Автор книги: Джон Лонг
Жанр: Зарубежная образовательная литература, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 9 (всего у книги 10 страниц)
Но что по поводу исключительной гомосексуальности? Как рождаются в процессе эволюции особи, спаривающиеся только со своим полом? Долгое время считалось, что гомосексуальные особи – «ошибка» природы. Однако последние исследования показывают, что гомосексуальность может являться особым приспособлением в определенных общественных и демографических условиях. Так, что касается людей, среди гомосексуалистов чаще встречаются люди, выросшие в больших семьях и являвшиеся младшими среди братьев и сестер; они склонны взаимодействовать с другими гомосексуалистами, а их средняя доля в каждом поколении невелика (около 3 %) и слабо различается среди разных культурных и этнических групп. Это может объясняться несколькими причинами. Возможно, повторные мутации, отвечающие за гомосексуальность, происходят благодаря выгоде, получаемой родственниками гомосексуалиста. Это явление названо семейным отбором. А также, вероятно, действует явление, именуемое отрицательным половым отбором – в условиях чрезмерного деторождения часть поколения самцов отсеивается.
Такая теория приспособления сама по себе поднимает вопросы: почему же такие особи подвергаются гонениям, особенно в западном обществе, если гомосексуальность так полезна? В таком случае отклонением, вероятно, является преследование гомосексуалистов, а не сам гомосексуализм.
Все же самовозбуждение, или мастурбация, тоже широко распространено среди животных, особенно среди обезьян (сходите в зоопарк и сами увидите). Коннозаводчикам известно, что некастрированные самцы часто трутся половыми органами о предметы, чтобы достичь сексуального возбуждения. Самки дикобразов используют палки в качестве дилдо. И уж наверное каждый из нас наблюдал приставания собак к ногам человека. Великий сексолог Генри Хэвлок Эллис в 1927 году опубликовал отчет о самых причудливых случаях среди копытных. В нем говорилось о случаях мастурбации, встреченных у быков, коз, овец, верблюдов и слонов. Его сведения о козах, пусть и полученные им не напрямую, впечатляют: «Один джентльмен, считающийся специалистом по козам, говорит, что самцы иногда занимаются самофелляцией, засовывая себе в рот свой же пенис и доводя себя до оргазма».
Исходя из всех этих наблюдений можно понять, что некоторые сексуальные предпочтения, которые одними расцениваются как извращения, а другими – как приключения и даже норма, широко распространены среди животных. Сегодня все это определяется лишь как расширенный набор полового поведения млекопитающих.
В своем развитии наши половые органы прошли длинный путь от неуклюжих класперов первых рыб, возникших около 400 млн. лет назад, до современного состояния, обеспечивающего половой акт, полный удовольствия. Последним звеном в цепи наших исследований, от механизма секса до его эволюции, является то, что происходит уже после оплодотворения. Дарвин, конечно, не ошибался, говоря, что половой отбор сыграл важнейшую роль в развитии животных. Но он не знал, что естественный отбор часто продолжается внутри оплодотворенной самки, о том, что специалисты в области репродуктивной биологии называют «соревнованием сперматозоидов», а иногда более жестко – «войнами сперматозоидов». Эта область – совершенно новый этап в истории исследований эволюции.
Глава 13. Война спермы: чего не могут рассказать открытия палеонтологии
Ничего, или почти ничего, в размножении животных нет осмысленного, если только не рассматривать репродукцию в свете соревнования спермы.
Профессор Тим Беркхед
Скандальная книга Робина Бейкера «Войны спермы» («Sperm Wars») стала бестселлером и была помещена на самый верх топ-листа New York Times в 1997 году, вызвав сенсацию в средствах массовой информации. В книге было несколько авангардных идей: о том, что сперма человека убивает сперму соперников; о том, что есть сперматозоиды-камикадзе, которые убивают и сперматозоиды соперника, и самих себя этим процессом; и эти идеи создали образ солдат в состоянии войны внутри матки женщины. Однако пересмотр сенсационных идей книги ведущими биологами в области репродукции Тимом Беркхедом, Гарри Муром и Майком Бедфордом, которые указали на серьезные ошибки в основных экспериментах, демонстрирующих положения автора, также наделал много шума. Ученые заявляют, что многие идеи основаны на случайных фактах и совпадениях; и эксперименты, приводимые в доказательство, не дают тех же данных при повторных экспериментах. Беркхед и коллеги настаивают на «крупных заблуждениях» автора, которые он к тому же насаждает в головах читателей.
Чтобы лучше понять, что же в этой книге не так, я сгущу мысль: как только возникает новое манящее поле для исследований, такое, например, как идея конкурирующей спермы в оплодотворении животных, нужно быть предельно осторожным с планированием экспериментов, чтобы результаты оказались осмысленными. Результаты не должны быть просто «зрелищными», они должны доказываться. Несмотря на протесты ученых, идея конкуренции спермы стала самой горячей точкой в эволюционной биологии за весь период ее развития начиная с пионерного дебюта доктора Джеоффа Паркера в 1970 году.
Мы уже проследили, как ископаемые останки иногда могут рассказать нам о форме и структуре репродуктивных органов у исчезнувших групп организмов, однако истинный современный фокус репродуктивной биологии – на клеточном уровне. К сожалению, информация о клетке – это не та манящая информация, которую могут дать палеонтологические открытия, из-за невероятной важности любой мелкой детали. Так что вместо непонятной большинству информации о клеточном строении я попытаюсь дать краткий обзор того, как именно эволюция, которую спровоцировала адаптация репродуктивных органов, может быть прослежена по анатомии и физиологическим процессам.
Чарльз Дарвин мог знать об истинной цене полового отбора в своей работе по эволюции, однако он ошибочно считал женский род пассивным игроком в этой Игре Природы. Это правда, что конкуренция спермы определяет процесс, но половой отбор влияет на выживание многих видов, от маленьких улиток до огромных млекопитающих. Было много проницательных прорывов мысли в понимании посткопулятивной борьбы, идущей внутри организма, так как сперма разных самцов часто ведет конкурентную борьбу за право оплодотворить женскую яйцеклетку. Но это не просто состязание, чья сперма самая быстрая и сильная; в некоторых случаях это победа спермы, наиболее долго хранящейся в организме женщины; или того, что анатомия заложила внутрь репродуктивного тракта женщины, чтобы предотвратить доступ некоторых мужских сперматозоидов к яйцеклетке.
Когда-то, в 1979 году, исследование стрекоз Джонатаном Ваадж было «первой ласточкой», когда биолог продемонстрировал жизнеспособность существа, обладающего пенисоподобной структурой, адаптированной одновременно и к трансферу спермы, и к удалению спермы, и снабженной длинным жестким ворсом, который способен выскребать сперму предыдущего мужского агента. Крабы-привидения и крабы-пауки демонстрируют этот подход, однако делают это очень хитро. Первоначальное спаривание переносит семенную жидкость к яйцеклетке, однако именно жидкость, а не сперму, ибо семенная жидкость действует как уплотняющая смола, которая вначале выталкивает остатки спермы предыдущего самца на «задворки» спермохранилища, а потом накрепко «затыкает» ее пробкой. Затем, в следующую копуляцию, самец оплодотворяет самку свежей спермой, которая теперь наверху сперморезервуара и готова оплодотворить яйцеклетку.
Самки фруктовой мушки дрозофилы (Drosophi la melanogaster) известны тем, что спариваются со многими самцами и используют только сперму последнего самца. В 1999 году Кэтрин Прайс с коллегами из Чикагского университета провела перекрестное скрещивание мушек для того, чтобы пометить флуоресцирующей зеленой меткой остатки спермы и идентифицировать в дальнейшем отцовство по цвету глаз. Используя эти следы и метки, можно идентифицировать сперму определенного самца и подсчитать ее после спаривания. Работа была хотя и с мелкими объектами, но сравнительно легкой, поскольку у мелких дрозофил очень крупные порции спермы: у не которых видов вплоть до 58 миллиметров – а самец мушки в длину сам 1,5 миллиметра. У некоторых видов эти порции спермы плотно свернуты для доставки самке, но тем не менее они такие крупные, что видны невооруженным взглядом: крошечные белые хлопья.
Эксперименты продемонстрировали, что сперма самца мушки способна заместить сперму предыдущих самцов. У самок мушки имеется три приемных резервуара в хранилище спермы, в которых сперма от разных самцов смешивается; и все же исследования показали, что сперма второго самца «запрещала» использование спермы предыдущего самца без замещения ее (в биологии называется «инкапаситирующий эффект»). Подсчеты спермы до и после оплодотворения показали, как работает эта система «спермы второго самца». Свежая сперма имеет способность замещать прежнюю внутри хранилища. Такие исследования ценны тем, что демонстрируют механизм замещения спермы и соревнования в живых организмах; и наша интерпретация генетических черт организмов отдана на милость поведенческим особенностям и посткопулятивному соревнованию спермы.
Много лет подряд полагали, что чем быстрее сперматозоид достигает цели, тем больше у него преимуществ, особенно у рыб при икрометании в текучих водах. Исследования 29 видов цихлидовых рыб в озере Танганьика, которые славятся быстрым генетическим обновлением (много новых видов за краткое время возникло из видового запаса), показали, что имеется положительная корреляция между усиленным половым поведением самок и отбором более быстрой, мобильной спермы. Также была прослежена положительная взаимосвязь между длиной спермы и скоростью.
Людям была много веков известна способность кур запасать сперму и использовать ее спустя месяцы после спаривания с петухом; но никто не мог понять, как они делают это, вплоть до 1875 года. Тогда выяснилось, что у кур имеется много резервуаров возле матки для хранения спермы и они могли высвобождать ее для оплодотворения яиц. Это открытие принадлежало датскому ученому Петеру Тауберу. Он потратил 25 лет на работу над диссертацией по оплодотворению кур, но, к сожалению, так ее и не защитил из-за разногласий с руководителем. Его открытие часто приписывают южноафриканскому ученому Ван Дриммлену, опубликовавшему работу в 1946 году.
Неудивительно, что многие ключевые исследования о конкуренции спермы были сделаны на птицах. Птиц легче наблюдать, у них частые периоды беременности; птицы используют разные техники для того, чтобы сперма была доминантной. Многие птицы полиандричны (самки спариваются со многими самцами) или практикуют спаривание в комбинации моногамии и полиандричны в зависимости от сезона. У видов, где самцы охраняют фертильную партнершу, копуляции нечасты; но когда самцы не могут «присматривать» за самкой, частота копуляций возрастает.
Воробей североамериканского вида (Prunella modularis) – пример быстроты копуляции. Самки его часто спариваются с двумя самцами более 250 раз для того, чтобы отложить кладку яиц. Другие пары воробьев моногамны; для одной кладки яиц они спариваются не более 50 раз. Брачный ритуал может включать «клевание» самцом красной набухшей клоаки самки для стимуляции ее к тому, чтобы она освободилась от семени предыдущего самца; и только затем самец взбирается на самку. Копуляция у этих птичек – одна из самых стремительных: самец воробья откладывает внутрь самки сперму за десятую часть секунды.
Первоначально ученые полагали, что самцы контролируют брачное поведение птиц, однако теперь есть факты, показывающие, что именно самки определяют время копуляции; делая это, они выбирают наилучшую сперму для оплодотворения яиц. Недавно было сделано удивительное открытие в Сиднейском университете: при изучении красивой птички австралийский зяблик (Erythrura gouldiae) было выяснено, что самки выбирают только тех самцов, сперма которых совместима с ее генами. Социально моногамные самки, которых помещают в клетки со многими самцами в эксперименте, оценивают преимущества и сами отбирают себе самцов с самой подходящей для их потомства спермой. Тесты ДНК, проведенные учеными, показали, что после многих совокуплений самка дает сперме второго самца диспропорционально более высокий шанс на оплодотворение яиц, даже после того, как ее оплодотворил прежний моногамный самец.
Множество примеров сложного брачного поведения вовлечено в «соревнование спермы», и это отмечено Тимом Беркхедом в его книге «Половой отбор и Соревнование спермы» («Sexual Selection and Sperm Competition»), изданной в 1998 году.
У млекопитающих соревнование спермы лучше всего видно на примере земляной белки из Северной Америки. Эти пушистые маленькие зверьки обладают ужасающего вида пенисами с выступающими острыми краями, сходными с пенисами агути, описанными выше. Эти пенисы сконструированы, чтобы вырезать копуляторные пробки от предыдущих соитий. Крысы часто используют метод соревнования спермы, чтобы создать двойные пробки. Самки пустынной кенгуровой крысы (Dypodomys desertus) из пустынь юго-запада США умеют делать вторую пробку путем смешивания вагинального секрета с клетками эпителия; затем, скомбинировав после копуляции это с пробкой самца, самка может контролировать лучшее качество спермы для оплодотворения. Тем временем американская полевка (Microtus pennsylvanicus) может продуцировать спермы больше при каждой копуляции, если самец «унюхает» другого самца в окружении самки. Есть и иные примеры млекопитающих, использующих гениальные методы соревнования спермы.
Так что такое соревнование спермы у нас, приматов?
Мы уже обсуждали, как гориллы, шимпанзе и люди производят разное количество спермы в условиях разных поведенческих особенностей. У шимпанзе – самые большие тестикулы из всех приматов; они образуют промискуитетные сообщества; поэтому самцам требуется больше спермы, чтобы «выдавить» из соревнования самца, который был предыдущим. Гориллы и человек имеют тестикулы меньшего размера и меньше эякулируют, так как обычно спариваются только с одной самкой в течение ее цикла. Изучение морфологии спермы приматов показало, что средняя часть «хвоста» сперматозоида у приматов в системах, где много партнеров, толще и обладает большей мобильностью. Это доказательство того, что даже сперматозоиды меняют свою форму в результате изменения сексуального поведения.
Да, в книге Робина Бейкера и Марка Беллиса по войнам спермы есть серьезные противоречия, однако они высказали инновационные идеи. В своей статье 1993 года они предположили, что женский организм выработал метод «всасывания» в шейку матки семенной жидкости для увеличения шанса оплодотворения. Они предположили также, что в случае партнерской неверности женский организм меняет паттерн своего оргазма для создания благоприятствования «экстрапартнеру» (не прежнему своему партнеру), чтобы увеличить его шансы на успех оплодотворения перед прежним долговременным партнером. Это была очень спорная теория.
Чтобы проверить идеи Бейкера и Беллиса и другие поведенческие теории, доктор Гордон Галлап с коллегами из Университета Нью-Йорка отобрали выборку из 652 студентов. В их статье 2006 года сообщалось, что случаи «двойного акта» женщинами (случаи были признаны четырьмя студентками в группе) признаны статистически вероятными в изучении замещения спермы. Они также выдвинули гипотезу, что пенис может совершать движения, позволяющие замещать семя предыдущего партнера-соперника. Это исследование включало эксперимент на искусственных пенисах разной формы, вводимых в разные латексные вагины, чтобы попытаться научно протестировать возможность человеческого пениса вытеснять семя предыдущего партнера. Результаты показали, что, в самом деле, указанная цель частично достигается при определенных конфигурациях и размерах пениса.
Другое исследование человеческой спермы и ее конкуренции включало группу из 305 мужчин – студентов университета. Целью исследования было показать, что мужчины при риске неверности партнерши используют тактики ее удержания, такие, как укрывание партнерши от знакомства с соперниками, попытки удержать ее с помощью дорогих подарков. В таких экспериментах сходство с соревнованием спермы было «притянуто» при помощи серии анкетных вопросов, которые позволяли определить, какой рейтинг придавал мужчина своей партнерше в терминах физической привлекательности и личностных качеств. Предсказанные результаты теста оправдались; при слабой привязанности в паре мужчины в случае риска пытались крепче привязать к себе партнершу и уберечь ее от соперников.
И наконец, исследователи команды Университета Западной Австралии пытались критически осмыслить тот тезис, что конкуренция спермы – важное давление отбора на человека как сексуального партнера. Экспериментаторы рекрутировали 222 мужчины и 194 женщины для эксперимента по сексуальному поведению. Из эксперимента был сделан вывод, что 28 % мужчин и 22 % женщин имели секс вне сложившейся пары. Из эксперимента также был сделан вывод об ошибочности предположения, что имевшие «левый» секс мужчины обладают большими по размеру тестикулами, чем моногамные мужчины. Более значимо, что был сделан вывод: для сложившейся моногамной пары риск того, что ребенок будет зачат от «случайного» партнера, составляет около 2 % в нашем современном западном обществе, а это создает низкую конкуренцию спермы в сравнении с нашими родственниками-приматами.
Итак, хотя исследования показывают, что имеются механизмы соревнования спермы в человеческом обществе, реальность говорит о том, что у вида Человек разумный это определяется в первую очередь поведением партнеров (к примеру, то, как мы поступаем по отношению к партнерам), а не физиологией (например, размером пениса).
Из всех этих исследований стало ясно, что многое было впитано и перешло в нашей эволюции от сексуальных органов древних рыб через сперму и опосредованно – через брачное поведение или прямые физиологические процессы внутри женского организма. Но прямые ли это взаимосвязи с древними рыбами? Можем ли мы отыскать в себе реликтовые структуры, глубоко запрятанные в наших человечьих телах, что впервые возникли у первобытных панцирных рыб?
Глава 14. От класпера к пенису: это был долгий путь, детка
Если бы мне поручили выдать награду за лучшую идею всех времен, я бы вручил ее Дарвину, а не Ньютону, или Эйнштейну, или кому-либо еще. Идея эволюции путем естественного отбора одним махом объединяет все живое, его значение и цель существования с пространством, временем, причиной и последствием.
Дэниел Деннет
Последняя глава «Ужасной Красоты» Питера Ватсона, рассматривая все великие идеи XX века, провозглашает эволюцию важнейшей из всех: той, что изменила восприятие людьми самих себя. Идея эволюции превратила людей лишь в один из многочисленных видов, берущих свое начало в обширной и неразрывной цепи ДНК, простирающейся от первых микробов, что появились почти 4 млрд. лет назад, до невероятного разнообразия и красоты существ, живущих на планете сегодня.
Человеческое тело формировалось в течение последних 500 млн. лет, с момента появления первых рыб, с медленным приобретением все новых анатомических свойств, последовательность которых навсегда запечатлена в ископаемых останках. Это правдивое и беспристрастное откровение о нас самих. И в каждом из нас есть что-то, напоминающее о нашей связи с первыми панцирными рыбами и их необычными способами размножения.
Сегодня, чтобы узнать больше о нашем происхождении, мы можем прибегнуть к двум вещам. Во-первых, пойти на раскопки и найти окаменелости, которые откроют нам новые сведения о том, как примитивные наборы костей трансформировались из одного вида в другой. Находки вроде Tiktaalik или Materpiscis являют собой хорошие примеры, рассказавшие важные детали о ранних стадиях эволюции животных. Во-вторых, можно изучить эволюцию по сведениям, полученным из наших собственных генов. Наша ДНК, являющаяся, в сущности, крошечной частью гена, – настоящее сокровище прошлого для исследователя эволюции. Эта область науки зовется «эволюционной биологией развития». Она изучает развитие животных методом анализа стадий развития их зародышей, стараясь выявить соответствие генов процессам, за которые они отвечают.
Действительно большим прорывом современной эволюционной биологии стало открытие гомеобоксных генов (часто называемых хоксами), которые определяют последовательность построения организма. В сущности, они являются сочетанием инструментов и плана создания нашего тела и начинают работать, как только яйцеклетка оплодотворена и клетки начинают делиться.
Действительно значимые прорывы в науке часто отмечаются присуждением Нобелевской премии, и в 1995 году премия в области медицины досталась профессору Эдварду Льюису, Кристиану Нюссляйну-Фольхарду и Эрику Ф. Вишаусу «за открытие генетического управления ранними стадиями развития эмбриона», то есть хокс-генов. Они начали поиск загадочных генов-строителей в 1970-х. Чтобы выявить, за что отвечают определенные гены, они кормили дрозофил веществами, вызывающими генетическую мутацию. К началу 1980-х были обнаружены ключевые гены, отвечавшие за построение тела дрозофил. Эти гены были названы гомеобоксными, или хокс-генами. Эд Льюис установил, что хокс-гены распределены в хромосомах в порядке, соответствующем частям тела, за которые они отвечают. Ошеломляющим стал тот факт, что многие из генов, присутствовавших у дрозофил, были обнаружены и у других животных и играли у них схожую роль, отвечая за развитие тех же частей тела, будь то морские ежи, лягушки, мыши или люди. Это открытие стало великолепным примером общности происхождения всего живого.
Так каким же образом все это связывает нас с плакодермами? Так вот, в 1993 году Клифф Табин из Гарварда установил, что один из хокс-генов, названный им «hedgehog» («еж»), отвечал за развитие наших конечностей. Когда позже он обнаружил соответствующий «еж» и для курицы, немного отличавшийся от человеческого, Клифф назвал его «sonic hedgehog» в честь компьютерного персонажа. Ген «sonic hedgehog», сокращенно – «shh», отвечает за развитие конечностей позвоночных, в частности пальцев на наших ногах. После того как этот ген был найден у всех животных с пальцами на ногах, от лягушек до людей, другая группа исследователей под руководством профессора Нила Шубина смогла обнаружить тот же ген у рыб (которые, конечно, не обладают пальцами). Доктор Рэнди Дан и Нил Шубин также нашли его у акул и костных рыб. Суть их открытия заключалась в том, что, хотя ген «shh» и отвечает за развитие пальцев, он тем не менее вносит свой вклад в развитие конечностей как таковых.
В 2007 году группа Дана опубликовала в Nature статью, в которой говорилось, что после трансплантации ткани мыши с геном «shh» в плавник детеныша ската было обнаружено, что ген сыграл в его организме такую же роль, как и у мыши: у ската-мутанта выросли новые плавниковые хрящи разной формы, и его грудной плавник стал по своему строению напоминать руку.
Диаграмма показывает основные этапы развития мужской половой системы позвоночных, от двойных костных кластеров (у панцирных рыб) до одиночного пениса млекопитающих, некоторых птиц и рептилий. На протяжении эволюции пенис неоднократно утрачивался и затем вновь появлялся у различных видов, в соответствии с потребностями. Те же хокс-гены, что отвечают за построение кластеров у акул и древних панцирных рыб, видимо, отвечают и за создание наших половых органов. (Джон Лонг)
Из этих и других экспериментов в области эволюционной биологии мы знаем, что все конечности, вернее, все придатки, будь то конечности или плавники, нуждаются для развития в гене «shh». Этот ген найден у всех существующих сегодня челюстных рыб, акул и скатов, а значит, он восходит своими корнями к самому началу нашего развития, к той эпохе, когда конечности только начали появляться, когда их план уже существовал в глубине ДНК, но действовал еще слабо.
Совместное изучение эволюционной биологии и ископаемых свидетельств перевернуло наше понимание превращения рыб в первых наземных животных. Открытие хокс-генов смогло лучше объяснить почти симметричное строение пальцев рук и ног ранних тетраподов (в противоположность поздним тетраподам, у которых все пять пальцев были разного размера). Таким образом, время активации определенных генов можно привязать к найденным останкам.
Эволюционная биология – это область развития знаний, показывающая, как сведения о чем-нибудь столь отдаленном, как рыбы девона, могут помочь исследованиям в области восстановительной медицины, которые однажды принесут пользу человечеству. Доктор Катрин Буаверт, изучавшая плавники девонских рыб Panderichtys для своей докторской работы в Университете Уппсалы, сегодня – ведущий специалист по развитию зародышей и активации генов у акул в новом Институте австралийской восстановительной медицины при Университете Монаша. Проведенные ею исследования, показывающие время появления и активации хокс-генов у рыб, могут в будущем помочь ученым в создании искусственных конечностей, мышц и даже самой спинномозговой ткани. Такие исследования дают надежду на возможность в будущем лечения патологий генетическим восстановлением утраченных тканей или больных органов.
Другие гены, играющие важную роль в развитии конечностей, принадлежат к ряду Hoxd, точнее, к диапазону от Hoxd9 до Hoxd13. Важная статья о конечностях акул, написанная Ренатой Фреитас и ее коллегами из Университета Флориды, сообщает, что развитие началось с последовательной активации генов серии Hoxd13, которая запустила механизм построения конечностей от плечевого пояса вниз к средней части плавника, или, по-нашему, предплечью. Затем неожиданно началась вторая стадия развития (именуемая двуфазной активацией), в течение которой гены серий Hoxd13 и Hoxd12 перестроили концы плавника акулы. Фреитас и ее коллеги сделали вывод, что последовательный запуск генов, так же как и обнаружение новых ископаемых, дает ключ к разгадке всей цепи. Читая эту статью, я был поражен включенными в нее цветными снимками крошечных эмбрионов акул с класперами, подсвеченными краской и свидетельствующими о запуске генов. Кажется, Hoxd12 отвечает и за формирование класперов, а Hoxd13 особенно важен для завершения этого процесса, отвечая при этом и за запуск построения урогенитальной зоны клоаки.
Но каким образом это связано с человеком? Публикация по изучению биологии развития на мышах Мартином Кохом (2004) показала, что развитие генитальных туберкул – бугорков (бугорки, из которых развиваются генитальные органы) и конечностей запускается параллельно и одновременно геном Hoxd13. Автор заключает: «Конечности и внешние гениталии проходят много сходных морфологических процессов, и… одни и те же молекулярные механизмы могут работать и во время развития конечностей, и во время развития гениталий».
Это было открытием для меня. То был первый блок современных данных по биологии развития, который связал открытый мной класпер плакодермы и пенис млекопитающих. В то время как вещество, из которого сделаны гениталии, дифференцируется во время эволюции позвоночных, гены, «командующие» развитием, те же самые и могут быть прослежены также в развитии конечностей. Подобно тому как строится дом из кирпича, из дерева или соломы, пока план стройки действителен, будут строиться одни и те же структуры, даже если материал разный. Класперы и у плакодермы, и у акулы формируются из части развивающегося брюшного пояса, предназначенного однажды стать ногами млекопитающего.
И когда-то репродуктивные структуры ранних челюстных рыб были парными, как часть задних конечностей. После того как парные задние плавники преобразовались в ноги, класперы были утеряны, но вместо них из урогенитальной пластины образовались иные парные репродуктивные структуры, такие как гемипенисы ящериц и змей. В последующих эволюционных преобразованиях парные структуры стали бесполезными, поскольку требовался только один орган для спаривания. Так образовался единственный пенис как доминанта, так сказать, репродуктивных мужских органов позвоночных.
Конечно, утрата пениса тоже происходила в эволюции позвоночных, как у некоторых примитивных рептилий (гаттерия) и у большого числа летающих птиц (Воробьиные), когда по какой-либо причине превалировала иная репродуктивная стратегия. Как конечности могут быть потеряны несколько раз независимо в эволюции позвоночных (безногие ящерицы, червяги, змеи – все независимо друг от друга утеряли конечности) или несколько раз у многих видов единственного рода (как у австралийской ящерицы Lerista), так и потеря пениса не была ущербом для некоторых линий позвоночных.
Мы, люди, иногда сожалеем, что наши небольшие пенисы не выглядят так «отточенно», будто они прошли долгий путь эволюции, но на самом деле это был трудный путь развития, который сейчас можно проследить во времени к самому возникновению конечностей у всех позвоночных.
Итак, когда вы занимаетесь сексом, да еще с самым важным для себя человеком, и ощущаете все наслаждения этого процесса, предоставляемые нам анатомией, не сдерживайте себя и кричите от радости – от благодарности за все, что нам дано. И вспомните при этом нашу маленькую бронированную плакодерму.
Из-за странного поворота биологической судьбы мы сохранили наиболее интересную часть репродуктивной анатомии в наследство от нашей древней эволюционной истории, а иные животные продолжили жить и развиваться без нее.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.