Электронная библиотека » Джон Гриббин » » онлайн чтение - страница 3


  • Текст добавлен: 9 августа 2016, 14:30


Автор книги: Джон Гриббин


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 17 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +
Сколько градусов на Солнце?

Для нашего понимания природы звезд особенно важны два показателя температуры: на поверхности и в центре Солнца. Дальше с ними можно будет соотнести ряд известных нам физических данных.

Еще нам нужно знать расстояние от Земли до Солнца. Согласно открытым в XVII веке Иоганном Кеплером законам движения планет, расстояние от Солнца до Венеры составляет 72 % расстояния от Солнца до Земли. Но как определить реальное расстояние? К счастью, изредка (в последний раз это случилось в 2012 году) с Земли можно наблюдать Венеру, проходящую непосредственно через диск Солнца. Такие прохождения, или транзиты, в сочетании с законами Кеплера позволили вычислить расстояние от Земли до Солнца с помощью параллакса[42]42
  Изменение видимого положения объекта относительно удаленного фона в зависимости от положения наблюдателя. Прим. ред.


[Закрыть]
. Если прохождение наблюдается из двух значительно разнесенных точек на поверхности Земли, то момент пересечения Венерой края солнечного диска наступит для наблюдателей в разные моменты, поскольку они смотрят из разных углов. Зная их положение, с помощью геометрических расчетов несложно выяснить, что от нас до Солнца немногим менее 150 млн км. Из его видимого размера можно заключить, что диаметр Солнца примерно в 108 раз больше диаметра Земли.

Мы также можем узнать массу Солнца. Количество материи звезды определяет силу ее притяжения, именно оно удерживает на орбитах вокруг Солнца планеты, включая Землю. Наша планета облетает Солнце за один год и находится от него на расстоянии 150 млн км, отсюда можно рассчитать скорость ее движения. Сила, необходимая для удержания планеты на орбите, известна из основ физики, и ее принципы едины, неважно, удерживаются небесные тела с помощью гравитации или, скажем, с помощью натянутой между ними веревочки. Зная эту силу, мы можем применить ньютоновский закон всемирного тяготения и высчитать, что масса Солнца примерно в 332 940 раз больше массы Земли[43]43
  Масса Земли известна с конца XVIII века, когда английский физик Генри Кавендиш измерил силу притяжения в ряде очень точных экспериментов.


[Закрыть]
. Поскольку объем Солнца (пропорциональный кубу его радиуса) в миллион с небольшим раз больше объема Земли, средняя плотность Солнца оказывается примерно в три раза меньше плотности Земли и всего в полтора раза больше, чем у воды. Впрочем, как мы увидим, это среднее значение мало о чем нам может сказать.

Итак, нам известно, насколько далеко от нас расположено Солнце и насколько оно велико. Но какова его температура? К этому вопросу можно подойти с двух сторон. Во-первых, можно вспомнить наблюдения физика XVIII века Уильяма Гершеля[44]44
  Уильям Гершель (1738–1822) – английский астроном немецкого происхождения. Прославился открытием планеты Уран, а также двух ее спутников – Титании и Оберона. Он также первооткрыватель двух спутников Сатурна и инфракрасного излучения. Менее известен двадцатью четырьмя симфониями, автором которых он был. Прим. ред.


[Закрыть]
. Он обратил внимание на то, что тепла полуденного солнца на экваторе достаточно, чтобы растопить слой льда на поверхности земли толщиной в дюйм (2,54 см) за два часа и двенадцать минут. Поскольку Солнце излучает энергию равномерно во всех направлениях, выходит, что за это время оно могло бы растопить ледяную сферу толщиной в один дюйм, окружающую Солнце и удаленную от него на расстояние Земли (300 млн км в диаметре). И чем ближе к светилу находились бы стенки такой сферы, тем быстрее она таяла бы, то есть за указанное время можно было бы растопить более толстый слой льда, но общий объем его в этой сфере оставался бы неизменным. Если мы максимально приблизим ее стенки к поверхности Солнца, их толщина составит больше полутора километров при сохранении времени таяния. Температура поверхности Солнца, необходимая для такого процесса, должна быть чуть ниже 6000 К[45]45
  Не забудьте, что физики измеряют температуру в градусах Кельвина, отсчет которых ведется от абсолютного нуля (–273°С), то есть 0°С равен 273 К и т. д.


[Закрыть]
.

Такой оригинальный физический опыт можно поставить для Солнца, но, конечно, не для измерения температуры других звезд. К счастью, есть и другой, более общий прием, который дает тот же ответ при измерении температуры на поверхности Солнца (что доказывает его эффективность). Он берет начало в другом труде много и плодотворно работавшего в различных областях Густава Кирхгофа.

Жар далеких звезд

В 1859 году проведенные исследования излучения горячих объектов позволили ему сформулировать так называемый закон Кирхгофа (не путать с открытыми им же правилами Кирхгофа для электрической цепи). Вот его суть: при любой конкретной температуре скорость, с которой объект излучает электромагнитную энергию (тепло и свет), равна скорости, с которой он поглощает электромагнитную энергию той же длины волн (или частоты). В 1859 году это была лишь вдохновенная догадка, но уже в 1861-м Кирхгоф провел эксперимент, доказавший ее правоту, а в 1862-м представил идею «идеального» излучателя и поглотителя, который получил название «черного тела». Такой объект поглощал бы все поступающее к нему излучение и в ответ, нагреваясь, излучал бы энергию по всему электромагнитному спектру, впрочем, по разным длинам волн неравномерно.

Существует очень простой опыт, позволяющий изучить излучение черного тела в лабораторных условиях. Возьмите металлическую коробку или запечатанную жестяную банку и проделайте в ней крохотное отверстие. Любое излучение, поступающее через него снаружи, будет многократно отражаться внутри от стенок и нагревать их. У вас получился идеальный поглотитель излучения и, как доказал Кирхгоф, такой же совершенный излучатель. «Идеальный» в данном случае означает, что излучение черного тела не зависит от его материала, размера, формы или иных физических характеристик. Значение имеет только температура. По мере нагревания часть излучения выходит наружу через отверстие и может быть изучено с помощью призм, спектроскопов и тому подобного. Можно даже специально активно нагревать коробку, например с помощью бунзеновской горелки. Непринципиально, как именно она нагреется, излучение всегда будет одинаковым. Оно называется излучением черного тела, или черным излучением. Важно понимать, что такое «черное тело» вовсе не обязательно черного цвета. Оно может оказаться мощным излучателем света и тепла. По сути, наше Солнце – почти идеальное черное тело, как и другие звезды.

Отсюда и ключ к измерению их температуры. В 1879 году, изучив результаты ряда экспериментов англичанина Джона Тиндаля, физик Йозеф Стефан[46]46
  Джон Тиндаль (1820–1893) – английский физик, член Лондонского королевского общества (1852). Йозеф Стефан (1835–1893) – австрийский (родившийся в семье этнических словенцев) физик и математик. Член Австрийской академии наук (1865). Прим. ред.


[Закрыть]
сумел измерить общий объем электромагнитной энергии, испускаемой объектами при различных температурах. Он вывел соотношение температуры и энергии и с его помощью рассчитал температуру на поверхности Солнца, она оказалась чуть меньше 6000 К. Обнаруженная Стефаном пропорция была уточнена Людвигом Больцманом[47]47
  Людвиг Больцман (1844–1906) – австрийский физик-теоретик, основатель статистической механики и молекулярно-кинетической теории. Прим. ред.


[Закрыть]
в 1884 году: он доказал, что она работает только в применении к черным телам. Сегодня мы называем ее законом Стефана – Больцмана.

В 1893 году Вильгельм Вин[48]48
  Вильгельм Вин (1864–1928) – немецкий физик, лауреат Нобелевской премии по физике (1911) за открытия в области законов, управляющих тепловым излучением. Прим. ред.


[Закрыть]
, работавший в Берлинском университете, довел эту фазу изучения излучения черного тела до логического завершения. График объема энергии, излучаемой черным телом на различных длинах волн, плавно поднимается от более низкого уровня на коротких волнах до пика на средних, затем вновь понижается на длинных. Чем выше температура, тем короче волны, на которых расположен пик энергии. Вин обнаружил, что температуру черного тела можно рассчитать, просто разделив 2,898 на длину волны пикового излучения (в миллиметрах). Это так называемый закон смещения Вина. Так, если пиковое значение энергии наблюдается на длине волны в 4 микрометра (то есть 0,004 мм), температура черного тела будет равна 724,5 К. Хотя этот закон представляется очень конкретным и простым в применении, он остается одним из самых полезных инструментов в астрофизике. С его помощью астрономы могут узнать температуру поверхностей звезд, просто измеряя пиковые длины волн для излучаемой ими энергии. Кстати, закон Вина легко наблюдать в быту.

Всем известно, что при нагревании объекты меняют цвет, а во времена повсеместного распространения каминов это было еще очевиднее: мой отец, например, любил прикуривать от раскаленной кочерги. При комнатной температуре кочерга, разумеется, была черной. По мере нагревания она раскалялась докрасна и отлично подходила для поджигания сигареты. Если отец забывал вовремя вытащить кочергу из огня, она раскалялась еще больше – добела. Я никогда не присутствовал при следующей стадии, но могу предположить, что, оставь он ее в огне еще дольше, кочерга бы расплавилась. Закон Вина придал этому процессу конкретное математическое выражение. Спектроскопия может точно измерить температуру раскаленного докрасна или добела металла, а также более тонких градаций: от еле заметного бордового до ослепительно-синего цвета (и за пределами видимого спектра – в инфракрасный и ультрафиолетовый диапазон). Звезды бывают разных цветов, и красные холоднее голубых. Закон Вина подсказывает нам истинные температуры поверхности звезд. Все они лежат примерно между 3000 и 30 000 К, на этом фоне Солнце выглядит довольно ординарным светилом с невысокой температурой поверхности. Но это лишь часть интриги. А какова температура внутри Солнца и других звезд?

Температура внутри

Оказывается, температура внутри стабильной звезды зависит только от ее массы, яркости (связанной с температурой) и состава. Непринципиально, как именно поддерживается жар внутри звезды: достаточно того, чтобы ее температура поддерживала необходимое для сопротивления гравитационной силе сжатия давление. Масса Солнца известна нам по его воздействию на орбиты планет, и, как только стало понятно, что оно состоит преимущественно из водорода и гелия, удалось рассчитать температуру в центре Солнца – примерно 15 млн К. Если оно обычная звезда, температуры внутри других светил должны иметь сопоставимые значения. Однако, чтобы доказать это, астрономам было необходимо вычислить массу хотя бы еще нескольких звезд. К счастью, это удалось сделать, применив те же законы гравитации, которые определяют орбиты планет вокруг Солнца, к звездным системам, в которых друг вокруг друга вращаются две звезды (двойные звезды) или даже три. Кстати, примерно половина всех видимых на небе звезд – двойные. И снова для этих измерений пригодилась спектроскопия.

Согласно открытию Бунзена и Кирхгофа, каждый элемент порождает в спектре линии с конкретными длинами волн. Но если объект, спектр которого мы изучаем, сдвигается относительно измерительных инструментов, наблюдаемые длины волн этих линий тоже сдвигаются. Если он движется на нас, длины их волн становятся короче (более высокие частоты) – это явление получило название синего смещения, поскольку длины волн синего цвета короче, чем красного. Если же объект удаляется, волны как бы растягиваются (более низкие частоты), становятся длиннее, и это красное смещение[49]49
  Есть и другой способ осуществить красное смещение. Он важен для космологической дискуссии, изложенной во второй части книги, поэтому я приведу его там.


[Закрыть]
. Если объект движется под углом к нам, ситуация усложняется, но терпение и знания помогут разобраться и здесь. Такие сложные смещения называются доплеровскими в честь немецкого физика Кристиана Доплера[50]50
  Кристиан Доплер (1803–1853) – австрийский математик и физик, профессор, первый директор Института физики Венского университета, почетный доктор Пражского университета. Член Королевского научного общества Богемии и Венской академии наук. Наиболее известен своими исследованиями в области акустики и оптики. Прим. ред.


[Закрыть]
, в 1840-х годах изучавшего этот эффект на примере звуковых волн. Важно, что доплеровские смещения зависят от скорости движения объекта, поэтому для изучения двойных звезд нужно знать, насколько быстро они движутся по орбитам друг относительно друга.

Из основ физики астрономам было известно, что существует довольно ограниченный диапазон возможных масс для ярких звезд. Если газовый шар имеет слишком малую массу: в десять или более раз меньшую, чем Солнце, то он не сможет разогреться в достаточной степени и превратится в холодное тело, похожее на разросшуюся планету Юпитер и известное как коричневый карлик. Однако если масса газового шара будет превышать солнечную больше чем в несколько сотен раз, то в попытке компенсировать эффект сжатия он разогреется так сильно, что взорвется. Сильно округляя, можно считать, что массы ярких звезд ограничены диапазоном от 0,1 до 100 солнечных масс (эти значения в 1920-х годах выведены астрофизиком Артуром Эддингтоном, тем, который вдохновил на занятия астрономией Сесилию Пейн). К счастью для основ физики (и физиков), исследования реальных звезд в двойных системах подтвердили эти выкладки. Но они показали кое-что еще более важное. Между массой звезды и ее истинной яркостью, или светимостью, есть прямая зависимость, и это указывает на то, что звезды с очень разными массами и светимостями имеют сопоставимую внутреннюю температуру.

Термин «истинный» в применимости к яркости принципиально важен. Звезды с одним и тем же показателем этой характеристики могут восприниматься тусклее или ярче в зависимости от расстояния. Сияющая на небе звезда может быть сравнительно тусклой, но очень близкой к нам, а еле заметная – очень яркой, но удаленной. Поскольку существуют способы измерения расстояний до звезд (я подробнее расскажу о них в главе 5), эти сбивающие с толку визуальные эффекты можно устранить, вычислив абсолютную звездную величину, то есть яркость, которую имела бы звезда при рассмотрении с расстояния в 10 парсек (примерно 32,6 световых года).

В зависимости от массы звезды точное соотношение массы и светимости несколько меняется, но для масс в диапазоне от 0,3 до 7 солнечных светимость пропорциональна массе в четвертой степени. Таким образом, звезда, имеющая массу в два раза больше солнечной, окажется в шестнадцать раз ярче него, поскольку 24 = 16. Связанная с этим пропорция показывает, что диаметр звезды, похожей на Солнце, находится в прямой пропорции к ее массе, то есть это гипотетическое светило, будучи в два раза тяжелее Солнца, окажется в два же раза больше него (не в 16 раз!). О том, что соотношение массы и яркости подразумевает схожую внутреннюю температуру звезд, догадался Артур Эддингтон. Сегодня известно, что эта температура равна примерно 15 млн К, но в середине 1920-х годов Эддингтон не знал, что звезды состоят в основном из водорода и гелия: открытие Сесилии Пейн еще не стало общепризнанным фактом. Поэтому его вычисления оказались преувеличенными, в опубликованной в 1926 году книге The Internal Constitution of the Stars («Внутреннее строение звезд») он приводит энергоемкость двух конкретных звезд и пишет, в частности:

В буквальном понимании [это] означает, что звезде необходимо разогреться до 40 млн градусов, чтобы получить необходимые 680 эрг/г (V Кормы) или 0,08 эрг/г (Крюгер 80). При такой температуре она сможет получить неограниченный объем энергии.

Далее в этой же книге он приводит некоторые подробности. При образовании звезды из сжимающегося облака газа, утверждает Эддингтон, она сжимается до тех пор, пока температура в ее центре не достигнет 40 млн градусов и внезапно не высвободится основной запас энергии ‹…› [Затем] звезда должна удерживать при температуре выше критической достаточное количество материи, чтобы обеспечивать необходимый запас энергии.

Важнейший вопрос, возникший в 1926 году, звучал так: откуда же берется энергия, необходимая для света звезд, таких как наше Солнце? Эддингтон считал, что он знает ответ, и вскоре его правота была доказана и открыла возможности для понимания не только современного состояния звезд, но и всего их жизненного цикла, а в итоге и возраста самых старых звезд во Вселенной[51]51
  Астрофизики высокопарно называют жизненный цикл каждой звезды «эволюцией».


[Закрыть]
. Но сначала ученым предстояло понять, сколько лет Солнцу…

Глава 2
0,008
В самом сердце Солнца

С какой-то точки зрения Солнце вовсе и не горячее. Мне очень нравится пример, приведенный Георгием Гамовым в книге 1964 года A Star Called the Sun («Звезда по имени Солнце»). Если бы полностью герметичный кофейник производил тепло с такой же скоростью в расчете на грамм, как в среднем делает Солнце, насколько быстро он нагрел бы воду комнатной температуры до кипения? Ответ поначалу кажется неожиданным: за несколько месяцев! Дело в том, что для повышения температуры 1 грамма воды с 0°С до 100°С требуется 100 калорий энергии, но каждый грамм массы Солнца в среднем производит очень мало тепла. Масса Солнца составляет 2 × 10³³ грамма, а с его поверхности излучается всего 9 × 1025 калорий тепла в секунду, то есть каждый грамм массы Солнца выделяет менее 4,5 × 10−8 калорий в секунду, не дотягивая даже до одной десятимиллионной калории в секунду. Это намного меньше, чем скорость выделения тепла нашим организмом в процессе обмена веществ (но наша кровь никогда не закипит, ведь организм не герметичен и тепло постоянно уходит из него).

Иными словами, проблема не в температуре Солнца. Даже горящие угли могли бы несколько секунд (или несколько тысяч секунд) выделять столько же тепла, сколько оно. В начале XX века астрофизиков мучила другая загадка: как звездам, и Солнцу в их числе, удается оставаться горячими так долго? То, что возраст Земли огромен, стало очевидно в XIX веке по мере развития знаний о геологии и эволюции. Когда стало примерно понятно, сколько лет нашей планете, появилась возможность утверждать, что Солнцу как минимум не меньше, но никакой из известных ученым процессов (даже горение горы угля размером с Солнце) не мог длиться так долго.

Французский след

Первая серьезная попытка вычислить возраст Земли была предпринята в XVIII столетии французским аристократом графом де Бюффоном[52]52
  Жорж-Луи Леклерк, граф де Бюффон (1707–1788) – французский натуралист, биолог, математик, естествоиспытатель и писатель XVIII века. Высказал идею о единстве растительного и животного мира. Прим. ред.


[Закрыть]
. Он был чрезвычайно богат и посвятил свою жизнь науке и служению обществу. Граф умер в 1788 году, как раз перед Великой Французской революцией, а его сын, унаследовавший титул, погиб на гильотине в 1794-м. Бюффон многое сделал для науки, в том числе развил наблюдение, сделанное Ньютоном за век до него и упомянутое в знаменитой книге «Принципы». Ньютон сказал, что «кометы иногда падают на Солнце», что вызвало в среде натурфилософов (так в то время назывались ученые) представление о Солнце как о раскаленном железном шаре, от которого ударом кометы когда-то откололась Земля. Сам Ньютон, не проделавший в этом отношении никаких опытов или подробных расчетов, полагал, что шар раскаленного металла размером с Землю не мог бы охладиться до такой температуры, чтобы на нем можно было жить, в течение «более чем 50 тысяч лет». Это утверждение никто не оспорил, хотя из него следовало, что возраст земли в десять с лишним раз больше указанного в Библии, если рассматривать ее текст буквально.

Бюффон дал ход этому рассуждению, проведя эксперименты и оценив скорость остывания железных шаров разной величины. Его опыты были чрезвычайно сложны, но долго не давали информативных выводов. Бюффон измерил скорость перехода металлических шаров от красного каления к температуре, не оставляющей ожогов при прикосновении. По легенде, его ассистентами в этих экспериментах были женщины из аристократических семей, которые нежными ручками в тончайших белых перчатках проверяли, остыл ли металл. Результаты своих расчетов он перенес на масштабы Земли. Выяснилось, что Ньютон был недалек от истины. Бюффон пришел к выводу, что Земле понадобилось бы более 75 тысяч лет, чтобы охладиться до температуры, пригодной для жизни. Это была очень неточная, но научная попытка измерения возраста нашей планеты, опубликованная во второй половине XVIII века. Однако вскоре ее превзошла работа одного из представителей нового поколения великих французских ученых. И возраст Земли, подсчитанный им, был настолько огромен, что даже в начале следующего, XIX века он не стал его предавать огласке, то ли из-за страха преследования со стороны католической церкви, то ли потому, что сам не мог поверить в свои выводы.

Жозеф Фурье был научным советником Наполеона и занимал высокие государственные должности, ему пожаловали титул барона, а затем графа[53]53
  Полное имя – Жан-Батист Жозеф Фурье, но первое имя часто опускают.


[Закрыть]
. Свои научные изыскания о распространении тепла в твердом теле он начал в первом десятилетии XIX века в Гренобле в должности префекта департамента Изер. Его труд по теплопередаче был опубликован в 1822 году. Фурье провел множество экспериментов: например, нагревая один конец железного прута и наблюдая распространение тепла до другого конца, он выводил уравнения, описывающие тепловой поток. Затем он применил эти уравнения для вычисления времени охлаждения шара из расплавленного металла размером с Землю. Он внес в рассуждения Бюффона важное уточнение, поняв, что как только земная кора затвердеет, она начнет мешать теплу уходить из середины планеты и значительно замедлит остывание недр. Это одна из причин, по которой центр Земли, как мы знаем сегодня, до сих пор расплавлен (другая причина в том, что ядро Земли продолжает выделять тепло благодаря радиоактивности, о которой вскоре пойдет речь в рассказе о Солнце). Фурье сформулировал уравнения, с помощью которых можно было учесть все эти явления и подсчитать возраст Земли. Он наверняка это сделал, но результат не был опубликован; в архивах ученого не осталось ни клочка бумаги с получившимся числом. Эта оценка возраста Земли – и, вероятно, Солнца – составляла не тысячи и не десятки тысяч, а 100 млн лет! Впрочем, по мере развития науки в XIX веке этот возраст стал казаться астрономам слишком большим, а геологам и биологам-эволюционистам, напротив, слишком малым.


Страницы книги >> Предыдущая | 1 2 3 4 5 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации