Электронная библиотека » Джон Гриббин » » онлайн чтение - страница 2


  • Текст добавлен: 4 октября 2021, 11:41


Автор книги: Джон Гриббин


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 6 страниц) [доступный отрывок для чтения: 2 страниц]

Шрифт:
- 100% +

Для проведения предложенного Беллом эксперимента требовались технические решения, недоступные в середине 1960-х, и физик не рассчитывал увидеть его поставленным. Однако эти эксперименты провели уже к началу 1980-х гг. (с использованием фотонов вместо электронов). В результате было доказано, что неравенство Белла нарушается. С тех пор это подтверждено множеством подобных опытов на все более хитроумной технической базе.

Локальная реальность не является достоверным описанием нашего мира. Сам Джон Белл на конференции в Женеве в 1990 г. сказал: «Мне не известно ни об одной концепции локальности, которая работает с квантовой механикой. Поэтому я думаю, что мы обречены на нелокальность». Эйнштейн, возможно, считал, что «никакое разумное определение реальности» не может этого допустить, но мы вынуждены сделать вывод, что реальность, говоря его же словами, не является разумной. Однако самую впечатляющую особенность часто упускают из виду. Хотя стартовой точкой для теоремы Белла была попытка разобраться в квантовой физике, да и приведенные выше слова были сказаны на конференции по квантовой физике, результаты относятся не только к области этой науки. Они относятся ко всему миру – к нашей Вселенной. Не имеет значения, думаете ли вы, что когда-нибудь квантовую физику в качестве описания нашего мира может заменить что-нибудь другое, или нет. Эксперименты показывают, что локальная реальность не применима ко Вселенной. Чем вы предпочтете утешиться – сохранить реальность и принять нелокальность или сохранить локальность и отвергнуть реальность, – дело ваших личных предпочтений, как мы увидим позже. Но сохранить то и другое невозможно (хотя, в принципе, можно было бы отказаться сразу и от того и от другого, если вам хочется по-настоящему повредить мозг). Однако, прежде чем искать утешения для наших закипающих мозгов, стоит, пожалуй, довести историю запутанности до наших дней, поскольку из нее следует немало серьезных практических приложений.

К их числу относится, в частности, квантовая телепортация. В основе этого явления лежит уже доказанный экспериментально факт, что если два квантовых объекта, к примеру два фотона, запутаны, то, как бы далеко друг от друга они ни находились, происходящее с одним из них обязательно скажется на другом. По существу, они представляют собой отдельные части единого квантового объекта. Квантовой телепортацией нельзя воспользоваться для передачи информации быстрее скорости света, потому что в том, что происходит с каждой частицей, задействованы вероятность и случайность. Если один фотон перевести в некоторое случайное квантовое состояние, то второй одновременно примет другое квантовое состояние. Но любой наблюдатель возле второго фотона увидит лишь случайное изменение состояния, подчиняющееся правилам вероятности. Чтобы это изменение могло передать какую-то информацию, тот, кто вызвал изменение состояния первого фотона – кто бы это ни был, – должен прислать наблюдателю сообщение традиционными способами (медленнее скорости света) и сообщить ему, что происходит. Но если воздействовать на один фотон определенным образом, второй фотон можно превратить в точную копию первого (иногда ее называют клоном), в то время как состояние первого фотона рандомизируется. По сути дела, получается, что первый фотон телепортировался в локацию, где находился второй. Но поскольку состояние первого фотона при этом будет утрачено, назвать этот процесс дублированием нельзя. И опять-таки для его завершения также необходимо переслать наблюдателю информацию посредством какого-нибудь вида «досветовой» связи. Телепортация позволяет передать информацию, но требует наличия как «квантового канала» связи, так и «классического канала».

На создание подобных систем были направлены огромные усилия ученых, в первую очередь потому, что подобная технология обещает в будущем создание принципиально невзламываемых шифров, необходимых и бизнесу, и власти. Любая попытка прослушать квантовый канал вызвала бы искажение передаваемых данных, делая их бесполезными и раскрывая сам факт вмешательства. И неважно, если кому-то удастся прослушать традиционный канал: как отмечают специалисты по квантовой криптографии, его содержимое можно публиковать в газетах или выкладывать в социальных сетях для всех заинтересованных лиц. Для прочтения зашифрованной информации требуются оба канала. Кроме того, запутанность играет важную роль в разработке квантовых компьютеров – а эта тема в наши дни представляет большой интерес. Исследователи мечтают о полностью безопасном квантовом интернете, в котором квантовые вычисления, запутанность и телепортация будут обеспечивать абсолютно безопасную передачу информации.

Эксперименты такого рода уже вышли за стены лабораторий в большой мир – и даже за его пределы. В 2012 г. группа китайских ученых телепортировала квантовую информацию через озеро Цинхай на расстояние 97 км. В том же году группа европейских ученых телепортировала фотоны на 143 км между островами Пальма и Тенерифе в Канарском архипелаге. Оба эксперимента, заметим в скобках, подтвердили нарушение неравенства Белла; этот факт сегодня физики считают таким же само собой разумеющимся, как то, что яблоки падают с деревьев на землю.

В эксперименте на Канарских островах участвовали наземные станции в горах на высоте около 2400 м над уровнем моря, где разреженный воздух заметно снижает атмосферные помехи. Выше воздух еще более разрежен, и на высоте менее 143 км над островом Пальма начинается граница космоса. В 2016 г. Китай вывел на орбиту спутник «Мо-цзы» (названный в честь древнего китайского философа), с которого запутанные пары фотонов посылались на две станции, расположенные высоко в горах Тибета на расстоянии 1200 км друг от друга. И хотя спутник двигался со скоростью, близкой к 8 км/с, фотонные пучки при этом направлялись точно в цель. Поведение фотонов следовало теореме Белла, что никого не удивило, но на самом деле это был подлинный триумф современной техники. Такая аппаратура работает только ночью, поскольку солнечный свет ослепляет детекторы, да и «уловить» на земле удается лишь один из каждых шести миллионов фотонов, посланных со спутника (к счастью, фотоны нынче недороги). Тем не менее уже есть планы по созданию группировки спутников с более мощными источниками фотонов, которые можно было бы улавливать даже днем (что стало бы основой для сети квантовой связи), а также по телепортации фотонов с Земли на спутник. Вероятно, к моменту, когда вы это прочтете, будут уже и новые успехи в этой области, и новые заголовки научных новостей. Но если технари могут и дальше следовать правилу «заткнись и считай», то физики не могут прийти к согласию между собой о том, что все это значит – почему мир таков, каков он есть.

Пора подробнее рассмотреть несколько направлений, в которых ученые ищут утешения. Но вернемся на землю и вспомним эксперимент с двумя отверстиями, в котором каждый электрон, кажется, «знает», сколько отверстий в этот момент открыто и куда он направляется. Может быть, и здесь дело не обходится без запутанности – пресловутого жуткого дальнодействия? Если пара фотонов, летящих в противоположных направлениях, представляет собой по существу часть единой квантовой системы, то нельзя ли рассматривать всю установку двухщелевого эксперимента и электрон (или все электроны?) как части единой квантовой системы? Быть может, электрон знает, какие отверстия открыты, потому что состояние отверстий тоже является частью состояния электрона. Впрочем, само понятие запутанности было еще неизвестно, когда физики впервые попытались найти утешение в одной из интерпретаций квантовой механики, которая на несколько десятилетий стала общепринятой.

Утешение 1
Не такая уж распрекрасная копенгагенская интерпретация

Интерпретация квантовой механики, ставшая на несколько десятилетий определяющей точку зрения физиков, основана на идее волн – и во многом на отходе от оговорки «как если бы». В 1920-х гг. физики уже знали, что квантовый мир можно описать с помощью одного из двух математических методов. Первый из них, нашедший свое выражение в уравнении Шрёдингера, рассматривал волновые взаимодействия. Второй метод, оперировавший исключительно числами в виде таблиц (матрицами), основывался на работах Вернера Гейзенберга и Поля Дирака. Оба метода давали одинаковые ответы, и какой из них использовать – было делом вкуса и личного выбора. Поскольку физики в большинстве своем уже были знакомы с волновыми уравнениями, их в основном и выбирали. Однако в любых квантовых расчетах вычисляется отношение между двумя состояниями системы. При этом системой может быть электрон, эксперимент с двумя отверстиями или (в принципе) вся Вселенная, а также любой промежуточный вариант между электроном и Вселенной. Если у вас имеется набор параметров, описывающих систему в состоянии A, вы можете рассчитать вероятность того, что спустя некоторое время эта система окажется в состоянии B. Но при этом у вас нет никакой информации о том, что происходит между этими двумя моментами.

Архетипический пример – электрон в атоме. В некоторых случаях можно производить расчеты, как если бы (опять эта оговорка) электроны находились на круговых орбитах, соответствующих разным значениям энергии. Если атом излучает энергию в форме света, какой-то электрон исчезает с одной орбиты и появляется на другой, ближе к ядру атома. Если атом поглощает свет, электрон исчезает со своей орбиты и появляется на более удаленной от ядра атома. При этом электрон не движется с одной орбиты на другую. Только что он был здесь – и вот он уже там. Это явление известно как квантовый скачок[7]7
  Вопреки мнению специалистов рекламной отрасли, квантовый скачок – это очень незначительное изменение, происходящее случайным образом.


[Закрыть]
. По расчетам Шрёдингера, волновая теория должна была объяснить, что происходит в процессе такого скачка, но это не удалось, и исследователь сказал: «Если эти чертовы квантовые прыжки останутся с нами навсегда, я, наверное, пожалею, что вообще связался с квантовой теорией». Что ж, остается только посочувствовать прославленному физику – квантовые скачки никуда не делись и уже не денутся. Матричный подход более честен: он не обещает объяснить нам, что происходит в промежутке между состояниями A и B, но утешает меньше, чем уравнение Шрёдингера.


Нильс Бор

Legion-Media


Такой взгляд на квантовый мир, принятый на протяжении нескольких десятилетий, известен как «копенгагенская интерпретация» (КИ) квантовой механики, поскольку Нильс Бор жил именно в этом городе. Название, придуманное Вернером Гейзенбергом, вызвало серьезное раздражение у Макса Борна: он не входил в группу Бора и не работал в Копенгагене, однако его идея квантовой вероятности стала частью этой интерпретации. Однако в конце 1920-х гг. Нильс Бор доминировал в дискуссиях о квантовой физике, и дело не ограничилось названием. Бор так разнес альтернативную (вполне жизнеспособную) интерпретацию, что ее почти позабыли на два десятилетия. Чуть позже я представлю эту теорию как Утешение 2.

Бор был прагматиком, готовым собрать работающую теорию из обрывков различных идей, не слишком беспокоясь о том, что все это значит. В результате четкой и определенной формулировки КИ у нас просто нет, хотя Бор был весьма близок к тому, чтобы огласить ее на конференции в Комо в 1927 г. – задолго до того, как копенгагенская интерпретация обрела название. Конференция в Комо стала поворотным пунктом в истории физики. Именно на ней физики познакомились с инструментами, необходимыми, чтобы «заткнуться и считать», применяя квантовую механику к решению практических задач с участием атомов и молекул (к примеру, в области химии, лазеров и молекулярной биологии) и не задумываясь о фундаментальной основе и смысле явлений.

Прагматичный подход Бора распространялся и на его интерпретацию. Он говорил, что мы не знаем ничего, кроме результатов экспериментов. А результаты зависят от того, что, собственно, мы хотим измерить, – то есть от вопросов, которые считаем нужным задать квантовому миру природы. Однако эти вопросы окрашены опытом нашего повседневного существования в масштабе, намного превышающем масштаб атомов и других квантовых объектов. Мы можем предположить, что электроны – это частицы, и построить эксперимент для проверки этой гипотезы путем измерения импульса электрона, при этом электрон мы представляем себе в виде крохотного бильярдного шара. Мы проводим измерения, и – ну надо же! – нам это удается, что подтверждает гипотезу о том, что электрон – частица. Но допустим, что одна наша приятельница, считающая, что электрон – волна, подготовила эксперимент по измерению длины этой волны. И – надо же! – это ей удалось, что подтверждает идею о волновой природе электрона.

«Ну и что», – отвечает нам Бор. Из того, что электрон ведет себя, как если бы он был частицей, когда вы ищете частицы, или как если бы он был волной, когда вы ищете волны, отнюдь не следует, что он на самом деле является тем или другим, а тем более – тем и другим одновременно. На что смотрите, то и получаете, а то, на что вы смотрите, зависит от того, что вы решили искать. Согласно КИ, бессмысленно задаваться вопросом, что представляют собой квантовые объекты, такие как электроны и атомы, и что они делают, когда их никто не измеряет – или не смотрит на них, если вам так больше нравится.

Пока все логично, беспокоиться не о чем. Но Бор быстро заводит нас в мутные воды. Именно здесь в дело вступает вероятность. Шрёдингер, предлагая свое волновое уравнение, считал его буквальным описанием электрона (или другого квантового объекта; просто электрон – простейший пример, его удобно использовать в качестве иллюстрации). Для него электрон действительно был волной. Однако, приняв от Шрёдингера эстафетную палочку, Бор устремился в другую сторону: он совместил волновое уравнение Шрёдингера с идеями Макса Борна о квантовой вероятности. Получилась очень странная, даже немного пугающая смесь, которая работала (и работает до сих пор), когда дело касается квантовых расчетов, но стоит перестать о ней думать, как тут же начинает болеть голова. В этой новой картине выведенное Шрёдингером уравнение предлагается рассматривать как «волну вероятности», а шанс обнаружения электрона в конкретной точке определяется «квадратом волновой функции»; для этого уравнение, описывающее волну как таковую, по сути, в каждой точке умножают само на себя. Когда мы измеряем или наблюдаем квантовый объект, волновая функция «схлопывается» в точку, определяемую вероятностями. И хотя одни локации более вероятны, чем другие, в принципе, электрон мог бы появиться в любой точке из тех, на которые распространяется волновая функция. Приведем один очень простой пример, который подчеркнет странность такого поведения.

Представьте себе единичный электрон, запертый в ящике. Волна вероятности распространяется так, что равномерно заполняет этот ящик, и это означает, что шансы обнаружить электрон в любой точке внутри ящика абсолютно одинаковы. Разделим ящик пополам перегородкой. Здравый смысл подсказывает нам, что теперь электрон должен оказаться в одной из половин ящика. Но копенгагенская интерпретация (КИ) утверждает, что волна вероятности по-прежнему заполняет обе половины ящика и электрон с равной вероятностью может быть обнаружен по любую сторону от перегородки. Теперь распилим ящик вдоль по центру перегородки и получим два ящика. Один оставим в лаборатории, а второй поместим в ракету и отправим на Марс. Согласно Бору, у нас по-прежнему будут равные шансы – 50/50 – обнаружить электрон в ящике в лаборатории или в таком же ящике на Марсе. Теперь откроем ящик, оставшийся в лаборатории. Мы либо обнаружим в нем электрон, либо нет, но волновая функция в любом случае схлопнется. Если ящик в лаборатории пуст, электрон находится на Марсе; если же электрон обнаружен, то ящик на Марсе пуст. Это не то же самое, что сказать, что наш электрон «всегда находился» либо в той половине ящика, либо в этой: КИ настаивает, что схлопывание происходит только тогда, когда проверяется содержимое ящика в лаборатории. Это суть идеи, стоящей за парадоксом ЭПР и знаменитой загадкой Шрёдингера про кота, живого и мертвого одновременно. Но прежде чем углубиться в эту историю, я хочу посмотреть, как копенгагенская интерпретация объясняет эксперимент с двумя отверстиями.

Согласно КИ, которую преподавали мне в бытность студентом и до сих пор преподают слишком многим как «единственный» способ «понимания» квантовой механики, электрон испускается из некоего источника – электронной пушки – с одной стороны экспериментальной установки как частица. И сразу же растворяется в «волну вероятности», которая распространяется по установке и направляется к экрану детектора с другой ее стороны. Эта волна проходит через все открытые отверстия, интерферируя сама с собой (или нет, как получится), и, дойдя до детектора, отображается как рисунок вероятностей, который распределяется по экрану. В этот момент волна «схлопывается» и вновь превращается в частицу, положение которой на экране определяется случайным образом, но в соответствии с этими вероятностями. Это называется «схлопыванием» (коллапсом) волновой функции: электрон путешествует как волна, но на место прибывает как частица.


Эрвин Шрёдингер

Legion-Media


Волна, однако, несет с собой не только вероятности. Если у квантового объекта есть выбор, в каком состоянии пребывать (к примеру, электрон может обладать положительным или отрицательным спином), оба эти состояния каким-то образом включены в его волновую функцию. Такая ситуация называется «суперпозицией состояний», а состояние, в котором в итоге оказывается квантовый объект в момент его обнаружения или взаимодействия с другим объектом, также определяется в момент схлопывания волновой функции. В 1955 г., читая лекцию в Сент-Эндрюсском университете, Вернер Гейзенберг сказал, что «переход от “возможного” к “действительному” происходит во время акта наблюдения».

Этот метод вполне годится для расчета квантового поведения, словно электроны и подобные им объекты на самом деле поведут себя именно так. В то же время метод порождает множество трудных вопросов. Один из них обнаруживается в так называемом эксперименте «с отложенным выбором», придуманном физиком Джоном Уилером. Начал он с того, что фотоны, которые выстреливаются по одному в эксперименте с двумя отверстиями, все же образуют на экране детектора интерференционную картину. Но, согласно КИ, если поместить между экраном с отверстиями и экраном детектора устройство, которое будет отслеживать, через какое именно отверстие прошел очередной фотон, интерференционная картина исчезнет, демонстрируя тем самым, что каждый фотон действительно прошел только через одно отверстие. Об «отложенном выборе» говорят потому, что мы можем принять решение – наблюдать нам за фотонами или нет – уже после того, как они пройдут сквозь экран с двумя отверстиями. Разумеется, человеческие реакции для этого слишком медленны. Но такие эксперименты были проведены с использованием автоматических устройств, которые включали или выключали мониторы после прохождения фотонами экрана с отверстиями. Эксперименты показывают, что интерференционный рисунок действительно исчезает, когда за фотонами наблюдают, а значит, каждый фотон (или соответствующая волна вероятности) проходит лишь через одно отверстие – притом что решение о наблюдении этого фотона принимается уже после того, как он прошел экран с отверстиями.

Уилер предложил вообразить аналогичный эксперимент в космическом масштабе. Известно явление гравитационного линзирования: свет от далекого объекта, такого как квазар, фокусируется гравитацией промежуточного объекта, скажем галактикой, и обходит эту своеобразную гравитационную линзу двумя (или более) путями. В результате в детекторах здесь, на Земле, появляется двойное изображение объекта. В принципе, вместо получения двух изображений можно было бы смешать свет, прошедший различными путями, и получить интерференционную картину волн, обошедших гравитационную линзу по разным траекториям. Этакая космическая версия эксперимента с двумя отверстиями. Но мы можем наблюдать фотоны прежде, чем они сформируют интерференционную картину, и отследить, каким именно путем они прошли вокруг линзы. Тогда, судя по результатам лабораторных экспериментов, интерференционная картина должна исчезнуть. Допустим, квазар находится от нас на расстоянии 10 млрд световых лет, а галактика, играющая роль гравитационной линзы, – на расстоянии 5 млрд световых лет. Согласно результатам уже известных экспериментов, на то, что эти фотоны делали миллиарды лет назад и за миллиарды световых лет отсюда, воздействует то, что мы решаем измерить здесь и сейчас. Что вообще происходит? Как выразился сам Уилер, «копенгагенская интерпретация велит нам не задавать подобные вопросы»[8]8
  Процитировано Филипом Боллом.


[Закрыть]
. Не такая уж она, значит, распрекрасная.


Вернер Гейзенберг

Legion-Media


По существу, КИ утверждает, что квантовый объект не обладает неким определенным свойством (никаким свойством), пока он не измерен. Это порождает множество вопросов о том, что представляет собой измерение. Обязательно ли в нем должен участвовать человеческий разум? На месте ли Луна, когда никто на нее не смотрит? Существует ли Вселенная только потому, что человеческие существа достаточно разумны, чтобы заметить это? Или взаимодействие квантового объекта с детектором тоже может считаться измерением? И где именно в промежутке между этими двумя крайностями находится граница между квантовым миром и «классическим» миром старой доброй Ньютоновой физики? Подобными соображениями руководствовался Шрёдингер, предлагая свою знаменитую загадку про кота, запертого в комнате (он использовал немецкое слово, обозначающее «комнату», а не «ящик») с адской машиной, которая может убить кота, но находится в равновероятной (50/50) суперпозиции состояний. Дополняя этот пример, представьте, что детектор в комнате измеряет спин какого-то конкретного электрона. Если он окажется положительным, устройство сработает и кот умрет. Если отрицательным, коту ничего не угрожает. Электрон перед измерением находится в суперпозиции состояний. Но в комнате нет никого, кто мог бы увидеть, что произойдет при включении детектора. Схлопнется волновая функция или нет? Или кот тоже будет находиться в суперпозиции состояний – одновременно и мертв и жив, – пока кто-нибудь не откроет дверь и не заглянет в комнату?

В моем продолжении этой идеи имеются еще два отпрыска знаменитого кота (считая, что он уцелел), которых я называю котятами Шрёдингера[9]9
  Специалисты по физике элементарных частиц позаимствовали это название и используют его в другом контексте. Имеют право.


[Закрыть]
. Эти идентичные кошечки-близняшки – дочери кота Шрёдингера – живут в одинаковых космических капсулах, где у них есть все необходимое для жизни, даже игрушки. Капсулы соединены трубкой, в середине которой располагается ящичек с одним-единственным электроном. Волна этого электрона равномерно заполняет ящичек. В какой-то момент в ящичке опускается перегородка, разделяя его, а также капсулы на две части; каждая из них сообщается с ящичком, содержащим половину волны электрона. После этого капсулы отправляют с одинаковой скоростью в противоположных направлениях, пока они не окажутся на расстоянии пары световых лет друг от друга. В каждой капсуле имеется детектор, регистрирующий наличие электрона. Спустя некоторое время (не обязательно одинаковое в обоих случаях) устройство откроет полуящичек в каждой капсуле. Если там окажется электрон, то взрослая уже кошка умрет. Если нет, останется жить. Но нет никакого разумного наблюдателя, который мог бы понять, что происходит. И что же – обе кошки в результате всех этих действий окажутся в суперпозиции? Теперь представьте, что некий разумный инопланетянин в пролетающем мимо корабле поймает одну из капсул и заглянет внутрь, увидев там кошку, живую или мертвую. Неужели именно в этот момент схлопнется волновая функция в каждой из капсул – и то, что увидит инопланетянин, определит судьбу второй кошки на расстоянии двух световых лет от первой? Да, если верить не такой уж распрекрасной КИ.

А есть ли альтернатива? Их много, хотя они могут показаться столь же нелепыми, как сама КИ. Первой рассмотрим ту из них, что зародилась одновременно с копенгагенской, чуть не была раздавлена Бором во младенчестве, но выжила и продолжает сражаться.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации