Существует три основных вида металлических абразивов: из стали, ковкого железа и отбелённого чугуна. Из каждого из них делают дробь и крошку. Стальной абразив используется намного чаще, чем другие, потому что он выдерживает 200 и более циклов. Абразив из отбелённого чугуна рекуперируется от 50 до 100 раз, а ковкое железо немного больше.
Твёрдость металлического абразива измеряется по шкале «С» Роквелла (Rc), и чем больше значение, тем твёрже. Твёрдость стали варьируется от 35 Rc до 65 Rc; ковкого железа – от 28 Rc до 40 Rc; отбелённого чугуна – от 57 до 68 Rc.
Отбелённый чугун и ковкое железо стоят меньше, чем сталь, и используются, когда много абразивного материала утрачивается в процессе загрузки и разгрузки изделий. Кроме того, железо является более ломким и разбивается на угловатые частицы, благодаря чему его воздействие становится более интенсивным, чем стали.
Стальные частицы деформируются при ударе и пригодны до тех пор, пока частицы не станут слишком маленькими для использования. Чтобы обеспечить необходимый профиль, требуется периодически добавлять новый абразив.
Фракции металлического абразива стандартизированы в соответствии с техническим условиями «Общества инженеров-автомобилистов» (SAE). Фракции крошки обозначаются от G-10 (2,0/1,7 мм) до G-120 (0,125/0,075 мм), при этом фракция G-10 наиболее крупная. Фракции дроби варьируются от S-70 (0,125/0,180 мм) до S-780 (1,7/2,0 мм), при этом S-780 наиболее крупная фракция.
Карбид кремния является самым твёрдым, острым и наиболее дорогим абразивным материалом на рынке. Его значение твёрдости по шкале Мооса составляет 8,5. Он используется при удалении нагара с закалённых изделий после термообработки, когда требуется глубокое режущее действие.
Оксид алюминия уступает по остроте только карбиду кремния. Он часто применяется для работы с очень сложными покрытиями. Поскольку это дорогостоящий материал, его используют в закрытых струйных камерах, обеспечивающих возможность рециркуляции. Ввиду высокой плотности (1,8 кг/литр) и твёрдости (8 единиц по шкале Мооса) оксид алюминия является наиболее агрессивным из всех распространённых абразивных материалов.
В аэрокосмической и авиастроительной отраслях для очистки и снятия заусенцев с титана, магнезия и других сложных металлов используется оксид алюминия без каких-либо примесей, чтобы предотвратить загрязнение железосодержащими материалами. Стандартный абразив на основе оксида алюминия используется для обработки алюминия, латуни, чугунных и стальных отливок с целью быстрого удаления заусенцев и одновременно очистки поверхности. Чтобы обеспечить глубокую очистку и получить матовую отделку поверхности, с оксидом алюминия смешивают другие абразивы.
Гранулы оксида алюминия бывает мелкие и очень крупные. Его можно использовать повторно несколько раз, в зависимости от того, на каком струйном оборудовании проводятся работы – основанном на давлении, или работающем по принципу всасывания. Износ компонентов оборудования, которые соприкасаются с разогнанным до высокой скорости оксидом алюминия, происходит быстрее. Для продления срока службы оборудования при работе с оксидом алюминия необходимо использовать сопла из карбида бора и обшить корпус аппарата резиновым экраном.
Стеклянные шарики позволяют удалять большую часть загрязнителей, не влияя при этом на допустимое отклонение размеров поверхности. Они используются для полировки и иногда для упрочнения поверхности, чтобы снять её напряжение.
Стеклянные шарики изготавливаются из натриевого стекла без примесей свинца и кварца. Их сферическая форма идеально подходит для работ по упрочнению. Твердость составляет 5,5 по шкале Мооса. Однако ввиду высокой ломкости необходимо использовать низкое давление в сопле, что продлит срок службы материала. При излишне высоком давлении произойдёт преждевременное разрушение стеклянных шариков, а увеличения производительности не будет. Давление воздуха для стеклянных шариков в струйных системах, работающих по принципу всасывания, обычно настраивается от 4 до 5,5 бар, а в системах под давлением – от 2,8 до 4,1 бар.
Фракции стеклянных шариков варьируются от номера сита 12/14 (1,68/1,41 мм) до 170/325 (0,088/0,044 мм) (MIL SPEC-G-9954A: размеры от 1 до 13). Равномерная отделка поверхности достигается за счёт обновления рабочей смеси.
В автомобилестроении, авиастроении и литейной промышленности использование стеклянных шариков позволяет сохранить размеры обрабатываемых частей. Благодаря высокой чистоте стеклянных шариков, предотвращается загрязнение нержавеющей стали, алюминия и других мягких металлов. Они особенно эффективны при удалении заусенцев, облоя, окалины от термообработки, стирания следов от инструмента и придания эстетического вида любым металлам. Упрочнение посредством стеклянных шариков снижает возможность возникновения трещин и снимает напряжение поверхности изделий, которые подвержены высокой эксплуатационной нагрузке.
Пластиковые материалы хорошо подходят для удаления краски и ржавчины без повреждения поверхности. Остроугольный и эластичный материал эффективен при удалении загрязнений с тонкостенных изделий и некоторых высокотехнологичных композитных материалов без их повреждения. Пластиковые материалы выступают в качестве альтернативы химической обработке, зачистке шлифовальной шкуркой и другой ручной обработке, что позволяет применять их там, где раньше не могли и подумать о струйной очистке абразивными материалами.
Пластиковые абразивные материалы изготавливаются из разных типов смол. Твёрдость материала зависит от типа смолы и составляет от 3 до 4 по шкале Мооса. Фракционный состав варьируется от номера сита 12/16 (1,7/1,18 мм) до 40/60 (0,425/0,250 мм).
Очистка струйным оборудованием тонкостенного металла от краски должна осуществляться при низком давлении, от 1,4 до 2,8 бар. В струйных системах, работающих по принципу всасывания, давление воздуха может быть выше. При низком давлении материал служит дольше, до 10–12 циклов.
Для работы с пластиковым материалом требуется специальное оборудование. Ввиду низкой плотности пластика, 0,9 кг/л, и остроугольной формы он обладает очень крутым углом откоса. В струйных аппаратах и резервуарах наклон конуса должен быть не менее 60 градусов. Коническое дно аппарата требуется покрыть эпоксидной смолой, чтобы обеспечить скольжение материала и, что не менее важно, предотвратить появление коррозии в стальном резервуаре аппарата, поскольку ржавчина может загрязнить материал. Сжатый воздух должен быть максимально сухим, потому что влага снижает сыпучесть абразива.
Среди возможных случаев применения пластикового абразива – снятие краски с тонкостенных металлов, стекловолокна, некоторых композитных материалов и даже деревянных изделий. Пластик широко используется для очистки грузовиков, автобусов, автомобилей, самолётов и лодок, а также в электронной промышленности для обработки печатных плат. Пластик идеально подходит для очистки литейных форм.
Пенистый абразивный материал – это пористый материал из водосодержащих полиуретановых частиц с открытыми порами, который может включать абразивные частицы. С помощью мягкого пенистого материала можно удалять сажу с обоев и счищать масло или жирные пятна с двигателей или гидравлических систем.
Пористый материал, включающий абразивные частицы, расплющивается при ударе, и абразивная частица выходит наружу. При отскоке от поверхности пена захватывает часть удаляемого материала, что снижает запылённость. Такие более агрессивные пенистые материалы могут использоваться для удаления покрытий с бетона, стали.
Ввиду того, что пенистые материалы часто используются в слегка влажном состоянии, требуется специальное оборудование для выброса, возврата и обновления частиц. Также необходимо оборудование для выпаривания и концентрации жидких отходов.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?