Электронная библиотека » Э. Серга » » онлайн чтение - страница 3


  • Текст добавлен: 16 октября 2020, 09:46


Автор книги: Э. Серга


Жанр: Физика, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 12 страниц) [доступный отрывок для чтения: 3 страниц]

Шрифт:
- 100% +
1.3. Этапы решения научной проблемы

Мотивация исследователей, занимающихся решением научных проблем, может быть различной. Это может быть связано с выполнением служебных обязанностей или личным интересом учёного к данной проблеме и творческой потребностью в её решении, независимо от каких-либо обязанностей и материальных стимулов. При этом одно не исключает другого. Известны случаи, когда исследования, выполняемые вначале в инициативном порядке, в последующем признавались общественно значимыми и получали необходимую поддержку руководства.

В конце 40-х годов ХХ века в НИИ-4 МО была создана группа под руководством Михаила Тихонравова, которая занималась разработкой математического обеспечения пусков баллистических ракет. В инициативном порядке группа стала заниматься также проблемой создания искусственных спутников Земли. Эти исследования не получили поддержку руководства института, как не имеющие конкретной области применения и отвлекающие сотрудников от выполнения основных обязанностей. Однако группа Тихонравова не прекратила работы по ИСЗ. В 1954 г. в АН СССР состоялось совещание, на котором рассматривался вопрос о том, нужны ли будут в будущем ИСЗ и надо ли развёртывать работы по их созданию. Мнения участников совещания разделились, так как перспективы применения ИСЗ тогда явно не просматривались. Решающим оказалось мнение академика Петра Капицы. Он сказал, что на основе существующих в данное время представлений трудно предвидеть области применения ИСЗ. Но, как показывает исторический опыт, научно-технические достижения такого уровня впоследствии находят различные области применения. Поэтому работы по созданию ИСЗ следует развёртывать.

В результате было принято решение рекомендовать развёртывание в стране работ по созданию ИСЗ. Выполненные группой Тихонравова в инициативном порядке исследования были востребованы. В октябре 1957 г. был выведен на орбиту первый в мире ИСЗ. Так началась космическая эра.

В качестве второго примера можно привести работу Эйнштейна в области создания единой теории поля. Он занимался этой проблемой вторую половину своей жизни, почти 4 десятилетия. Что заставляло учёного, обладающего мировой славой и не имеющего каких-либо материальных проблем, долго и упорно заниматься этой трудной проблемой, которая так и не была им решена? Как и в первом примере, эта мотивация обусловлена, по-видимому, свойством характера, которое отличает творческую личность от наёмного работника. Приступив к решению проблемы, такие учёные уже не могут остановиться и готовы трудиться, пока проблема не будет решена и результаты востребованы. Таким образом, можно утверждать, что мотивация учёного решить научную проблему не всегда связана с материальными стимулами, а может быть обусловлена творческой потребностью.

В решении научной проблемы важную роль играет методология, т.е. общие принципы, которыми руководствуется учёный. Причины неудач обычно связаны с используемой основополагающей идеей решения проблемы, а также тем, что называем камнями в голове. В поисках истины учёный может пойти по ложному пути и тогда теряется время, напрасно тратятся силы. Каждая проблема должна быть разбита на отдельные этапы, а в этапах предусмотрены простые положения (высказывания), истинность которых следует научно обосновать. Это позволит учёному правильно ориентироваться в определении пути решения проблемы. В общем случае можно выделить следующие основные этапы решения научной проблемы:

постановка задачи;

обоснование гипотезы, которая может быть положена в основу решения проблемы;

проверка гипотезы.

Дадим необходимые пояснения каждому из этапов.

Постановка задачи включает обобщение имеющихся данных по проблеме, анализ противоречий и обоснование требований к решению, которое позволит устранить противоречия.

Обоснование гипотезы. Этот этап часто состоит в поиске нового возможного решения, устраняющего имеющиеся противоречия. Это предполагаемое решение часто основано на идее, противоречащей существующим представлениям. Основная причина многочисленных неудач в решении научных проблем состоит именно в ошибочности изначально принятой идеи, положенной в основу предполагаемого решения.

