Электронная библиотека » Джон Гриббин » » онлайн чтение - страница 2


  • Текст добавлен: 9 августа 2016, 14:30


Автор книги: Джон Гриббин


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 17 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +

Разумеется, Гамов, Альфер и Херман были огорчены тем, что столь громкое открытие не связали с их именами: они впервые прочли о нем в передовице New York Times. Последовавшие взаимные обвинения хорошо изложены в работе Джона Мазера и Джона Бослоу, сыгравших в дальнейшем свою роль в изучении реликтового излучения, поэтому нет нужды рассказывать о них здесь{8}8
  Джон Мазер и Джон Бослоу, The Very First Light.


[Закрыть]
. Но, пожалуй, стоит упомянуть о нескольких других упущенных возможностях.

Как я уже рассказывал в книге In Search of the Big Bang («В поисках Большого взрыва»), череда несостоявшихся открытий реликтового излучения тянется в прошлое вплоть до начала 1940-х годов, когда проводились исследования спектров света звезд, проходящего через облака межзвездной материи – смеси газа и пыли. Особенности поглощения этого света, приводящие к линиям в спектре, могут дать представление о температуре этих облаков, и, проведя исследования конкретных свойств молекул циана[20]20
  Бесцветный газ с резким запахом. Прим. ред.


[Закрыть]
, астроном Эндрю Маккеллар из Доминьонской астрофизической обсерватории в Канаде пришел к выводу, что эта температура составляет от 2 до 3 К. Этот результат был хорошо известен астрономам, но никому не пришло в голову, что температура облаков была именно такой, потому что она поддерживалась фоновым излучением, словно в очень слабой микроволновке.

Персонажи моей любимой истории о «недогадливых» ученых – Фред Хойл и Георгий Гамов. В 1956 году Хойл приехал в Ла-Хойю в Калифорнии, где в тот момент проездом находился и Гамов, который катался по округе на своем новеньком белом кадиллаке-кабриолете (очень типично для него). В этот период Гамов, главный защитник идеи Большого взрыва, утверждал, что Вселенная наполнена излучением с температурой около 5 К, а Хойл, основной агитатор за модель стационарной Вселенной, настаивал, что этого излучения не существует. Этим двоим было о чем поговорить. В статье для журнала New Scientist[21]21
  Еженедельный научно-популярный журнал на английском языке; с 1996 года также поддерживается сайт, на котором публикуются современные исследования для широкого круга читателей. Прим. ред.


[Закрыть]
1981 года Хойл вспоминал:

Иногда мы с Георгием уезжали вдвоем поспорить. Помню, Георгий возил меня по округе на белом кадиллаке, толкуя о своем убеждении, что во Вселенной должно быть реликтовое излучение, а я отвечал ему, что с такой высокой температурой, как он говорит, излучения быть не может, потому что наблюдения над радикалами CH и CN, проведенные Эндрю Маккелларом, установили для подобного фона верхний предел в 3 К. То ли нас слишком разнежил комфорт кадиллака, то ли захватил спор (Георгий говорил, что температура выше 3 К, а я – что 0 К), но, так или иначе, мы упустили свой шанс. ‹…› И видимо, за грехи мои я еще раз точно так же упустил его, обсуждая с Бобом Дикке проблемы теории относительности в 1961 году, во время 20-й итальянской летней школы физики в Варенне. Я явно просто не был готов открыть реликтовое излучение{9}9
  Перепечатано в сборнике Observing the Universe под ред. Найджела Хенбеста. Оксфорд: Blackwell, 1984.


[Закрыть]
.

И все остальные, помимо Пензиаса и Вильсона, тоже не были к этому готовы! По сути, Гамову, которого «обскакали», некого было винить, кроме самого себя.

К 1964 году даже Хойл начал сомневаться в стационарной модели Вселенной, по крайней мере, в ее простейших принципах. Выяснилось, что внутри звезд не могло образоваться достаточно гелия, и он начал исследовать возможность его появления в другом месте. Возможно, был не один Большой взрыв, а несколько Маленьких взрывов в разных точках Вселенной? Хойл развил эту гипотезу совместно с младшим коллегой Роджером Тайлером[22]22
  Роджер Тайлер (1929–1997) – британский астроном; внес важный вклад в исследования строения и эволюции звезд, устойчивости плазмы, нуклеогенеза и космологии. Прим. ред.


[Закрыть]
. Они совместно просчитали, что подобная последовательность событий должна была повлечь за собой массу фонового излучения; Хойл, конечно, уже знал о работе Альфера и Хермана, но пришел к аналогичному заключению другим путем. Однако даже в 1964 году он не соотнес свои выводы с наблюдениями Маккеллара. В первом варианте подготовленной к печати статьи Хойл и Тайлер предсказывали открытие космического фонового излучения, но Хойл удалил эту часть перед публикацией, хотя Тайлер, как он сам много позже признавался мне, хотел ее оставить.

Ближе всех к открытию реликтового излучения подошли (и тоже не довели дело до конца!) в СССР. Проделав в течение нескольких месяцев огромную работу, отчет о которой вышел в 1964 году, советские ученые сложили, казалось, все части головоломки, не хватило лишь одной. Яков Борисович Зельдович[23]23
  Яков Зельдович (1914–1987) – советский физик и физикохимик, академик АН СССР, доктор физико-математических наук, профессор. Трижды Герой Социалистического Труда (1949, 1954, 1956). Прим. ред.


[Закрыть]
, один из колоссов советской науки, осуществил расчеты, аналогичные тем, что провел коллектив Гамова, и тоже пришел к выводу, что Вселенная должна была начаться с горячего Большого взрыва, оставившего фоновое излучение с температурой в несколько кельвинов. Он даже знал о статье Ома в «Техническом журнале Bell System», но, как мы увидим, неверно интерпретировал выводы автора. Менее известный советский астроном Юрий Смирнов оценил температуру фонового излучения как находящуюся в диапазоне между 1 и 20 К. Отталкиваясь от его расчетов, Андрей Дорошкевич и Игорь Новиков[24]24
  Андрей Дорошкевич – советский астрофизик. Игорь Новиков (р. 1935) – российский астрофизик-теоретик и космолог. В середине 1980-х годов сформулировал принцип самосогласованности Новикова, ставший важным вкладом в теорию путешествий во времени. Прим. ред.


[Закрыть]
опубликовали статью, в которой отметили, что наилучшим образом подготовленная к обнаружению такого излучения антенна – рупорная антенна на Кроуфордском холме. Почему же советские исследователи не поняли, что Ом уже открыл это излучение? Из-за ошибки в переводе. В статье Ома утверждалось, что измеренная им температура неба составила около 3 К. Это означало, что он вычел все возможные источники радиопомех и что 3 К – это температура оставшегося фона. Однако по случайному совпадению такой же (3 К) была и температура излучения атмосферы, поправку на которую Ом тоже сделал. Советские специалисты ошибочно решили, что именно эти 3 К и остались у Ома после всех предыдущих корректировок, вычли и их и остались ни с чем. В наши дни подобные ошибки понимания легко устранились бы в процессе электронной переписки, но в начале 1960-х годов коммуникация между учеными Советского Союза и Соединенных Штатов была весьма затруднена.

Несмотря на все фальстарты и недопонимания, космическое микроволновое фоновое излучение в итоге удалось открыть. В течение последующих десятилетий его изучали все более глубоко, и некоторые плоды этих исследований будут описаны во второй части этой книги. Главное здесь то, что это излучение, обладающее температурой 2,712 К, подтверждает, что Вселенная в таком виде, в каком она нам известна сегодня, имеет конкретное начало, относящееся к конкретной временной точке. Но какой именно точке? Вот здесь-то и начинается самое интересное…

Часть I
Как узнать возраст звезд?

Глава 1
2,898
Предыстория: спектры и природа звезд

В 1835 году философ-позитивист Огюст Конт[25]25
  Огюст Конт (1798–1857) – французский философ, социолог, методолог и популяризатор науки, преподаватель Парижского политехникума, основатель школы позитивизма, социальный реформатор, оставивший большое литературное наследие, в том числе шеститомный «Курс позитивной философии» (1830–1842). Прим. ред.


[Закрыть]
писал: «Не существует разумного способа, которым мы могли бы когда-либо определить химический состав звезд». Он не знал тогда, что, по сути, первые шаги к этому определению уже предприняты и вскоре после его смерти, в 1857 году, процесс будет завершен.

Чтение по линиям

Эти первые шаги были сделаны в 1802 году, когда Конту было всего четыре года от роду, английским ученым и врачом Уильямом Волластоном[26]26
  Уильям Волластон (Уолластон) (1766–1828) – английский ученый, который открыл палладий (1803) и родий (1804), впервые получил (1803) в чистом виде платину. Прим. ред.


[Закрыть]
. Несмотря на частичную потерю зрения в 1800 году, этот ведущий исследователь того времени смог сделать значительный вклад в оптику. Его открытие 1802 года было сделано во время изучения радужного спектра солнечного луча, пропущенного через узкую щель и стеклянную призму (опыт Исаака Ньютона). Волластон заметил, что между цветами радуги видны темные полосы: он насчитал две в красном спектре, три в зеленом и еще две в диапазоне от голубого до фиолетового. Ученый ошибочно заключил, что это просто зазоры между цветами, и не продолжил исследование феномена. Однако его открытие заинтриговало других исследователей, в особенности немца Йозефа фон Фраунгофера[27]27
  Йозеф Фраунгофер (1787–1826) – немецкий физик, знаменитый оптик, сын бедного стекольщика, работавший в мастерской отца. Прим. ред.


[Закрыть]
, которому в 1810-х годах удалось добиться намного более детального спектра и обнаружить 574 отдельные темные полоски. Сегодня их известно даже больше, они получили название фраунгоферовых линий. Полоски сосредоточены на коротком отрезке спектра и напоминают штрихкод. Но откуда же они взялись?

Отчасти на этот вопрос своими опытами сумели ответить в 1850–1860-х годах немецкие ученые Роберт Бунзен и Густав Кирхгоф[28]28
  Роберт Бунзен (1811–1899) – немецкий химик-экспериментатор. Густав Кирхгоф (1824–1887) – один из великих физиков XIX века. Прим. ред.


[Закрыть]
. Имя Бунзена известно каждому, кто когда-либо изучал химию, благодаря легендарной бунзеновской горелке, хотя на самом деле придумал ее Майкл Фарадей, а доработал ассистент Бунзена Петер Десага (он использовал имя своего более известного руководителя для продвижения собственной модели устройства). Впрочем, важно, не кто был автором горелки, а что Бунзену и Кирхгофу удалось с ней сделать.

В начале 1850-х годов в Гейдельберге провели трубопровод для снабжения горючим угольным газом (метаном) домов и фабрик, а также научных лабораторий при университете. Это вдохновило Бунзена на эксперименты с пресловутой горелкой. Внутри нее кислород строго определенным образом соединяется с угольным газом, продуцируя прозрачный огонь, идеальный в использовании для «реакции в пламени», идентифицирующий вещества по окраске, которую они придают огню. Изначально Бунзен использовал для калибровки своих наблюдений цветные фильтры, но Кирхгоф решил, что точнее будет проводить анализ с помощью спектроскопа. Они совместно создали аппарат с узкой щелью для света, специальным устройством для сужения луча – коллиматором, призмой для преломления луча и получения радужного спектра, а также линзой, похожей на микроскопную, для изучения спектра. Хотя Фраунгофер тоже применял в работе призму и линзу, только здесь впервые все эти компоненты оказались объединены в один инструмент – спектроскоп.

Гейдельбергские исследователи знали, что при помещении в прозрачное пламя бунзеновой горелки разные вещества окрашивают его в разные цвета. Так, натрий делает огонь желтым, а медь – зеленым или голубым. Ученые проанализировали свет пламени с помощью спектроскопа и обнаружили, что каждый элемент при нагревании образует яркие линии на спектре с конкретными длинами волн: натрий в желтой части спектра, медь в зеленой или голубой и так далее. (Желтые линии натрия были известны и Фраунгоферу: с их помощью он проверял оптические свойства стекла и именно поэтому стал изучать солнечный спектр.) Немецкие специалисты вскоре поняли, что четкие линии на спектре образует любой нагретый предмет. Однажды вечером, находясь в своей гейдельбергской лаборатории, они сумели проанализировать свет от крупного пожара в Мангейме, вспыхнувшего на расстоянии 17 км, и обнаружили в зареве признаки наличия стронция и бария.

Спустя несколько дней Бунзен и Кирхгоф гуляли по городу вдоль реки Неккар, обсуждая эксперимент с пожаром. По легенде, Бунзен сказал Кирхгофу примерно следующее: «Если мы смогли узнать, что горело в Мангейме, то наверняка сможем узнать то же и о Солнце. Только вот люди примут нас за сумасшедших фантазеров».

Тем не менее ученые обратили свое внимание на спектр Солнца и выявили, что многие из темных линий, открытых Фраунгофером, находятся в той же части спектра, точно на тех же длинах волн, что и яркие линии, формируемые различными веществами при нагревании в лаборатории. Естественно было предположить, что эти элементы присутствуют во внешнем слое Солнца, но имеют меньшую температуру, чем более глубокие слои, так что при прохождении света изнутри наружу они забирают его часть из спектра на определенных длинах волн, вместо того чтобы добавить к нему яркие линии. Такое понимание происходящего, в частности, сформулировал Кирхгоф. В то время никто не знал, как образуются эти линии. Чтобы понять это, пришлось ждать разработки квантовой теории структуры атома в XX столетии. Но даже без этого знания уже в 1860-х годах удалось выяснить состав Солнца, а в дальнейшем применить тот же принцип для определения того, из чего состоят другие звезды. Утверждают, что, вспомнив тот разговор на берегу реки, Кирхгоф сказал: «Бунзен, так я сумасшедший!» И тот ответил: «Кирхгоф, я тоже!»{10}10
  См. журнал Nature, том 65 (1902): 587.


[Закрыть]
Открытие Кирхгофа было представлено Прусской академии наук в Берлине 27 октября 1859 года. Сегодня этот день считается началом истории астрофизики (хотя сам термин появился лишь в 1890 году).

Чтобы опровергнуть Конта, понадобилось всего три десятилетия. Хотя заключения астрономов не всегда были верны. До конца XIX века им удалось доказать наличие в спектре Солнца, а также отчасти и звезд множества элементов, существующих на Земле. После чего они естественным образом пришли к заключению, что состав Солнца близок к составу Земли. Но ученые ошиблись. Звезды намного проще по строению, и сегодня нам известно, что они (включая Солнце) состоят преимущественно из водорода и гелия, а других элементов там совсем немного. Однако в начале 1860-х годов никто еще не знал о существовании гелия. Его открытие дало начало эре солнечной – и звездной – спектроскопии.

Охота на гелий

Важнейшую роль в открытии гелия сыграл английский астроном Джозеф Локьер[29]29
  Джозеф Локьер (1836–1920) – английский астроном. С 1885 года по 1913 год работал директором обсерватории физики Солнца в Южном Кенсингтоне, а с 1913 года – в частной обсерватории в Сидмуте. Прим. ред.


[Закрыть]
, проводивший в 1860-е годы много времени в наблюдениях за Солнцем (по основной профессии он был клерком Военного министерства в Лондоне). Локьер старался узнать обо всех новостях спектроскопии, поступавших из лаборатории Бунзена и Кирхгофа, и применить передовые приемы в своих наблюдениях. С помощью спектроскопии он доказал, что темные пятна на Солнце свидетельствуют о наличии близ поверхности светила (в солнечной короне) газа с относительно низкой температурой и поглощении им света от горячих газов в предыдущих слоях. Это выдающееся открытие было совершено 20 октября 1868 года, когда Локьер смог проанализировать свет внешних слоев Солнца новейшим спектроскопическим оборудованием.

Буквально за несколько месяцев до этого, 18 августа, внешние слои Солнца удалось спектроскопически изучить во время наблюдаемого с территории Индии затмения. Это было первое изученное затмение с момента публикации предположения Кирхгофа, что фраунгоферовы линии говорят о наличии на Солнце различных химических элементов, и наблюдал его французский астроном Пьер Жансен[30]30
  Пьер Жансен (1824–1907) – французский астроном, член Парижской АН (1873), член Лондонского королевского общества (1875), директор обсерватории в Медоне. Прим. ред.


[Закрыть]
. В момент, когда Луна перекрыла яркий свет с поверхности Солнца, он смог определить линии в спектре материи, находящейся непосредственно над поверхностью звезды, в так называемой хромосфере. Там обнаружились яркие линии, в том числе желтая полоска, длину волны которой впоследствии определили в 587,49 нанометра, очень близкая к линиям натрия. Спектральные линии были настолько яркими, что Жансен осознал возможность заметить их даже вне периода затмения. Он продолжал наблюдения до момента возвращения в Европу.

Еще не зная о результатах Жансена, 20 октября Локьер обнаружил с помощью своего спектроскопа ту же желтую линию. Уже 26 октября, всего через несколько дней, открытия Жансена и Локьера были представлены Французской академии наук. Вскоре Локьер делает еще один шаг вперед и заявляет, что эта линия, должно быть, признак ранее неизвестного элемента. Он дает ему имя «гелий» в честь греческого бога солнца Гелиоса.

Такое заявление вызвало противоречивые отклики. Многие ученые предпочитали думать, что линия порождена водородом, подвергнутым воздействию колоссальных температур и давления. Но в 1895 году физик Уильям Рамзай[31]31
  Сэр Уильям Рамзай, или Рэмзи, (1852–1916), – английский химик и физик, лауреат Нобелевской премии по химии (1904). Прим. ред.


[Закрыть]
обнаружил, что выделявшийся из урана ранее неизвестный газ дает в спектре яркую желтую линию, близкую к натриевым. Сначала он назвал этот газ криптоном, но затем его коллега Уильям Крукс[32]32
  Уильям Крукс (1832–1919) – английский химик и физик, член (с 1863 года) и президент (1913–1915) Лондонского королевского общества, от которого он получил Королевскую золотую медаль (1875). Прим. ред.


[Закрыть]
заметил, что линия расположена в том же самом месте, что указали Локьер и Жансен, и Рамзай понял, что неизвестный газ – это гелий. (Позже он все-таки назвал другой газ криптоном.) Таким образом, спектроскопия предсказала открытие гелия на Земле за 27 лет до этого события.

К тому времени Джозеф Локьер уже был профессиональным астрономом. В 1869 году он стал одним из основателей научного журнала Nature и руководил им в течение первого полувека его существования. В 1890 году Локьера назначили директором обсерватории физики Солнца в Южном Кенсингтоне, в этой должности ученый проработал вплоть до своей отставки в 1911 году. В 1897 году, не в последнюю очередь за открытие гелия, Локьер был пожалован рыцарским титулом.

Как показало открытие гелия, прогресс в астрономии во многом обязан открытию звездной спектроскопии, а также другим техническим разработкам. Среди них значительное место занимает фотография, которая, помимо всего прочего, сделала возможным регулярную фиксацию звездных спектров для дальнейшего изучения и сопоставления с другими спектрами. Но прежде чем рассказать об этом, имеет смысл на время перескочить в 1920-е, к новому шагу, сделанному в сторону понимания состава звезд.

Вводные к водороду

Этот новый шаг был сделан ученым, родившимся на стыке веков, в 1900 году. И это была женщина, а в то время представительницы слабого пола редко становились выдающимися учеными.

Сесилия Пейн[33]33
  Сесилия Пейн-Гапошкина (1900–1979) – американский астроном. Родилась в Уэндовере (Англия), в 1923-м окончила Кембриджский университет и в том же году переехала в США. Прим. ред.


[Закрыть]
получила стипендию на обучение в кембриджском Ньюнем-колледже (единственный путь получения университетского образования) в 1919 году. Она изучала ботанику, физику и химию, но случайно посетила лекцию Артура Эддингтона[34]34
  Артур Эддингтон (1882–1944) – английский астрофизик. Прим. ред.


[Закрыть]
об африканской экспедиции по изучению солнечного затмения, во время которой он «доказал правоту Эйнштейна», измерив отклонение Солнцем света далеких звезд. Лекция разожгла в Сесилии интерес к астрономии, и она посетила день открытых дверей университетской обсерватории. Количество задаваемых ею вопросов заставило Эддингтона заинтересоваться студенткой и предложить ей посещать обсерваторскую библиотеку. Там девушка зачитывалась журналами по астрономии со статьями о последних открытиях.

Завершив обучение (до 1948 года Кембридж не выдавал женщинам дипломы, поэтому, выпустившись, Сесилия не могла получить ученую степень), Пейн начала поиски места, где она могла бы продолжить изучение астрономии. Построить исследовательскую карьеру в Великобритании было невозможно: женщины-ученые в то время могли занимать лишь преподавательские должности. Эддингтон познакомил ее с Харлоу Шепли[35]35
  Харлоу Шепли (1885–1972) – американский астроном. В 1911 году окончил Миссурийский университет, специализируясь на журналистике, затем продолжил образование в Принстонском университете, где изучал астрономию под руководством астрофизика Генри Расселла. Прим. ред.


[Закрыть]
из Гарварда, который предложил выпускнице поступить в докторантуру (несмотря на формальное отсутствие диплома), и в 1923 году Сесилия уехала в Штаты. Всего два года спустя она защитила блистательно выполненную докторскую и стала первой женщиной, получившей степень в колледже Рэдклифф (за работу, проведенную в обсерватории гарвардского колледжа). В диссертации доказывалось, что Солнце преимущественно состоит из водорода. Однако в духе того времени эта идея не считалась заслуживающей доверия до тех пор, пока два астронома мужского пола не пришли к тому же выводу во время независимых экспериментов.

При изучении солнечного спектра Сесилия Пейн использовала недавнее открытие индийского физика Мегнада Сахи[36]36
  Мегнад Саха (1893–1956) – индийский физик и астрофизик. Основатель Института ядерной физики в Калькутте (1951) и его почетный директор. Член Лондонского королевского общества (1927). Прим. ред.


[Закрыть]
: усложнение рисунка линий в звездном спектре (или фраунгоферовых линий Солнца) происходит в том числе в результате воздействия на разные части атмосферы звезды разных физических условий. К 1920-м годам физики уже знали то, что не могли знать Бунзен и Кирхгоф: атомы состоят из ядер, вокруг которых на некотором расстоянии вращаются электроны. Темные линии в спектре возникают тогда, когда электрон поглощает свет на определенной длине волн и переходит внутри атома на более высокий энергетический уровень. Яркие линии возникают, когда электрон переходит на более низкий энергетический уровень и испускает излучение (сегодня мы бы сказали, фотоны). Атом, потерявший один или несколько электронов, называется ионом. Спектры ионов, соответственно, отличны (и это отличие можно измерить) от спектров исходных атомов. Пейн измерила линии поглощения звездных спектров и продемонстрировала, как температура (преимущественно) и давление в атмосфере звезды влияют на ионизацию ее атомов. Именно она усложняет рисунок линий: неионизированные атомы давали бы более простой рисунок. Спектры разных звезд отличаются друг от друга не вследствие разного состава, а из-за различного уровня ионизации их атмосфер.

Выдающееся достижение Сесилии Пейн состоит в том, что она сумела распутать сложнейшие сочетания сотен фраунгоферовых линий и выяснила, какое соотношение разных элементов на разных стадиях ионизации необходимо для объяснения наблюдений. Получить некоторое представление о сложности поставленной ею задачи можно хотя бы из того, что астроном Отто Струве[37]37
  Отто Струве (1897–1963) – российско-американский астроном, один из крупнейших астрофизиков XX века. Директор Йеркской обсерватории в 1932–1947 гг. Член Национальной академии наук США. Президент Американского астрономического общества в 1946–1949 гг. Прим. ред.


[Закрыть]
позднее назвал ее работу «самой блестящей из всех, когда-либо написанных по астрономии». Сесилия выяснила пропорции восемнадцати элементов в составе Солнца и звезд и обнаружила, что везде они почти идентичны. Однако самой большой неожиданностью стало то, что, согласно ее выводам, Солнце и звезды почти полностью состоят из водорода и гелия. Если она права, все остальные элементы вместе взятые составляют всего 2 % не только ближайшей к нам звезды, но и всех прочих. Большая часть материи Вселенной – это всего два самых легких элемента. В 1925 году это открытие казалось невероятным. Пейн была уверена в корректности своих умозаключений, но, когда Шепли отправил черновик ее диссертации в Принстонский университет Генри Расселлу[38]38
  Генри Расселл (1877–1957) – американский астрофизик, разработавший одну из первых теорий эволюции звезд. Первым определил содержание химических элементов в атмосфере Солнца, получил оценки содержания химических элементов во Вселенной, занимался исследованием связи между спектрами звезд и их светимостью. Прим. ред.


[Закрыть]
, чтобы получить независимый отзыв, тот однозначно назвал выводы диссертации «совершенно невозможными». По совету Шепли, Пейн добавила в работу такие слова: «огромный избыток этих элементов [водорода и гелия] в атмосфере звезд почти наверняка не имеет отношения к реальности». И ее диссертация была принята, она получила степень доктора наук и написала книгу Stellar Atmospheres («Звездные атмосферы»), убеждавшую астрономов в том, что выводы Сесилии, напротив, почти наверняка верны.

Изменению стереотипов способствовало независимое подтверждение результатов Пейн другими астрофизиками. В 1928 году немецкий астроном Альбрехт Унзольд[39]39
  Альбрехт Унзольд (1905−1995) – немецкий астрофизик, развил теорию звездных атмосфер. Прим. ред.


[Закрыть]
провел детальный спектроскопический анализ солнечного света и обнаружил, что сила водородных линий указывает на наличие в составе Солнца примерно миллиона атомов водорода на один атом любого другого элемента. Год спустя ирландский астроном Уильям Маккри[40]40
  Сэр Уильям Маккри (1904–1999) – британский астроном и математик. Прим. ред.


[Закрыть]
подтвердил эти результаты с помощью другого спектроскопического приема[41]41
  А еще много лет спустя Маккри вошел в состав комиссии на защите моей докторской диссертации.


[Закрыть]
. О чем говорят эти исследования? Прежде всего о том, что, хотя Сесилия Пейн и была выдающимся исследователем, которому принадлежит заслуга первооткрывателя, это открытие должно было свершиться, потому что пришло его время. Техническое развитие в 1920-е годы делало его почти неизбежным. В 1929 году, осуществив подобный анализ с использованием другого подхода, Расселл сам опубликовал статью, в которой согласился с результатами Пейн и отдал должное ее заслугам. К несчастью, из-за высокого авторитета Расселла в астрономической среде какое-то время многие ученые считали автором открытия именно его (им следовало бы лучше разбираться в науке или хотя бы внимательнее читать его статью).

Пейн сделала выдающуюся карьеру астронома. В 1934 году она вышла замуж за астрофизика, русского эмигранта Сергея Гапошкина, и осталась в истории как Сесилия Пейн-Гапошкина. Она проработала в Гарварде всю жизнь, несмотря на свой небольшой «женский» заработок и низкий статус. В течение многих лет ее официальная должность именовалась «технический ассистент», несмотря на передовые исследования и преподавательскую деятельность, присущую профессору. Только в 1956 году она стала первой женщиной в Гарварде, получившей статус штатного профессора. Впрочем, как и большинство ученых, Сесилия не гналась за статусом или доходом. В 1976 году, за три года до ее кончины, Американское астрономическое общество присудило ей престижную премию имени посрамленного ею Генри Расселла. В своей речи на церемонии вручения она сказала, явно намекая на свою диссертацию о звездном спектре: «Главная награда для молодого ученого – это восторг, который испытываешь, понимая, что ты первым в мировой истории увидел или понял что-то». Да, даже если другие говорят, что это «совершенно невозможно».

Но и в конце 1920-х годов астрофизикам еще только предстояло понять всю значимость того факта, что атмосфера Солнца исключительно богата водородом. Пройдет еще почти два десятка лет, прежде чем они узнают, что и внутри звезд, в частности Солнца, тоже в основном находится водород (и отчасти гелий, но более тяжелых элементов там почти нет). Ученые долго пребывали в заблуждении относительно состава звезд, отчасти из-за неудачного совпадения, связанного с попыткой определить их температуру, о чем я расскажу далее.


Страницы книги >> Предыдущая | 1 2 3 4 5 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации