Электронная библиотека » Дмитрий Соколов » » онлайн чтение - страница 3


  • Текст добавлен: 16 апреля 2014, 13:18


Автор книги: Дмитрий Соколов


Жанр: Техническая литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 11 страниц) [доступный отрывок для чтения: 3 страниц]

Шрифт:
- 100% +
3.2. Углеродные нанотрубки

С момента первого получения углеродных нанотрубок (УНТ) в 1991 г в компании NEC (Япония) при распылении графита в электрической дуге довольно быстро были разработаны различные устройства и способы их получения [7, 8, 9, 10]. В этих устройствах рабочий углеродосодержащий газ, подаваемый в камеру, разлагался под действием температуры на каталитической поверхности с образованием УНТ. Причем эти и некоторые другие способы, описанные в первых патентах, включили почти все возможные варианты. Тем не менее, часто для продвижения своего продукта на рынок необходимо его патентовать. А как быть, если почти все способы получения УНТ оказались уже запатентованы. Основной подход к патентованию оборудования и не только нанотехнологического в этом случае может состоять в защите его не основных характеристик, таких, как безопасность работы, удобство эксплуатации и т. п. Это и было осуществлено в патенте [11]. На рис. 3.1 представлена схема устройства роста углеродных нанотрубок. В этом устройстве реакционная камера 1 была выполнена с возможностью съема с основания 2, что обеспечило удобство профилактической чистки камеры 1. Нагреватель 3 за счет своей формы мог обеспечивать нагрев образца 4 и одновременно обезгаживание камеры 1. Устройство было снабжено модулем оптического воздействия 5 на образец 4, позволяющее воздействовать на процесс и его контролировать. Кроме этого, модуль 5 был оптически сопряжен с образцом 4 через канал 6 подвода парогазовой смеси от блока 7, что упростило конструкцию.

Рис. 3.1. Схема устройства роста углеродных нанотрубок: 1 – реакционная камера; 2 – основание; 3 – нагреватель; 4 – образец; 5 – модуль оптического воздействия; 6 – канал подвода парогазовой смеси; 7 – модуль формирования парогазовой смеси

3.3. Графены

Другим характерным наноматериалом является графен [12]. Финишные технологические операции по получению графена, очевидно, будут связаны с высокими технологиями, например, с различными вариантами плазменного травления графита. Однако если при патентовании ограничиться только их использованием, то экспертиза может резонно указать, что применяются известные способы (плазменного травления) для получения известных результатов (тонких пленок). Чтобы этого избежать и подтвердить новизну предложенного решения, необходимо было найти признаки изобретения в других действиях, не связанных с основной технологической операцией, а именно в способе подготовки образцов графита к травлению. Действительно, в случае, описанном ниже, способ создания первичных графитовых структур для последующего травления оказался уникальным, в результате чего были получены графитовые фрагменты толщиной 30—100 нм до 1 мм в поперечнике. При этом весь процесс их подготовки (первичное формирование, промежуточное закрепление, перенос и фиксация их на подложке для финишного плазменного травления) осуществлялся оператором с использованием примитивных средств. Однако на момент подачи заявки никто до этого не додумался. Более того, были разработаны различные способы первичного захвата графитовых фрагментов на промежуточный носитель, часть из которых вошла в зависимые пункты формулы изобретения [13], а часть была скрыта и оформлена как ноу-хау. В результате сочетание новых, хотя и «примитивных», манипуляций (признаков) с высокотехнологичными, хотя и известными, технологиями плазменного травления позволило выполнить критерии «новизна» и «изобретательский уровень».

Таким образом, если для патентования способов получения нанообъектов не удается найти отличительные признаки за счет высоких технологий, можно пытаться это сделать за счет обычных технологий либо благодаря сочетанию высоких и обычных технологий.