Проверка гипотезы. Возможны различные способы проверки гипотезы, включая мысленный эксперимент, математическое моделирование, натурный эксперимент. Использование одного из методов, не означает отсутствие необходимости использования других методов. При этом должны быть определены объективные критерии оценки достоверности данных проверки.

Следует отметить, что решение отдельно взятой научной проблемы означает, как правило, появление новой проблемы, которую необходимо решить. В природе всё взаимосвязано, в ней нет деления на науки как в современном естествознании. Поэтому научную проблему нельзя считать окончательно решённой, если в результате такого решения возникают вопросы, на которые нет ответа в смежных областях науки.

Рассмотрим приведенные этапы решения научной проблемы на конкретных примерах, а именно, аномальных смещений перигелиев планет и управляемого термоядерного синтеза.

Аномальные смещения перигелиев планет.

Постановка задачи. Анализ состояния проблемы был выполнен ранее. В теории Эйнштейна было дано объяснение смещения только для Меркурия Для других планет предсказания теории не подтверждаются данными наблюдений. Требования к решению, которое может устранить имеющиеся противоречия состоит в следующем: удовлетворительная теория должна объяснить аномальные смещения для Меркурия и Марса, т.е. двух планет, у которых погрешности измерений приемлемы для анализа.

Обоснование гипотезы. Поиск решения проблемы состоит в определении и анализе ранее не учтённых факторов, которые могут объяснить смещения в рамках теории Ньютона. Прежде всего, следует обратить внимание на определение факторов, о которых не знал Эйнштейн, когда занимался этой проблемой, а также не знали другие исследователи, пытавшиеся решить проблему до Эйнштейна.

Одним из таких факторов является новое знание о физическом (космическом) вакууме, который является материальной средой, а не пустотой, как у Эйнштейна. Согласно представлениям физики конденсированных сред, вакуум можно рассматривать как квантовую жидкость, состоящую из двух компонент: невозбуждённой сверхтекучей и возбуждённой, обладающей свойствами, присущими обычным жидкостям, включая вязкость. Наличие вязкой компоненты вакуума должно было бы привести к движению планеты по свёртывающейся спирали и, в конечном счёте, её падению на Солнце. Но кроме влияния вакуума на планеты действуют и другие возмущения, из которых наиболее сильными являются гравитационные возмущения от других планет. Совокупное влияние всех возмущающих факторов обеспечивает устойчивость планетных орбит. Но при этом могут изменяться параметры орбит, которые не влияют на их устойчивость, в частности долгота перигелия.

Однако влияние вязкой компоненты вакуума не должно привести к вековому смещению перигелия планеты. Это связано с тем, что планеты движутся почти по круговым орбитам. При этом возмущающая сила во время движения меняет своё направление так, что при круговом движении планеты работа по замкнутому контуру (за один оборот) будет равна нулю. Тогда могут наблюдаться только периодические колебания долготы перигелия относительно среднего значения. А мы наблюдаем его вековое смещение. Следовательно, должен быть ещё какой-то фактор, который вместе с сопротивлением вакуума вызывает вековое смещение перигелия планеты. Как показал анализ, таким фактором оказалось движение Солнца (вместе с планетами) в космическом пространстве. Совместное влияние возбуждённой компоненты вакуума и движения Солнца приводит к образованию возмущающей силы, котjрая получила название космического ветра [9]. Направление силы, создаваемой космическим ветром, остаётся неизменным, что позволяет объяснить вековое смещение долготы перигелия.

Проверка гипотезы. Этот этап состоял в математическом моделировании движения планет с учётом указанных возмущающих факторов: наличия в вакууме возбуждённой компоненты и движения Солнца в космическом пространстве. При этом результаты расчётов должны соответствовать данным наблюдений для Меркурия и Марса. Использовалась следующая схема проверки. Путём решения краевой задачи была определена эффективная плотность вакуума (ЭПВ) на орбите Меркурия, при которой расчётное смещение перигелия соответствовало наблюдаемому значению. С учётом полученной ЭПВ для орбиты Меркурия была теоретически определена ЭПВ для орбиты Марса и с этим значением было рассчитано смещение для Марса. Таким образом, результаты расчёта смещения для Марса с теоретически определённым значением ЭПВ можно рассматривать как тест на проверку правильности теории. Результаты расчётов показали хорошее согласование теоретического и наблюдаемого смещения для Марса. Система уравнений для расчёта смещений перигелия планет с учётом указанных возмущающих факторов дана в параграфе 3.2.

Управляемый термоядерный синтез.

Постановка задачи. Согласно представлениям современной физики, ядерные реакции сопровождаются выделением энергии, включая реакции деления и синтеза. При этом, как следует из теории, в реакции слияния ядер дейтерия и трития, которую хотят осуществить в термоядерном реакторе, выделяемая на один нуклон энергия должна в 4 раза превышать аналогичную энергию в реакциях деления ядер урана. Проблема термоядерного синтеза до настоящего времени не решена. Энергию, получаемую по формуле Эйнштейна E = mc2, не удаётся получить в действующем устройстве. В качестве основной причины неудач специалисты называют сложность проблемы, не подвергая сомнению ошибочность самой идеи.

Эту проблему следует рассматривать в различных аспектах. С философской точки зрения сама идея получения энергии путём термоядерного синтеза лёгких ядер является сомнительной. Реакции деления и синтеза – противоположно направленные процессы. Отсюда следует, что если реакции деления сопровождаются выделением энергии, то в реакциях синтеза должно происходить поглощение энергии. Это философское умозаключение подтверждает и многолетний опыт неудач экспериментально доказать возможность получения положительного баланса энергии в результате термоядерного синтеза.

Не менее важно и то обстоятельство, что толкование формулы E = mc2 как принципа эквивалентности массы и энергии нарушает фундаментальные законы сохранения материи и энергии. Суть противоречия заключается в следующем. В реакции, которую хотят осуществить в термоядерном реакторе, происходит уменьшение массы продуктов реакции на величину, которая, согласно формуле Эйнштейна, эквивалентна энергии 17.6 Мэв. Но в этой реакции, как и в других ядерных реакциях, количество нуклонов и их массы остаются неизменными. Это означает, что ядерная материя не превращается в энергию, как это формально следует из формулы E = mc2. Тогда единственным источником энергии на выходе термоядерного реактора будет энергия, поступающая на его вход. С учётом неизбежных потерь в устройстве энергия на выходе реактора будет меньше, чем энергия на входе.

Обоснование гипотезы. Поиск решения, устраняющего противоречия, заключается в объяснении причины изменения массы продуктов ядерных реакций, которая не связана с превращением ядерной материи в энергию. Эта причина состоит в том, что в ядерных реакциях происходит превращение одного вида энергии в другой вид энергии при строгом соблюдении законов сохранения материи и энергии. В рассматриваемом случае из поля зрения физиков выпала потенциальная энергия, т.е. энергия поля, образованного взаимодействующими частицами ядра. Энергия поля может быть положительной как энергия сил притяжения (энергия связи) и отрицательной как энергия сил отталкивания. Этой энергии поля эквивалентна масса. Следовательно масса ядра включает в себя массу нуклонов и полевую массу. В ядерных реакциях происходит только изменение энергии поля и эквивалентной ей полевой массы, которое ошибочно принимают за изменение массы ядерной материи, т.е. превращение её в энергию.

Проверка гипотезы. Проверка заключается в количественной оценке изменения полевой массы в ядерных реакциях, которая обусловлена изменением энергии поля, т.е. не связана с превращением ядерной материи в энергию. Рассматривается реакция деления ядра изотопа урана U-235. В этой реакции образуются осколочные ядра, которые разлетаются под действием кулоновского ускорения. При этом высвобождается внутренняя потенциальная энергия ядра, которая переходит в кинетическую энергию разлетающихся осколков. Высвобождаемую потенциальную энергию можно определить теоретически, зная заряды осколков и расстояние между ними. Кинетическая энергия осколков известна по данным измерений. Она составляет ≈ 90% энергии мгновенного излучения, остальная часть энергии приходится на ускорение нейтронов и гамма-излучение. Таким образом, происходит превращение одного вида энергии в другой вид энергии, а именно, превращение внутренней потенциальной энергии ядра во внешнюю кинетическую энергию осколков.

В термоядерном реакторе должен происходить противоположно направленный процесс, а именно, превращение внешней кинетической энергии сталкивающихся ядер дейтерия и трития во внутреннюю потенциальную энергию образующегося ядра гелия. Эта потенциальная энергия является отрицательной как энергия сил отталкивания. Соответственно является отрицательной полевая масса, изменение которой ошибочно принимают за превращения ядерной материи в энергию. Таким образом, положительного баланса между получаемой на выходе реактора и потребляемой энергии в принципе быть не может. Более подробно этот вопрос рассмотрен в главе 5.

Приведенные примеры показывают, что физику нельзя рассматривать как самодостаточную науку, вне её связи с философией, формальной логикой и другими научными дисциплинами. Отдельно следует отметить связь физики с опытом, так как толкование опытных данных может быть неоднозначным и даже ошибочным. Вот что писал по этому поводу Эйнштейн:

«Опыт никогда не скажет теории «да», но в лучшем случае «может быть», большей же частью – просто «нет». Когда опыт говорит теории «да», для неё это означает «может быть»; когда же он противоречит ей – объявляется приговор «нет» [51].

Выделение огромной энергии при делении ядер в реакторах на урановом топливе и при взрыве атомных бомб физики рассматривали как опытное подтверждение формулы Эйнштейна E = mc2, т.е. превращение ядерной материи в энергию. Эта формула является основополагающей в ядерной энергетике, включая концепцию получения энергии путём термоядерного синтеза. Многолетние безуспешные попытки создания термоядерного реактора являются расплатой за слепую веру в теорию Эйнштейна и ошибочное толкование опытных данных, которые, как полагали её приверженцы, подтверждают эту теорию.

1.4. Об использовании опыта выдающихся учёных

«Следовать за мыслью великого человека есть наука самая занимательная».

А. С. Пушкин


В параграфе приводятся сведения о выдающихся учёных, идеи и результаты которых были использованы автором. Большую ценность представляют их размышления и высказывания о методе познания, восприятии новых идей и результатов в научной среде, трудностях продвижения новых идей и научных достижений. В ходе исследований полезно периодически обращаться к философским и методологическим работам и выступлениям классиков науки. Некоторые мысли выдающихся учёных оставляют прочный след в памяти, другие кажутся менее значимыми и забываются. Впоследствии при работе над какой-нибудь проблемой из глубины сознания приходит нужное решение. Кажется, что решение пришло само по себе, независимо от прочитанного ранее. Потом нередко оказывается, что оно созрело в сознании по ассоциации с тем, что прочитал у кого-то из классиков.

Иногда обращение к работам и высказываниям классиков помогает утвердиться в правильности своих выводов. Например, когда я пришёл к выводу о том, что идея получения энергии путём термоядерного синтеза является ошибочной, то был в смятении. Получилось, что я дилетант прав, а Эйнштейн и его последователи не правы. Но мне попалась в руки книга о жизни Николы Теслы, в которой говорится, что Тесла высмеивал убеждение в том, что энергию можно получать из материи, как это следует из толкования соотношения Эйнштейна E = mc2. Но я располагал опытными данными, которые не были известны во времена Теслы. Они показали, что прав был Тесла, а не Эйнштейн. В ядерных реакциях изменяется масса, эквивалентная энергии поля, которую ошибочно принимают за изменение массы ядерной материи.

Ознакомление с оригинальными работами выдающихся учёных прошлого необходимо также потому, что нередко изложение результатов этих работ в специальной литературе, учебных пособиях и популярных изданиях не полностью или недостаточно точно отражает то, что было в первоисточнике. Толкователи работ выдающихся учёных часто излагают их содержание в своём понимании и в своей редакции.


Галилео Галилей (1564 – 16420


Эйнштейн назвал Галилея отцом современной физики и, фактически, отцом современного естествознания вообще. Галилей в 1632 г. открыл закон инерции, который затем был сформулирован Ньютоном как первый закон механики. Он является частным случаем закона сохранения количества движения системы.

Изучая ускорение свободно падающего тела, Галилей усомнился в утверждении Аристотеля, согласно которому скорость свободно падающего тела пропорциональна его весу. Проведя мысленный эксперимент, Галилей пришел к выводу об ошибочности этого утверждения путем следующих рассуждений. Согласно учению Аристотеля более тяжёлое тело должно падать на землю быстрее, чем более лёгкое. Тогда как будут вести себя оба тела, если их соединить? Вместе они образуют более тяжёлое тело и поэтому должны падать ещё быстрее, чем тяжёлое тело. Но лёгкое тело при падении должно замедлять скорость падения тяжёлого тела, и тогда скорость падения связки из двух тел должна быть меньше, чем скорость падения тяжёлого тела. Единственный выход из этого тупика – предположить, что оба тела должны падать на землю с одинаковой скоростью. Галилей проделал опыт. Он взял пушечное ядро и мушкетную пулю и сбросил их с высоты примерно 60 м. Оба тела достигли поверхности одновременно. Теория Аристотеля потерпела поражение. Это классический пример получения нового научного результата путём логических построений.

Логика рассуждений Галилея навела автора на мысль о возможности проведения эксперимента по проверке влияния космического вакуума на движение небесных тел. Согласно физике конденсированных сред, вакуум можно рассматривать как квантовую жидкость, состоящую из двух компонент: невозбуждённой сверхтекучей и возбуждённой, обладающей плотностью. Идея эксперимента состоит в следующем. Нужно два спутника с различным диаметром вывести в одну точку орбиты, т.е. обеспечить им одинаковые начальные условия движения, как и в опыте Галилея. Тогда вследствие различной силы сопротивления вакуума как материальной среды спутники будут взаимно удаляться. Это можно проверить путем точных измерений. Автором была разработана и предложена схема эксперимента [1, 2, 19].


Исаак Ньютон (1642 – 1727)


Механика Ньютона не отождествляет инертную и гравитационную массы, как это сделано в общей теории относительности. Принято считать, что между гравитационными массами могут быть только силы притяжения. Однако закон всемирного тяготения Ньютона не накладывает каких-либо ограничений на знак гравитационной массы, которую можно считать гравитационным зарядом, подобно электрическому заряду в законе Кулона. Эти законы математически тождественны и обладают симметрией относительно сил притяжения и отталкивания в зависимости от знаков зарядов. При этом инертная масса может быть только положительной, как это следует из второго закона механики Ньютона. Согласно этому закону, тело приобретает ускорение в направлении действующей силы, независимо от природы этой силы. Таким образом, законы Ньютона допускают симметрию гравитационных взаимодействий, т.е. не отрицают антигравитацию как возможную физическую реальность.

Третий закон механики Ньютона (действие равно противодействию) вполне определенно объясняет природу сил инерции, возникающих в космическом вакууме при ускоренном движении небесных тел, если вакуум не отождествлять с пустотой. Путаница и неопределенность в понимании сил инерции в настоящее время связана с устаревшими представлениями о физическом вакууме (эфире), в отношении которого нет единого понимания среди специалистов различных областей науки (небесной механики, физики конденсированных сред, квантовой теории поля).

Рационалистическому мышлению Ньютона была совершенно чужда идея воздействия гравитации через абсолютную пустоту. Для Ньютона эфир, заполняющий мировое пространство, был аналогом обычных реальных жидкостей, обладающих текучестью, упругостью и вязкостью, что как раз и приводило к сомнению в существовании эфира: его предполагаемая вязкость несовместима с наблюдаемым регулярным незатухающим движением небесных тел. Несовместимость свойств эфира с представлениями о том, как должна вести себя обычная жидкость, возникла после опытов Майкельсона и оказалась настолько серьезной, что заставила многих физиков усомниться в существовании эфира.

Концепция эфира поначалу была отвергнута Эйнштейном в специальной теории относительности (СТО). В своих ранних работах он неоднократно подчеркивал несовместимость своей теории с концепцией эфира. Однако впоследствии в общей теории относительности (ОТО) Эйнштейн признал существование эфира, так как полевые уравнения новой теории «повисали в пустоте», ранее постулированной автором. Однако при этом СТО не была подвергнута пересмотру с учетом новых представлений об эфире. Путаница и неопределенность в представлении об эфире проявляется в отсутствии единого понимания сущности вакуума представителями различных наук. Вакуум «включают» в теорию, когда он нужен и «выключают», когда он не нужен. В настоящее время точно установлено, что физический вакуум – это не пустота, а материальная среда, которая, согласно физике конденсированных сред, представляет собой квантовую жидкость, состоящую из двух компонент: сверхтекучей и вязкой.

Автором показано, что теория Ньютона применима не только в масштабах космоса¸ но также применима и в масштабах микромира. Принято считать, что в масштабах микромира силы гравитации ничтожно малы, и их можно не учитывать. Однако закон Ньютона не накладывает ограничения на величину силы гравитации, подобно тому, как закон Кулона не накладывает ограничения на силу кулоновского взаимодействия электрических зарядов, если расстояние между ними стремится к нулю. Ограничения на величину силы гравитации может быть наложено только условиями квантования. Следовательно, должен быть гравитационный аналог комптоновской длины волны как наименьшего расстояния в электромагнитных взаимодействиях. Применимость закона Ньютона в масштабах микромира показана автором на примере строения дейтрона как простейшего составного ядра.


Пьер-Симон Лаплас (1749 – 1827)


Лаплас развил методы небесной механики на основе закона всемирного тяготения Ньютона. Он доказал, что этот закон полностью объясняет движение планет. Из теоремы Лапласа об устойчивости Солнечной системы следует, что возмущающие факторы не вызывают вековых изменений параметров орбит, влияющих на их устойчивость. Эти параметры совершают колебания относительно средних значений. Изменения претерпевают параметры орбит, не влияющие на их устойчивость. Это положение было использовано автором при оценке влияния космического вакуума как материальной среды на движение планет, а именно, на смещение долготы перигелиев Меркурия и Марса – двух планет, у которых погрешности наблюдений приемлемы для анализа.

Влияние космического вакуума как среды происходит на фоне более сильных гравитационных возмущений от других планет, и оно может быть причиной векового смещения перигелиев планет. Тогда аномальное смещение перигелия Меркурия и других планет можно объяснить влиянием вакуума в рамках теории Ньютона, если учесть факторы, которые ранее не были известны Эйнштейну и другим исследователям, занимавшимся этой проблемой. Это свойства вакуума как материальной среды и движение Солнца в космическом пространстве. Совокупное влияние этих возмущающих факторов приводит к возникновению космического ветра, который, как показано автором, вызывает вековое изменение долготы перигелиев планет.

Другой полученный Лапласом и использованный автором результат связан с определением скорости распространения гравитации. Нижний предел был установлен Лапласом в 1787 г. Исследовав причины векового ускорения Луны, он сделал вывод о том, что скорость гравитации υg не менее чем в 50 млн. раз превышает скорость света. Следует отметить, что здесь важна не точность полученной Лапласом величины υg, а обоснование того, что скорость гравитации на много порядков превышает скорость света. Если учесть, что весь опыт расчётов положения планет в небесной механике базируется на статической формуле Ньютона, подразумевающей бесконечную скорость гравитации, следует считать оценку Лапласа более верной, нежели постулированное Эйнштейном значение υg, равное скорости света.


Джеймс Клерк Максвелл (1831 – 1879)


Максвелл был убежден в существовании материальной среды, через которую распространяются взаимодействия между телами. Вот, что он писал в своем Трактате об электричестве и магнетизме:

«Во всех теориях естественно встает вопрос: если нечто передается от одной частицы к другой на расстоянии, то каково его состояние после того, как оно покинуло одну частицу, но еще не достигло другой? Если это нечто есть потенциальная энергия двух частиц, как в теории Неймана, то, как мы можем понять существование этой энергии в точке пространства, не совпадающей ни с той, ни с другой частицей? Действительно, как бы энергия не передавалась от одного тела к другому во времени, должна существовать среда, в которой находится энергия, после того, как она покинула одно тело, но еще не достигла другого, ибо энергия, как отмечал Торичелли, есть квинтэссенция такой тонкой природы, что она не может содержаться в каком-либо сосуде, кроме как в самой сокровенной субстанции материальных вещей. Следовательно, все эти теории ведут к понятию среды, в которой имеет место распространение, и если мы примем эту гипотезу, я думаю, она должна занять выдающееся место в наших исследованиях и следует попытаться построить мысленное представление её действия во всех подробностях; это и являлось моей постоянной целью в настоящем трактате» [13, с. 380].

Логика умозаключений Максвелла о существовании материальной среды как переносчика взаимодействий между телами соответствует современным знаниям о физическом вакууме, материальность которого проявляется в вакуумных эффектах квантовой теории поля и существовании квантовых жидкостей, известных в физике конденсированных сред. Эти жидкости по своим свойствам подобны свойствам физического вакуума. Современные представления физики конденсированных сред позволяют объяснить сочетание в физическом вакууме свойств пустого пространства и плотной упругой среды.


Генрих Герц (1857 – 1894)


.Одно из основных достижений учёного – экспериментальное подтверждение электромагнитной теории света Джеймса Максвелла. Герц построил электродинамику движущихся тел. В книге «Принципы механики» (1894) он дал вывод общих теорем механики и её математического аппарата, исходя из единого принципа (принцип Герца).

Особенно следует отметить, что Герц наиболее близко подошел к пониманию природы сил инерции. В своей механике он связывает силы инерции с мировым эфиром, частицам которого приписывает свойства обычной инертной материи [14]. Как и Максвелл, он связывал действие сил на расстоянии с процессами, происходящими в мировом эфире. Впоследствии это положение было отвергнуто академической наукой, так как вошло в противоречие со специальной теорией относительности, несовместимой с концепцией эфира. Однако теория Эйнштейна не внесла ясности в представления о природе сил инерции, а попытки втиснуть релятивистские воззрения в рамки классической механики ещё более запутали этот вопрос.

Важно отметить, что после создания теории относительности появились данные, подтверждающие предвидение Герца о свойствах эфира как материальной среды. К ним относятся различные вакуумные эффекты, в которых эфир (вакуум физический) проявляет себя как материальная среда. Открытие явления сверхтекучести жидкого гелия (Капица, 1938) положило начало новому направлению – физике конденсированных сред. Оказалось, что сверхтекучий жидкий гелий можно рассматривать как аналог физического вакуума. Важным, но ещё не совсем осознанным современной наукой следствием теории Герца, является то, что движение материальных тел в вакууме отличается от движения в пустом пространстве. Это относится, в частности, к небесной механике и современной космологии.

В разработанной автором новой теории вакуума получило подтверждение предвидение Герца о том, что вселенскому эфиру присущи свойства инертной материи и в общем случае движение тел и частиц в вакууме отличается от движения в пустоте. В частности, показано, что круговые формы планетных орбит и лэмбовский сдвиг уровней энергии в атоме водорода это явления одной природы [15, 19, 23].


Нильс Бор (1885 – 1962)


В 1913 г. Нильс Бор предложил свою теорию строения атома водорода. В ней электрон в атоме не подчиняется законам классической физики: согласно теории, электрон вращается вокруг протона по строго стационарным круговым орбитам. Бор ввел понятие квантового соотношения между радиусом орбиты и скоростью электрона. Теория Бора была использована автором и получила дальнейшее развитие при построении модели физического вакуума, состоящего из вакуумных пар «электрон-позитрон» и «протон-антипротон», а также для создания новой теории нейтрона и новой теории дейтрона.

Вакуумные пары в невозбуждённом состоянии представляют собой диполи. Об этом говорит эффект поляризации вакуума. В возбуждённом состоянии компоненты вакуумной пары вращаются относительно общего геометрического центра. Они подобны атому водорода с тем отличием, что в атоме водорода вращается только электрон, а протон остаётся неподвижным. Вакуумные пары поглощают и излучают кванты электромагнитной и гравитационной энергии, исходящие от небесных тел. Определённые теоретически спектры электромагнитных волн в вакууме хорошо согласуются с наблюдаемыми спектрами [15].

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации