Текст книги "Галактики. Большой путеводитель по Вселенной"
Автор книги: Джеймс Гич
Жанр: Физика, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 5 (всего у книги 15 страниц) [доступный отрывок для чтения: 5 страниц]
Следует отметить, что было и несколько других астрономов, участвовавших в ранних теоретических исследованиях. Например, в начале 1920-х годов Александр Фридман и Жорж Леметр, работая независимо друг от друга и используя общую теорию относительности Эйнштейна, получили первые наметки того, что позднее станет известно как закон Хаббла. (В науке существуют разные взгляды на то, кого именно считать первооткрывателем, поскольку другие ученые тоже работали над раскрытием картины расширяющейся Вселенной, но чаще всего называют именно Хаббла.)
Как и кем бы ни было сделано открытие, результаты этого экспериментального доказательства имели глубокие последствия. Было продемонстрировано не только то, что Вселенная заполнена галактиками, разделенными огромными расстояниями, но и то, что эта комбинация данных – расстояний цефеид и красного смещения – подразумевает доминирующее удаление галактик друг от друга, при этом находящиеся дальше галактики кажутся более быстрыми. Вывод был ясен: Вселенная расширяется. Это было – и при постоянном обновлении данных остается – одним из наиболее убедительных доказательств происхождения Вселенной в горячем Большом взрыве. Просто поверните стрелки часов назад: вещи, которые сейчас удаляются друг от друга, когда-то должны были быть ближе друг к другу. Запустите часы назад достаточно далеко в прошлое – и вы попадете в точку, где вся материя и энергия были сконденсированы в объеме, намного меньшем, чем сегодня. Какой-то механизм, который мы называем Большим взрывом (на самом деле этот термин был впервые использован для критики теории, которую он обозначает), вызвал взрывное расширение из одной точки – как мы предполагаем, отправной точки нашей физической Вселенной. Вопрос о том, было ли что-то до него, – предмет бесконечных домыслов и споров, отчасти потому, что его трудно проверить эмпирически.
Это изображение представляет собой очень детализированную радугу – спектр нашего Солнца, где солнечный свет рассеивается на составляющие его частоты, которые мы воспринимаем как цвета. Самые короткие длины волн (и самые высокие частоты) находятся внизу (синие), и с каждым рядом длины волн увеличиваются (а частоты уменьшаются). Вертикальные темные линии – линии Фраунгофера – указывают на поглощение света различными элементами, присутствующими в атмосфере Солнца. Спектр говорит нам, сколько энергии излучается на каждой длине волны – в случае Солнца бо́льшая часть энергии излучается в УФ-части электромагнитного спектра, а пик находится около зеленой/желтой метки. Поэтому спектры можно использовать для получения данных о физике и составе Солнца. Этот метод применим ко всем галактикам, где виден объединенный свет миллиардов солнц. Спектры галактик также могут показывать эмиссионные линии, например излучение ионизованного водорода в местах звездообразования (областях HII). Поскольку мощность этих линий пропорциональна количеству молодых массивных звезд, способных ионизировать водород, мы можем использовать спектры и для измерения скоростей звездообразования галактик, а также других физических свойств. Спектроскопия – один из самых мощных инструментов в астрономии
Перед вами довольно необычный вид галактик. Это изображение показывает спектры нескольких далеких галактик, за которыми мы наблюдаем при помощи многообъектного спектрографа VIMOS. Спектроскопия рассеивает свет в соответствии с частотой подобно радуге, что позволяет нам детально исследовать выбросы галактик и изучать информацию об их движении и химическом составе. Каждая вертикальная полоса – это спектр одной галактики, а яркие горизонтальные линии – характеристики излучения в нашей атмосфере. Более слабые вертикальные линии, видимые в некоторых полосах, – излучения самих галактик
Точная природа и механизм начального расширения в первые несколько мгновений существования Вселенной и ее продолжающегося расширения сегодня относятся к области того, что можно было бы назвать космологическими вопросами, на которых мы не собираемся слишком сильно фокусироваться. Нас интересуют непосредственно галактики, охваченные этим космическим потоком, и то, как они формировались и развивались во Вселенной, возникшей в жарких условиях Большого взрыва.
Вернемся к спектрам. Умение измерять спектры галактик – неотъемлемая часть нашего набора инструментов. Красное смещение можно использовать для отображения распределения галактик в своего рода трехмерном контексте, так как мы знаем, что галактики с большими красными смещениями находятся дальше. Но спектры имеют и другое применение: они содержат важную информацию о внутреннем содержании, химии и движущих силах далеких галактик.
Спектр Солнца (см. изображение на с. 86) сложен: его детальная форма в основном содержит информацию о химии звезды и о том, сколько энергии она излучает. Мы можем достаточно хорошо измерить спектр Солнца, потому что оно очень яркое. Но Солнце – это только одна звезда. Когда мы берем спектр всей галактики, то измеряем суперпозицию света от миллиардов звезд разного возраста, массы и металличности. Кроме того, мы также получаем все межзвездное вещество – газ и пыль между звездами. Если бы все звезды были той же массы и возраста, что и Солнце, а межзвездного вещества не было, спектр далекой галактики был бы почти той же формы, что и спектр Солнца. Но в галактиках есть целый ряд типов звезд, и не все они похожи на Солнце. Это приводит к различиям в форме спектрального континуума от галактики к галактике, которые мы можем использовать для классификации галактик разных типов.
Галактики, которые активно формируют множество новых звезд, производят большое количество излучения в УФ– и синей частях спектра, потому что это свет очень массивных, но недолговечных звезд. Другими словами, если мы видим галактику с большим УФ-излучением, то сразу понимаем, что она должна содержать много молодых, обычно очень массивных звезд, и поэтому здесь должны активно формироваться новые светила, так как массивные звезды живут не очень долго – всего лишь миллионы лет. Поэтому УФ-светимость можно откалибровать по скорости звездообразования. УФ-свет, производимый этими новыми звездами, оказывает другое влияние на спектр: он может ионизировать межзвездный водород в окрестностях мест рождения звезд, формируя области HII, о которых мы говорили в первой главе. Это создает сильные эмиссионные линии в спектре (в основном линии водорода и кислорода в видимой его части), а наличие этих эмиссионных линий – еще один инструмент классификации и калибровки. Кроме того, сила наблюдаемой эмиссионной линии может быть преобразована в скорость звездообразования, ведь у нас уже есть отличные данные о количестве ионизирующих фотонов, необходимых для возникновения звезды.
Спектр далекой галактики демонстрирует яркую линию излучения, представляющую ионизированный кислород. Яркость этой эмиссионной линии может быть преобразована в скорость звездообразования в этой галактике. Этот спектр был получен с помощью инструмента FORS телескопа VLT
Галактики, которые не образуют новых звезд и содержат очень зрелое, старое звездное население, не дают много линий УФ-света или газовой эмиссии. Бо́льшая часть энергии поступает в более красную и более длинную волну видимой и ближней инфракрасной части спектра. Эти галактики также имеют сильные линии поглощения, образованные металлами, которые накапливались в процессе звездной эволюции в течение всего существования галактики. Заметные линии поглощения в этих галактиках происходят от элементов кальция и магния (в видимой части спектра).
Таким образом, спектры могут быть использованы для изучения внутренних условий и среднего возраста других галактик, а также для их и для классификации по различным типам на основе видимых нам особенностей. Однако в этой работе необходимо быть предельно внимательным. Галактики с активным процессом звездообразования, например, могут не иметь большого количества УФ-излучения или показывать особенно сильные эмиссионные линии. Из этого можно было бы сделать вывод, что уровень звездообразования в них низкий. Загвоздка здесь в том, что некоторые галактики содержат огромное количество межзвездной пыли – частиц кремния и углерода, которые зачастую окружают области звездообразования. Как мы знаем, пыль поглощает УФ– и оптические фотоны и таким образом способствует покраснению спектра, подавляя синий свет, исходящий от новых звезд, и линии эмиссии, которые они производят при облучении молекулярных газовых облаков – так называемых звездных колыбелей. К сожалению, именно вокруг мест образования новых звезд пыль зачастую наиболее плотная – в этом случае мы говорим, что оптическая глубина самая высокая.
В некоторых случаях покраснение настолько сильное, что приводит к серьезному недооцениванию скорости звездообразования в галактике. Один из способов решить эту проблему – измерить количество инфракрасного света, излучаемого галактикой. При поглощении УФ-фотонов пыль нагревается, – обычно до температуры от нескольких десятков до 100 градусов выше абсолютного нуля (в зависимости от того, где находится пыль относительно звезд). Выглядит холодновато, но на самом деле любой объект, температура которого выше абсолютного нуля (–273 °C), выделяет тепловую энергию. Вы излучаете инфракрасное излучение на длине волны около 10 микрон. Более холодные объекты излучают инфракрасное излучение на более длинных волнах, и наоборот. В случае межзвездной пыли пик тепловыделения составляет около 100 микрон, но с широким разбросом. Чтобы обнаружить процесс звездообразования в регионах, скрытых пылью, можно прибегнуть к поиску контрольного инфракрасного излучения, вызванного в результате нагрева звездным светом затемняющей межзвездной пыли.
Карта Вселенной
Спектроскопия позволяет нам в некотором смысле классифицировать галактики; точно так же – благодаря красному смещению – она помогает нам поместить их в некоторый трехмерный контекст. Но как они на самом деле распределены в космосе? Давайте рассмотрим наш «местный» ландшафт более подробно. Представьте, что мы можем вырезать какую-то часть Вселенной, некий кубик, и детально изучить все его содержимое. Давайте нашим кубиком станет та часть, которая находится в центре Млечного Пути, а длина каждой стороны куба составит 20 Мпк. Это достаточно большой кусок, даже в космологических терминах, и он содержит хорошую выборку локальной части Вселенной. Что же мы найдем в нем? Для упрощения нашей визуализации давайте уменьшим это поле так, чтобы каждая его сторона равнялась метру – кубик станет достаточно маленьким, чтобы поместиться в комнате.
Теперь представьте, что этот кубик пространства находится перед вами как трехмерная модель. В этой уменьшенной модели размер самого Млечного Пути, находящегося прямо в центре кубика, составлял бы всего лишь 1 мм в поперечнике и был бы едва видимым для глаза. Крошечный Млечный Путь окружен своими «компаньонами» – несколькими карликовыми галактиками, Магеллановыми Облаками, а также другими галактиками-спутниками, и все они находятся в этом масштабе в пределах нескольких миллиметров. Расстояние до нашего ближайшего соседа подобного типа – галактики М31 – составляет около 4 см. В радиусе от 10 до 15 см от Млечного Пути находится от 50 до 60 других галактик. Все это называется Местной группой галактик и являет собой наш космологический «задний двор».
На расстоянии около 20 см в направлении созвездия Центавра (если мы представим, что сидим на Млечном Пути и смотрим на созвездие) находится еще одна группа галактик, окружающая большую эллиптическую галактику – Центавр А. Это мощная радиогалактика: при просмотре в радиочасти спектра можно обнаружить два больших «потока» радиоизлучения, идущих от центра галактики и значительно превышающих распределение звезд. Центавр A – еще одно напоминание о том, что нам нужны многоволновые изображения, чтобы получить полную картину. Формирование этих радиопотоков вызвано тем, что лежит в центре галактики – сверхмассивной черной дырой, о которой мы поговорим позже. Группировка галактик вокруг Центавра A называется подгруппой Центавра A. Часто мы видим, что галактики сгруппированы вокруг самых массивных галактик Вселенной, к которым, безусловно, можно отнести и Центавр A.
Еще одно изображение Центавра А, на этот раз включающее субмиллиметровый (оранжевый, отслеживающий холодный газ и пыль) и рентгеновский (синий, отслеживающий очень горячий газ) свет. Теперь мы видим две струи излучения, выходящие из галактики. Центавр A – мощная радиогалактика, одна из ближайших радиогалактик к Млечному Пути, содержит активное ядро, которое отвечает за это излучение. Этот снимок – прекрасный пример того, почему необходимо делать многоволновое изображение галактик: если мы хотим понять их природу, нам нужно охватывать все возможные характеристики излучения
Есть и другие группировки, например М 83, также названная по номеру записи в каталоге Мессье, и большая спиральная галактика в направлении созвездия Гидры, также известная как Южная Вертушка. Эта прекрасная спиральная галактика ориентирована таким образом, что мы можем видеть ее с лицевой стороны (наш Млечный Путь выглядел бы аналогично, если бы мы смотрели на его диск сверху). В нашем кубике М83 находится примерно в 23 см от Млечного Пути. Как и наша Местная группа, М83 также окружена небольшой группой галактик – так называемой подгруппой М83. Многие галактики, как правило, собираются в небольшие скопления, так что нередко мы находим огромные участки космического пространства, в которых отсутствуют или почти отсутствуют галактики и скопления. Такие области называют войдами, то есть пустотами. Также мы находим огромные группировки галактик – скопления или кластеры.
За краем кубика, в 80 см от центра нашей модели, находится огромное собрание из тысяч галактик, упакованных в сферу шириной около 20 см. Ядро этого скопления составляет несколько очень больших, не похожих на Млечный Путь галактик, таких как М31 или М83. Они представляют собой не плоские диски, а выпуклые, симметричные эллиптические галактики, не отличающиеся от Центавра A. Среди них – скопление Девы (оно называется так, потому что при наблюдении с Земли видно, что этот кластер находится в направлении созвездия Девы). Кластеры – это огромные скопления галактик, удерживаемых вместе гравитацией, и самые массивные объекты во Вселенной. По некоторым причинам, которые мы подробнее рассмотрим в следующей главе, свойства галактик в областях высокой плотности, таких как эти скопления, отличаются от свойств в среднем «поле».
Это неполное описание нашего локального объема, но мы и не ставили перед собой задачу дать ему детальную характеристику – оно позволяет лишь представить распределение галактик во Вселенной и его масштабы. Если вернуться к кубику, то можно заметить, что бо́льшая его часть – просто пустое пространство: диаметр нашей Галактики составляет лишь десятую часть процента от размера этого кубика. Другие галактики хоть и имеют различные физические размеры (самые большие – эллиптические), также занимают лишь небольшую часть общего объема пространства. Распределение галактик в пространстве не случайно: они, как правило, объединяются в группы и скопления, и если взглянуть на все галактики, можно обнаружить, что эти группы и кластеры связаны друг с другом «галактическими нитями». Формирование этих структур происходит под воздействием гравитации, а образование и эволюция галактик внутри них, то есть изменение свойств галактик в зависимости от их расположения в крупномасштабной структуре, являются областью активных исследований в принципе и бо́льшей части моих собственных в частности.
Мы довольно неплохо изучили содержимое нашего кубика, и в основном это результат непрекращающихся работ по определению местоположения и свойств галактик во Вселенной. Но наши возможности для наблюдения очень ограничены. С точки зрения космических масштабов мы, люди, эффективно заселяем двумерную мембрану – поверхность Земли (и окружающий ее тонкий слой космического пространства толщиной в несколько сотен километров, а также внеземные орбиты, где удачно расположено несколько спутников). Но в любом случае в основном это всего лишь попытки ознакомиться с содержимым всей Вселенной из одной точки внутри нее. Это делает работу намного сложнее, чем если бы мы могли произвольно смещать наш наблюдательный пункт. Увы, законы физики исключают такую роскошь.
Первая проблема, с которой мы сталкиваемся как космические картографы, заключается в том, что мы можем измерить положения галактик только в сферической системе координат, определяемой местонахождением галактик на небе (внутренней поверхности сферы) и красным смещением (или, если нам повезло, при помощи «правильного» измерения расстояния, такого как метод параллакса или цефеиды, но обычно они работают только локально), то есть речь идет об измерении радиального расстояния наружу. Картирование Местной группы галактик – процесс не слишком сложный, потому что большинство галактик довольно яркие и их легко измерить. Тем не менее все еще легко можно пропустить маленькие ближние галактики, обладающие очень низкой светимостью, поэтому Местная группа иногда пополняется новыми членами.
Скопление Кома (скопление Волосы Вероники) – самая массивная структура в близлежащей Вселенной, где тысячи галактик собираются на участках с высокой плотностью. Кластеры представляют собой части Вселенной, которые были самыми большими флуктуациями плотности в материальном поле вскоре после Большого взрыва. Под постоянным воздействием гравитации эти возмущения со временем нарастали и накапливали материю, превращаясь в гигантские структуры, подобные этой. Кластеры населены одними из наиболее старых и массивных галактик во Вселенной (эллиптических) и могут со временем захватывать новые галактики, которые трансформируются по мере их пересечения со скоплениями. На этом изображении видна довольно голубая (по сравнению с «красными и мертвыми» эллиптическими и линзовидными галактиками) спиральная галактика, где образуются звезды. Понимание эволюции галактик в кластерах – важная область современных исследований космоса
На снимке – карта Местной группы галактик, выявленных на сегодняшний день в спектроскопических исследованиях красных смещений, ключевым из которых является Слоановский цифровой обзор неба (англ. Sloan Digital Sky Survey, SDSS). Карта центрирована с учетом центра Земли и радиального увеличения космического расстояния. Эти две окружности соотносятся со временем прохождения света в 1 млрд и 2 млрд лет: когда мы смотрим на далекие галактики, то видим их такими, какими они были в прошлом, что позволяет нам изучать свойства галактик в исторической перспективе. Две клиновидные области с небольшим количеством галактик – это Зона избегания, то есть область на небе, закрываемая галактикой Млечный Путь, где плотность ее диска слишком высока и не пропускает свет из внегалактических источников. Обратите внимание на то, как галактики образуют пенистую нитевидную структуру – «космическую сеть» материи
По мере исследования все более глубокой Вселенной видимые размеры объектов становятся все меньше и меньше, что затрудняет их наблюдение. Съемка, которая ограничена «глубиной» (то есть коротким временем экспозиции или низкой чувствительностью), начинает пропускать галактики, слишком слабые для обнаружения камерой или каким-либо другим инструментом, который мы используем. Мы называем это «неполнотой» обзора и вынуждены признавать и пытаться решить эту проблему, если хотим избежать ошибочных выводов в наших анализах. Например, представьте, что вы стоите на нашем холме из первой главы и смотрите на далекий горизонт, наблюдая за бликами других городов. Найти отдаленные города довольно легко, но вы не сможете увидеть те из них, в которых нет огромных небоскребов. Можно в итоге прийти к выводу, что других деревень и городов нет – есть лишь крупные мегаполисы. Но этот вывод, вероятнее всего, будет неправильным: если вы не можете обнаружить отдаленные деревни и города, это не значит, что их там нет. Вместо этого было бы разумнее предположить, что раз на окраине вашего города есть несколько деревень, то и другие отдаленные города, схожие с вашим по размеру, скорее всего окружает примерно столько же селений. Подобные игры мы ведем и с наблюдениями за далекой Вселенной: мы должны делать предположения о вещах, которые еще не видим, и выстраивать прогнозы, чтобы при появлении более совершенных инструментов смогли подтвердить или опровергнуть наши гипотезы.
Другая проблема, как мы уже обсуждали в первой главе, заключается в том, что мы никогда не получаем полного представления о внегалактическом пространстве «всего неба»: диск Млечного Пути настолько толстый, что почти никакой свет от далеких галактик не может сквозь него пройти. Карты распределения галактик обычно имеют клиновидную форму – это показывает, что мы можем ясно видеть только отдаленные источники в полосах выше и ниже плоскости нашей Галактики, где низкая плотность звезд, пыли и газа. Хотя это и неудобный, но все же ни в коем случае не катастрофический факт. С одной стороны, фактическое встраивание в диск Галактики позволяет нам детально изучить его в пространственных масштабах, что – по очевидным причинам – невозможно в отношении внешних галактик. Внутренняя работа Млечного Пути составляет существенную часть наблюдений галактических астрономов, при этом большинство активных исследований сосредоточены на переполненной событиями галактической плоскости.
С другой стороны, существует космологический принцип, называемый принципом изотропии, который утверждает, что в больших масштабах Вселенная во многом выглядит одинаково во всех направлениях. То есть, наблюдая достаточно приличный кусок Вселенной над и под диском, мы можем быть совершенно уверены, что если бы мы могли видеть сквозь галактику, то другие Галактики в этом направлении (статистически) были бы примерно такими же. Если коротко, то мы ничего не теряем. Другими словами, если бы мы взяли наш кубик объемом в кубический метр и поместили его в какую-нибудь совершенно случайную часть Вселенной, то обнаружили бы, что, хотя точная схема расположения галактик может отличаться, на этом участке будет столько же галактик, групп и скоплений, а их статистические свойства окажутся одинаковыми.
Прогресс, которого мы достигли в картировании Вселенной для более крупных масштабов, в начале шел довольно медленно. В доисторические времена люди впервые заметили звезды, начав таким образом наше астрономическое путешествие, но ограничив человеческое знание Вселенной пределами нашей Галактики. За очень долгое время не было достигнуто большого прогресса, потому что технологии не совершенствовались: человеческий глаз может увидеть не так уж много. Но за последние 400 лет с момента изобретения телескопа голландскими оптиками мы смогли исследовать намного больше. Нет сомнений в том, что это расширение полностью обусловлено технологическими достижениями и инновациями в создании телескопов и датчиков. Этот прогресс продолжается и идет сегодня значительно быстрее, чем когда-либо прежде: разрабатываются планы по созданию «чрезвычайно» больших телескопов с основными зеркалами, размер которых в три или даже четыре раза превысит масштабы зеркал самых больших телескопов, работающих с видимым светом сегодня. Мы даже можем размещать телескопы в космосе и управлять ими дистанционно с Земли; только представьте, что бы об этом подумали первые пионеры телескопов! Точно так же постоянно идет выпуск новых инструментов – все более чувствительных, эффективных, умных и технологически продвинутых. Это делает нашу область научных исследований востребованной и захватывающей, поскольку всегда есть возможность открыть нечто совершенно новое, только и ждущее, чтобы его обнаружили.
Если мы возьмем изображение части неба, обнаружим там галактику и изучим ее спектр, то сможем измерить и ее красное смещение или хотя бы сделать правильное предположение, найдя таким образом для этой галактики место в трехмерной модели Вселенной. Положение на небе дает нам две координаты, а красное смещение – третью. Этот подход сложнее использовать в отношении очень далеких и очень слабо светящихся галактик, потому что измерение точного красного смещения и обнаружение галактики в первую очередь требуют от нас сборки необходимого количества света: тогда астрономический сигнал будет достаточно большим, чтобы перекрыть случайный шум, возникающий от работы электроники, окружающего теплового фона и т. д. Случайный шум, не связанный с сигналом, который мы пытаемся обнаружить, присутствует во всех электронных детекторах. Нам также связывает руки ограниченное разрешение. Если вы находитесь в поле, полном коров, те из них, что ближе к вам, будут выглядеть крупнее тех, что поодаль. Если вы сфотографируете их, то дальние коровы займут на изображении меньше пикселей, чем коровы на переднем плане. Мы можем видеть больше деталей у ближайших к нам коров, а те, что находятся на горизонте, будут опознаваться как силуэты, не более. То же самое справедливо и для галактик: соседние галактики легко обнаружить, поскольку они кажутся большими на небе и мы можем различить внутренние детали, такие как спиральные рукава, перемычки, балджи и даже отдельные звездные скопления и области звездообразования; более отдаленные галактики кажутся меньше, и, поскольку разрешение наших инструментов имеет ограничение (то есть наименьший угловой масштаб, который можно различить и который определяется размером телескопа), в большинстве случаев мы не можем разобрать никаких деталей: галактика на нашем изображении становится просто рисунком из нескольких ярких пикселей. А если мы начинаем увеличивать изображение до предела, то рискуем принять комбинацию из ярких пикселей, которая может быть далекой галактикой, за всплеск случайного шума. Обычно нам требуется последующее наблюдение для подтверждения или опровержения реальности таких систем. Если шум случайный, то маловероятно, что мы получим еще один его всплеск в точно такой же позиции на изображении, поэтому повторное обнаружение некоторой слабой предполагаемой галактики на независимом изображении – более убедительное доказательство, чем единичная экспозиция.
Это изображение построено с учетом расположения всех галактик, обнаруженных в SDSS. Оно и показывает общую прогнозируемую плотность галактик в большой области неба, которая называется Северной галактической шапкой. Вы можете видеть, что галактики распределены не случайным образом: есть участки высокой плотности (скопления) и четкие нитевидные структуры, образующие сеть, пронизывающую всю область распределения галактик. Это крупномасштабная структура Вселенной, где галактики возникают и меняются внутри невидимого скелета из темной материи, которая со временем эволюционировала под воздействием гравитации
Как правило, мы доверяем только астрономическому обнаружению, будь то простое изображение галактики или какая-то особенность в ее спектре, когда сигнал, который мы видим, как минимум в пять раз больше типичного размера случайных изменений из-за шума в измерении (например, электронного шума в ПЗС-изображении). «Сбивание» уровня шума, создавая все более чувствительные камеры и детекторы, сборка как можно большего количества света, чтобы мы могли уловить крошечный поток фотонов от удаленного объекта, и покрытие все бо́льших областей неба, эффективно исследуя таким образом как можно бо́льшую его часть, – вот три магических компонента нашей задачи по картографированию Вселенной. Все они основаны на технологиях: мы хотим, чтобы самые чувствительные детекторы были подключены к большим камерам и установлены на большие телескопы.
Значительная часть усилий в исследовании галактик за последние полвека была сосредоточена на съемках неба, но сейчас они важнее, чем когда-либо. Сегодня часто говорят, что мы переживаем золотой век исследования галактик, так как выполнять чрезвычайно большие чувствительные съемки неба с помощью различных инструментов стало гораздо легче. Наблюдения полезны не только для определения местоположения галактик во Вселенной, которое, как мы видели, далеко не случайно, но и для накопления больших подборок галактик с различными свойствами, живущих, что наиболее важно, в различные эпохи истории Вселенной – последнее благодаря тому, что свету нужно так много времени, чтобы пересечь космические расстояния. Если всмотреться в глубину Вселенной, то есть в слабое сияние, можно увидеть свет, излученный первыми галактиками вскоре после Большого взрыва. Именно таким образом мы можем исследовать, как основные свойства галактик, такие как звездная масса, форма, химический состав и пр., эволюционируют с течением времени.
Возможно, самым успешным исследованием галактики на сегодняшний день является SDSS – проект, который был запущен в 2000 году. С относительно небольшим 2,5-метровым телескопом, расположенным в обсерватории Апачи-Пойнт в штате Нью-Мексико, SDSS провел прошлое десятилетие в наблюдении за четвертью всего неба и создал, пожалуй, лучшую карту локальной Вселенной, которая у нас есть. SDSS располагает большой 120-мегапиксельной ПЗС-камерой, которая позволяет сделать снимок 1,5 квадратных градусов неба, что довольно много: если помните, размер полной Луны на небе составляет 0,5 градуса в поперечнике. Такое широкое поле зрения позволяет телескопу быстро наращивать зону съемки; на самом деле его техника визуализации несколько отличается от большинства телескопов. Вместо того чтобы нацеливаться на определенную позицию и снимать экспозицию, SDSS использует «дрейфовое сканирование», которое учитывает фактор «дрейфования» звезд при вращении Земли. Если вы поместите телескоп на землю, направив его вверх, то в течение ночи вы сможете отснять полосу неба, которую создаст вращение Земли. Таким образом, SDSS изображает небо в виде серии полос. Одно из преимуществ дрейфового сканирования для работы с большими съемками – точность при астрометрической калибровке (то есть то, насколько хорошо мы можем преобразовывать положения пикселей на результирующем изображении в фактические положения источников на небе). SDSS проводит относительно «мелкую» съемку: для изображения такой большой области неба невозможно получить длинные выдержки, позволяющие исследовать очень слабые потоки галактики, как это происходит, скажем, у «Сверхглубокого поля “Хаббла”», который стал специальным проектом по наблюдению за небольшим регионом космоса с большой выдержкой и показал чрезвычайно далекие галактики. По сравнению с этим проектом, большинство галактик, обнаруженных SDSS, сравнительно локальны. С другой стороны, истинный масштаб наблюдений в этом проекте означает, что космический объем, измеряемый SDSS, огромен, и это действительно полезное знание.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?