3.4. Жидкости с наноразмерными включениями

Особенности патентования таких решений хорошо иллюстрируются примерами кавитационного нанодиспергирования жидких смесей. Они показывают, как запатентовать сложный процесс, реализуемый посредством сложного устройства. В одном из вариантов, чтобы осуществить разделение микрочастиц на наночастицы было предложено использовать эффект кавитации. Он возникает в том случае, если канал 1 (рис. 3.2), по которому проходит высокоскоростной поток жидкости 2, перекрыть задвижкой 3. В результате этого, за задвижкой 3 по ходу движения жидкости 2 образуется разряженная зона 4, которая впоследствии, схлопываясь, формирует высокие ускорения жидкости 5, в результате чего микрочастицы 6 разбиваются на наночастицы 7. Процесс перекрытия канала 1 осуществляется с высокой частотой и поэтому диспергирование идет непрерывно.

Рис. 3.2. Процесс кавитационного нанодиспергирования: 1 – канал прохождения жидкости; 2 – поток жидкости; 3 – задвижка; 4 – разряженная зона; 5 – диспергированная жидкость; 6 – микрочастицы; 7 – наночастицы

Рис. 3.3. Кавитационный нанодиспергатор: 1 – ротор; 2 – первые отверстия; 3 – зазор; 4 – вторые отверстия; 5 – статор; 6 – входной патрубок; 7 – внутренняя полость ротора; 8 – приемная камера; 9 – выходной патрубок


Патентование таких решений обычно не вызывает трудностей, так как для обеспечения формирования кавитационных областей можно придумать большое количество конструкций, отличающихся одна от другой. Это может быть вращающийся барабан (ротор) 1 (рис. 3.3) с первыми отверстиями 2, сопряженными через зазор 3 со вторыми отверстиями 4, расположенными на статоре 5. Жидкость под давлением поступает во входной патрубок 6 и во внутреннюю полость 7 ротора 1. При его вращении отверстия 2 периодически совпадают с отверстиями 4, в это время жидкость из полости 7 поступает в приемную камеру 8. Зазор 3 составляет величину в несколько микрон и поэтому попаданием туда жидкости можно пренебречь. В моменты несовпадения отверстий 2 и 4 в камере 8 в непосредственной близости от отверстий 4 образуются кавитационные области, которые осуществляют нанодиспергирование жидкости. Готовый продукт поступает на выходной патрубок 9.

Такого рода конструкции довольно сложны, в них приходится решать большое количество задач: поддержание зазора 3, создание высокого давления на входном патрубке 6, организацию потоков в приемной камере 8 и т. д. Решение сложных задач приводит к возникновению большого количества отличительных признаков и патентование таких решений не вызывает проблем. Например, в патенте [14] описаны устройство и способ нанодиспергирования с более чем двадцатью отличительными признаками, касающимися в первую очередь конструктивного выполнения нанодиспергатора. Еще одна особенность при патентовании нанодиспергирования заключается в том, что в этом случае не требуется особенно следить за возможностью нарушения единства изобретения, так как почти все отличительные признаки будут работать на единую цель – уменьшение размеров частиц, то есть повышение эффективности процесса диспергирования. В том случае, если планируется получение серии патентов в данной области, то из-за глубокой взаимосвязи процесса и устройства его реализации целесообразно в первичном патенте защищать комплекс, имеющий два независимых пункта формулы изобретения (устройство и способ). Вторичные патенты при этом уже могут иметь один независимый пункт формулы изобретения (чаще всего способ), но с обязательным подробным раскрытием устройства реализации способа. Например, в патенте [15] на способ нанодиспергирования было приведено восемь чертежей устройства без внесения его признаков в независимый пункт формулы изобретения. Это было целесообразно, так как устройство достаточно полно объясняло процесс, но при этом состояло из известных на тот момент узлов, используемых по прямому назначению. Дополнительная простота патентования нанодиспергирования связана со сложностью изготовления нанодиспергаторов, возникающей из-за возможного кавитационного разрушения элементов конструкции. Используя принцип ТРИЗа «обратить вред в пользу», можно разрушающие свойства кавитации направить на удаление отложений на элементах конструкции. Дело в том, что при нанодиспергировании нефти в зазоре 3 и на краях щелей 2 и 4 могут образовываться солевые отложения, при нанодиспергировании молока зазор 3 может забиваться жиром и т. п. Технически добиться, чтобы конструкция не разрушалась, а разрушались только отложения непросто, но с точки зрения защиты интеллектуальной собственности перевод отрицательного эффекта в дополнительный положительный облегчает получение патента. Более того, в этом случае всегда есть возможность не раскрывать ноу-хау, а именно не приводить точного значения энергии диспергирования, позволяющей одновременно получать необходимый размер частиц, не разрушать конструкцию и оказывать воздействия на паразитные отложения.


Литература

1. Feiman R.P. Theres Plenty of Room at the Bottom. An Invitation to Enter a New Field of Physics. – Engineering and Science, 1960, vol. 23, № 5, p. 22–36.

2. Tanigychi N. On the Basic Concept of Nanotechnology // Proc. Int. Conf. Prod. Eng., Part 2, Tokyo, 1974. – p. 18–23.

3. Gleiter, H. Deformation of Polycrystals: Mechanism and microstructures // Proc. of 2nd RISO Symposium on Metallurgy and Materials Science. – Roskilde, 1981, p. 15–21.

4. Удовицкий В.Г. О терминологии, стандартизации и классификации в области нанотехнологий и наноматериалов. – ФИП, 2008, т. 6, № 3–4, с. 193–201.

5. Заявка RU2007145957. Способ получения водорастворимых форм биологически активных веществ. 12.12.2007.

6. Заявка PCT/RU2009/000191. Состав для придания волокнистым материалам антимикробных и фунгицидных свойств.

7. Заявка W02006091291. Apparatus and process for carbon nanotube growth. 13.01.2006.

8. Патент TW238421B. Conductive material using carbon nanotubes and process for preparing same. 18.07.2002.

9. Заявка JP2005187309. Method and apparatus for manufacturing carbon nanotube. 09.02.2004.

10. Абрамян А.А., Балабанов В.И., Беклемышев В.И., Вартанов РВ., Махонин И.И., Солодовников В.А. Основы прикладной нанотехнологии. – М.: Издательский дом «Магистр-пресс», 2007. – 197 с.

11. Заявка RU2007131065. Устройство роста углеродных нанотрубок методом пиролиза этанола. 15.08.2007.

12. Шека Е.Ф. Химическая теория и расчеты наноуглеродов: фуллерены, нанотрубки, графены. Нанонаука и нанотехнологии. Энциклопедия систем жизнеобеспечения. – М.: Издательство ЮНЕСКО, 2009, с. 415–444.

13. Заявка RU2009142861. Способ получения атомно-тонких монокристаллических пленок. 23.11.2009.

14. Патент RU2340656. Способ получения нанодисперсной водотопливной эмульсии и устройство для его осуществления. 01.06.2006.

15. Патент RU2344874. Способ диспергирования жидкостей, их смесей и взвесей твердых тел в жидкостях. 09.08.2007.

Глава 4 Использование традиционных технологий для получения наноэлементов

Данный вопрос хорошо иллюстрируется на примере микроэлектроники, которая постепенно перешла в субмикронную электронику и далее в наноэлектронику. Для формирования элементов микроэлектроники традиционно использовались: фотолитография, ионная и электронная технологии, а также рентгенолитография. Совершенствуясь, фотолитография постепенно уходила в область глубокого ультрафиолета и достигла к настоящему времени возможности формирования элементов с размерами менее 100 нм. Электронная литография уже к началу 90-х годов XX века достигла возможности формирования элементов с размерами порядка нескольких десятков нанометров [1, 2]. Однако для массового производства изделий наноэлектроники ионная и электронная литографии были непригодны из-за их низкой производительности, хотя для изготовления шаблонов эти технологии оказались незаменимы. Они развивались эволюционно и поэтому патентование этих технологий было связано с защитой новых модификаций старого оборудования [3, 4].

Особый интерес с точки зрения патентования может представлять нетрадиционное использование известных технологий для получения нанообъектов. Одной из них является технология спейсеров. Она заключается в том, что тонкую пленку 1 (рис. 4.1) нанометровой толщины (эти пленки научились получать еще на заре микроэлектроники), помимо нанесения на горизонтальные поверхности, наносят еще и на вертикальную стенку 2 плоского элемента 3, сформированного на подложке 4.

Рис. 4.1. Технология спейсеров: 1 – тонкая пленка; 2 – вертикальная стенка; 3 – плоский элемент; 4 – подложка


Потом происходит плазмохимическое травление пленки 1, она снимается с горизонтальных поверхностей элемента 3 и подложки 4, но остается на вертикальной стенке 2 элемента 3. Таким образом, толщина пленки преобразуется в ширину элемента. Этот процесс повторяется и в результате получается набор наноэлементов с сохранением соответствующих толщин последовательно нанесенных и стравленных с горизонтальных плоскостей тонких пленок. Подробнее этот процесс описан в патенте [5].

В полном объеме этот технологический цикл получения конечных наноэлементов очень сложен и состоит из большого количества операций, в результате чего формула изобретения этого процесса приобрела слишком громоздкий вид и возможностей ее сокращения было немного, так как многие этапы процесса невозможно убрать либо хотя бы представить в общем виде. Когда в формуле изобретения присутствует большое количество отличительных признаков как в независимом, так и в зависимых пунктах, необходимо следить, чтобы количество технических эффектов от их использования было минимально и экспертиза не обнаружила нарушение единства изобретения. Особенно это важно для независимого пункта формулы изобретения и если там окажутся признаки, улучшающие только не основные характеристики процесса, то лучше эти признаки перенести в зависимые пункты. Однако, несмотря на новизну и изобретательский уровень, технология спейсеров из-за своей сложности не получила широкого распространения в качестве инструмента для производства изделий наноэлектроники.

Заманчивой альтернативой фотолитографии в конце 70-х годов XX века для массового производства субмикронной электроники (наноэлектроники в сегодняшних терминах) объявила себя рентгенолитография. Действительно, из-за малых длин волн рентгеновского излучения (1 нм – 1 пм) дифракционные искажения на краях масок рентгеношаблонов (РШ) практически не влияли на искажения размеров наноэлементов, полученных на подложках. Многие рентгеновские источники на тот момент уже были изобретены и патенты в отношении источников касались в основном их усовершенствований [6, 7, 8]. А вот разработки всего того, что дополняло рентген и было необходимо для получения конечного результата, явились раем для патентоведов. Дело в том, что рентгеновское излучение, решив главную проблему с длиной волны, поставило огромное количество дополнительных задач. Мягкое рентгеновское излучение (с длиной волны примерно 1 нм), изначально пригодное для рентгенолитографии, имеет невысокую проникающую способность и рентгеношаблоны должны быть выполнены из тонких (порядка нескольких микрон) материалов. Такими материалами стали полиимид, кремний, легированный бором, нитрид кремния и некоторые другие. Из них формировались мембраны РШ, закрепленные на прочных основах. В качестве маскирующих слоев хорошо зарекомендовало себя золото. Однако тонкие пленки рентгеношаблонов выдвинули требования их сохранности. Например, при фор-жировании наноэлементов на РШ с помощью ионного или электронного лучей мембраны стали деформироваться, а наноэлементы соответственно менять свое местоположение. При контактной литографии мембраны электростатически прилипали к подложкам. Соответственно для решения каждой проблемы необходимо было использовать новые подходы. Большие площади мембран укреплялись перегородками, зоны мембран, соприкасающиеся с подложками, покрывались антифрикционными составами и т. п. [9, 10]. Все это ново и сложностей в патентовании практически не возникало.

При переносе изображения через РШ экспонировался рентгенорезист, а это также новая область с большим количеством оригинальных решений [11, 12], которые в основном заключались во включении в молекулу резистивного материала атомов, поглощающих мягкое рентгеновское излучение и способствующих уменьшению экспозиционной дозы.

Следующая проблема, которая была поставлена рентгенолитографией – это создание высокоточных и надежных систем совмещения. Дополнительная трудность заключалась в термодрейфе РШ и подложек, который менял местоположения элементов и они не совмещались друг с другом как в процессе одного экспонирования, так и при каждом последующем. Системы совмещения для литографий всегда являлись наиболее сложными устройствами, а здесь эти сложности дополнительно возросли. Дело в том, что мембраны РШ оказались недостаточно прозрачными для оптического излучения, чтобы в традиционном оптическом диапазоне фиксировать реперные знаки подложки и РШ для последующего их совмещения. Это привело к огромному количеству технических решений, являющихся усовершенствованием традиционных принципов оптического совмещения. В решении [13] (рис. 4.2) изображения реперных знаков 1 подложки 2 и реперных знаков 3 РШ 4 проецировались оптической системой 5 на сканирующее устройство 6 с масками 7 и далее на анализатор 8, определяющий рассовмещение реперных знаков.

Рис. 4.2. Следящая система совмещения: 1 – реперные знаки подложки; 2 – подложка; 3 – реперные знаки РШ; 4 – рентгеношаблон; 5 – оптическая система; 6 – сканирующее устройство; 7 – маска; 8 – анализатор

Рис. 4.3. Следящая система совмещения компенсационного типа: 1 – реперные знаки подложки; 2 – подложка; 3 – реперные знаки РШ; 4 – рентгеношаблон; 5 – оптическая система; 6 – сканирующее устройство; 7 – маска; 8 – анализатор; 9 – помехозащищенный элемент; 10 – дополнительная маска


В способе совмещения [14] (рис. 4.3) в оптическую систему 5 был введен помехозащищенный элемент 9 (аналог реперных знаков 1,3), изображение которого анализировала дополнительная маска 10. При этом изображение элемента 9 по укороченному оптическому пути и с усиленной примерно на порядок яркостью подавалось на анализатор 8, который учитывал помехи оптической системы, связанные с вибрациями, конвективным тепломассообменом и т. п.

В устройстве [15] (рис. 4.4) дополнительный оптический модуль 9 выделял дополнительную информацию о грубом рассовмещении реперных знаков 1, 3 и подавал ее в виде оптического сигнала на модуль анализа грубого рассовмещения 10.

Рис. 4.4. Разделенная система совмещения: 1 – реперные знаки подложки; 2 – подложка; 3 – реперные знаки РШ; 4 – рентгеношаблон; 5 – оптическая система; 6 – сканирующее устройство; 7 – маска; 8 – анализатор; 9 – оптический модуль; 10 – модуль анализа грубого рассовмещения

Рис. 4.5. Система совмещения на основе зонных площадок Френеля:

1 – рентгеношаблон; 2 – линза Френеля; 3 – модулятор; 4 – лазер; 5 – луч лазера; 6 – реперный знак подложки; 7 – подложка; 8 – фотоприемник; 9 – система приводов


В результате разделения каналов грубого и точного совмещения была повышена точность анализа за счет того, что точное совмещение можно было проводить в меньшем диапазоне. Патентование таких устройств и способов не вызвало проблемы, так как в каждом пришлось решать большое количество новых задач.

Кроме этого, появились принципиально новые методы совмещения. Такие, например, когда на РШ 1 (рис. 4.5) формировалась линза Френеля 2, состоящая из прозрачных и непрозрачных участков, расположенных с переменным шагом. На нее с использованием модулятора 3 от лазера 4 подавался качающийся луч 5, который фокусировался линзой 2 и сканировал реперный знак 6 подложки 7. Этот знак мог состоять из нескольких дифракционных решеток, сигнал от которых фиксировался фотоприемником 8 [16]. Таким образом оценивалось рассовмещение РШ 1 относительно подложки 7, которое отрабатывалось системой приводов 9.

Патентование таких систем, очевидно, не вызовет трудностей также по причине решения большого количества решаемых проблем. Это поддержание зазора между РШ 1 и подложкой 7, как минимум в трех точках, анализ трех реперных знаков 6 подложки 7, отработка рассовмещения по плоскости подложки 7 и по углу разворота в этой плоскости, термостабилизация, замена подложек и многое другое.

Также оригинальным решением было использовать сканирующий зондовый микроскоп (СЗМ) для совмещения рентгеношаблона 1 (рис. 4.6) с подложкой 2. В этом случае на РШ 1 формировались кантилеверы 3, которые фиксировали рассовмещение реперных знаков 4 подложки 2 относительно РШ 1 [19, 20]. Система приводов 5 отрабатывала рассовмещение и поддерживала зазор между РШ 1 и подложкой 2. Здесь ко всем перечисленным проблемам предыдущей системы добавлялось особо точное поддержание этого зазора для обеспечения функционирования работы СЗМ.

Рис. 4.6. Система совмещения на основе СЗМ: 1 – рентгеношаблон; 2 – подложка; 3 – кантилевер; 4 – реперные знаки подложки; 5 – система приводов

Рис. 4.7. Модернизированный интерферометр Майкельсона: 1 – лазер; 2, 3, 4 – оптические модули; 5 – уголковый отражатель; 6 – фотоприемник


Чем сложнее система, тем проще ее патентовать. Проблема заключается в том, чтобы ее изготовить и обеспечить требуемые характеристики.

Помимо основных сложных систем для обеспечения процесса рентгенолитографии необходимо было разработать большое количество вспомогательных узлов: интерферометров, модуляторов, сканеров, транспортеров и т. д. Например, в интерферометре (рис. 4.7) лазер 1 формировал посредством оптических модулей 2, 3, 4 и уголкового отражателя 5 совмещенный оптический сигнал на фотоприемнике 6, характеризующий перемещение отражателя 5, перпендикулярное оси лазера 1. Этот интерферометр измерял перемещение сканирующих устройств, изображенных на рис. 4.2, 4.3, 4.4 и должен был иметь уменьшенные габариты в отличие от классического интерферометра Майкельсона, что и определило возможности его патентования [21] благодаря использованию одного уголкового отражателя 5.

В интерферометре (рис. 4.8) не было необходимости бороться за габариты, а вот повышенная точность измерения была необходима и достигалась благодаря тому, что луч от лазера 1, используя полупрозрачные зеркала 2 и 3 и отражаясь от смещенных на величину А уголковых отражателей 4 и 5, формировал увеличенное перемещение отражателя 4, перпендикулярное оси лазера 1, что и фиксировал фотоприемник 6 [22].

Рис. 4.8. Интерферометр с повышенной точностью измерения: 1 – лазер; 2, 3 – полупрозрачные зеркала; 4, 5 – уголковые отражатели; 6 – фотоприемник

Рис. 4.9. Модулятор: 1 – пьезобиморф; 2 – корпус; 3,4 – направляющие; 5 – плоская пружина; 6 – шторка


В модуляторе света (рис. 4.9) пьезобиморф 1, закрепленный в корпусе 2, благодаря использованию направляющих 3 и 4, в которых проскальзывала плоская пружина 5, отклонял шторку 6 на величину, более чем в 10 раз превышающую перемещение пьезобиморфа 1 [23]. Это необходимо в устройствах совмещения для уменьшения габаритов оптических модуляторов.

Описанные устройства [21,22,23] должны были быть адаптированы ко всему рентгенолитографическому комплексу и благодаря этому имели оригинальное исполнение. Интерферометры [21,22] при сохранении простоты конструкции обеспечивали требуемую точность оценки перемещения. Модулятор [23] при минимальных габаритах обеспечивал достаточный диапазон перекрытия световых каналов.

Следует также заметить, что в сложных системах со специфическими требованиями патентование возможно вплоть до мельчайших элементов,

например, таких, как электрические соединители. Например, разъем [24] был защищен благодаря его адаптации к вакуумным условиям использования в рентгенолитографии за счет регулируемого усилия сжатия контактов.

Основной вывод, который следует из вышесказанного, это то, что в новых областях, даже при использовании традиционного оборудования благодаря огромному количеству новых задач возможно патентование большого количества технических решений. Следует также заметить, что каждое новое направление реализует конечное число технических решений, но открытие новых эффектов порождает серию новых изобретений. Например, в рентгеновской технике было открыто явление сверхтекучести рентгеновских лучей [25], которое открывает целую область его применения. Специфика патентования изобретений, основанных на открытиях, будет рассмотрена ниже.


Литература

1. Браун Н., Караламбоус П., Кудряшов В.А. Высоковольтная электроннолучевая нанолитография. Третий всесоюзный семинар. «Микролитография». – Черноголовка, 1990, с. 31.

2. Аристов В. В., Кислов Н.А., Николайчик В. И., Ход ос И. И. Нанолитография в РПЭМ. Третий всесоюзный семинар. «Микролитография». – Черноголовка, 1990, с. 35–36.

3. Патент US5122663. Compact integrated electron beam imaging system. 24.07.1991.

4. Заявка RU2004136940. Поликаналльный объектный столик для исследования микроорганизмов с помощью сканирующего электронного микроскопа JEOL JSM-35C.27.05.2006.

5. Патент RU2297947. Способ изготовления полупроводникового прибора с управляющим электродом нанометровой длины.22.05.2003.

6. Heuberger A., Betz Н. X-ray lithography using synchrotron radiation // SPIE. 1984. vol. 471. p. 221–230.

7. Заявка JP59-33742. Источник рентгеновского излучения. 28.09.82.

8. Заявка JP59-128747. Газоплазменный источник рентгеновского излучения.12.01.83.

9. Заявка JP60-22093. Рентгеношаблон. 05.11.85.

10. Заявка JP59-92531. Рентгеношаблон. 17.11.82

11. Патент US4513077. Electron beam or X-ray reactive imagel-formable resisnous composition. 13.06.83.

12. Нонотаки С. Электронные резисты и рентгенорезисты. – Денси дзеире, 1984, т. 23, № 8, с. 57–61.

13. А.С. СССР № 1354978. Система реперных знаков и способ совмещения рисунка шаблона с рисунком пластины. 06.03.1986.

14. А.С. СССР № 1385843. Система реперных знаков для совмещения шаблона с пластиной, способ совмещения шаблона с пластиной и устройство для совмещения шаблона с пластиной. 18.01.1986.

15. А.С. СССР № 1403839. Устройство для совмещения шаблона и подложки. 06.03.1986.

16. А.С. СССР № 1385843. Система реперных знаков для совмещения шаблона с пластиной, способ совмещения шаблона с пластиной и устройство для совмещения шаблона с пластиной. 18.01.1986.

17. Лаймен Д. Работы по созданию установки рентгеновской литографии. – Электроника, 1986, т. 59, № 6, с. 45–52.

18. Патент US5150392. X-ray mask conteining a cantivelevered tip for gap control and aligment. 09.09.1991.

19. Патент US5508527. Method of detecting positional displacement between mask and wafer,and exposure apparatus adopting the method. 09.01.1994.

20. Полнопольная рентгенолитографическая установка MX-15.– Дэнси дзеире, 1986, т. 58, № 25, с. 77–81.

21. Заявка JP60-208828. Установка для рентгеновского экспонирования. 02.04.1984.

22. А.С. СССР № 1578457. Интерферометр для измерения линейных перемещений. 08.01.1988.

23. А.С. СССР № 1578458. Интерферометр для измерения линейных перемещений. 08.01.1988.

24. АС. СССР № 1550457. Модулятор света. 08.01.1988.

25. АС. СССР № 1823045. Разъем. 06.02.1991.

26. Егоров В.К., Егоров Е.В. Явление радиационной сверхтекучести и его применение в сфере высоких технологий. – Высокие технологии, 2005, № 4 (24), с. 7–11.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации