Автор книги: Эд Йонг
Жанр: Медицина, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 4 (всего у книги 23 страниц) [доступный отрывок для чтения: 6 страниц]
Однако Дюбо понимал, что это только начало. «Очевидно, что [уже известные бактерии] являются лишь небольшой частью всего местного сообщества микробов, причем не самой важной», – писал он. Все остальные – что-то около 99 % от всех наших микробов – наотрез отказывались расти в лабораторных условиях. Это «некультурное большинство» обескураживало. Несмотря на все исследования со времен Левенгука, микробиологи не знали ровным счетом ничего о существах, которых, по идее, должны изучать. Мощные микроскопы не помогали. Разные методы культивации микробов тоже не помогали. Нужен был другой подход.
В конце 1960-х молодой американец Карл Везе начал работу над проектом весьма узкой направленности. Проект заключался в сборе различных видов бактерий и анализе молекулы 16S рРНК, присутствовавшей в каждой бактерии. Ни один из его коллег не представлял, зачем это нужно, так что конкурентов у Везе не было. «В этом забеге участвовала лишь одна лошадь», как он потом говорил[65]65
Цитата из интервью для The New York Times (Blakeslee, 1996). Чтобы узнать больше о революционных открытиях Везе, см. One Plus One Equals One Джона Арчибальда (Archibald, 2014) и The New Foundations of Evolution Яна Саппа (Sapp, 2009).
[Закрыть]. Забег дорого ему обходился, медленно продвигался и был довольно опасным – для него требовалось немалое количество жидких радиоактивных веществ. Вместе с тем он оказался революционным.
В те времена для установления родственных связей между видами биологи полагались исключительно на физические черты особей. Чтобы понять, кто кому приходился родичем, их сравнивали по размеру, форме и устройству организма. Везе же считал, что молекулы жизни – ДНК, РНК и белки, без которых не обходится ни одно живое существо, – помогут ему лучше справиться с этой задачей. Со временем в этих молекулах накапливаются изменения, так что у близкородственных видов они более похожи, чем у состоящих в дальнем родстве. Везе был убежден, что, сравнив нужную молекулу у достаточного количества разных видов бактерий, он прольет свет на все ветви и стволы древа жизни[66]66
Сама идея принадлежит не Везе. Фрэнсис Крик, один из соавторов открытия двойной спирали ДНК, предложил похожую стратегию в 1958 году, а Лайнус Полинг и Эмиль Цукеркандль предложили использовать молекулы в качестве «свидетельств эволюционной истории» в 1965 году.
[Закрыть].
Он остановился на молекуле 16S рРНК, за которую отвечает одноименный ген. Она составляет часть производящего белки аппарата, имеющегося у всех живых организмов, а Везе как раз это и было нужно. К 1976 году он составил описание 16S рРНК около 30 разных видов микробов. В июне того года он занялся видом, который вскоре изменил его жизнь – а также биологию.
Вид этот ему предоставил Ральф Вулф – к тому времени уже эксперт по малоизученной группе микробов, называемых метаногенами. Для жизни этим крошкам требовались в основном лишь водород и углекислый газ, которые они превращали в метан. Обитали они в болотах, океанах и человеческом кишечнике – Methanobacterium thermoautotrophicum, что прислал Вулф, была найдена в горячих канализационных отходах. Везе, как и все остальные, решил, что это всего лишь очередная бактерия, хоть и со странными привычками. Однако, взглянув на ее 16S рРНК, он удивился – молекула оказалась какой-то небактериальной! Есть разные версии того, насколько полно он осознал свое открытие, как отреагировал на него и запросил ли повторный эксперимент. Однако одно мы знаем точно: к декабрю его научная группа провела секвенирование еще нескольких метаногенов и заметила в каждом из них те же особенности. Вулф делится воспоминаниями о словах Везе: «Эти штуки и бактериями-то не являются».
Результаты исследования Везе опубликовал в 1977 году. В своей статье он назвал метаногенов архебактериями – позже их стали называть археями[67]67
Молодой ученый Джордж Фокс работал вместе с Везе и был соавтором его главного труда (Woese, Fox, 1977).
[Закрыть]. По словам Везе, они были не бактериями со странностями, а представителями совершенно новой формы жизни. Утверждение было действительно шокирующим. Везе в прямом смысле вытащил этих микробов из навозной кучи и поставил на один уровень с вездесущими бактериями и могучими эукариотами! Как будто все вокруг разглядывали карту мира, а Везе, не говоря ни слова, разложил перед ними еще треть карты, прежде скрытую.
Разумеется, без шумной критики не обошлось, причем даже от других ученых-бунтарей. Журнал Science позже окрестил его «покрытым шрамами эволюционером микробиологии», и шрамы эти остались у него до конца жизни, завершившейся в 2012 году[68]68
Morell, 1997.
[Закрыть]. Сегодня его наследие не вызывает сомнений. Он оказался прав: археи действительно не являются бактериями. И что еще более важно, разработанный им подход – сравнение генов для выяснения степени родства между видами – в современной биологии является одним из главных[69]69
Этот подход, известный как молекулярная филогенетика, разбросал по древу жизни множество групп, которые раньше считались родственными из-за внешнего сходства, и объединил существ, которые, несмотря на совершенно разную внешность, оказались родичами. Также благодаря ему было окончательно доказано, что митохондрии – те самые крохотные овальчики, вырабатывающие энергию для клеток, – когда-то были бактериями. У них были собственные гены, явно напоминающие бактериальные. То же относится и к хлоропластам, позволяющим растениям использовать энергию солнца в процессе фотосинтеза.
[Закрыть]. Его методы позволили другим ученым – например, его давнему другу Норману Пейсу – начать исследовать мир микробов по-настоящему.
В 1980-х годах Пейс принялся изучать рРНК архей, населяющих места с чрезвычайно высокой температурой. Особенно ему понравилась Октопус Спрингс, глубокая котловина с голубой водой, температура которой достигала аж 91 градуса по Цельсию. В этом источнике было очень много неизвестных микробов, предпочитающих погорячее, – настолько много, что их скопления образовывали видимые розовые волокна. Пейс вспоминает, как прочел об этом источнике и кинулся в лабораторию с криком: «Эй, ребята, вы только взгляните! Их же там килограммы! Хватайте ведро и поехали за ними». Один из коллег возразил: «Ты ведь даже не знаешь, что это за организм».
И Пейс ответил: «Ничего. Просеквенируем и узнаем».
Он мог бы вполне прокричать: «Эврика!» До Пейса дошло: благодаря методам Везе больше не нужно было выращивать микробов, чтобы их изучать! Да чего уж там, даже видеть их было необязательно. Можно было просто вытащить из среды ДНК и РНК и секвенировать их. Так Пейс мог узнать, что там обитает и где оно находится на микробиологическом древе жизни, – биогеография и эволюционная биология в одной пробирке. «Так мы и отправились с ведерком в Йеллоустон», – рассказывает он. В водах этого «спокойного, прекрасного и смертельного» места команда Пейса нашла два вида бактерий и один вид архей, неизвестных до этого науке. Результаты исследования увидели свет в 1984 году[70]70
Йеллоустонское исследование: Stahl et al., 1985. Пейс применил ту же методику к бактериям в организме глубоководных червей. Результаты были опубликованы на год раньше, однако тогда не было открыто ни одного нового вида.
[Закрыть] – впервые ученым удалось открыть новый организм только по его генам. И тот первый раз был не последним.
В 1991 году Пейс и его ученик Эд Делонг исследовали образцы выуженного в Тихом океане планктона. Сообщество микробов, которое они там нашли, оказалось еще более разнообразным, чем в Йеллоустоне: 15 новых видов бактерий, два из которых явно отличались от всех известных тогда групп. На скудном древе жизни бактерий потихоньку вырастали новые листья, ветви и даже стволы. В 1980-х годах все известные науке бактерии входили в дюжину основных таксономических групп. К 1998 году их уже стало около 40. Пейс во время нашего разговора сказал, что сейчас их примерно сотня, причем около 80 из них так и не культивировали. Спустя месяц Джилл Бэнфилд известила мир об открытии 35 новых таксономических групп – и это лишь в одном месторождении подземных вод в Колорадо[71]71
Тихоокеанское исследование Пейса: Schmidt et al., 1991; недавнее исследование в месторождении подземных вод в Колорадо: Brown et al., 2015.
[Закрыть].
Теперь микробиологи, освобожденные от необходимости выращивать микробов и разглядывать их в микроскоп, имели возможность провести более полную перепись микробного населения планеты. «Наша цель в этом всегда и заключалась, – утверждает Пейс. – Микробная экология, казалось, отжила свой век. Кто-то заглянул под камень, нашел там бактерию и решил, что у остальных все так же. Это же глупо! Мы с первых дней исследований распахнули ворота в настоящий микробный мир. Пусть в моем некрологе так и напишут. Это прекрасное ощущение, таким оно и останется».
Одной лишь 16S рРНК они не ограничивались. Пейс, Делонг и другие скоро научились секвенировать каждый микробный ген в горстке земли или ковшике с водой[72]72
Pace et al., 1986.
[Закрыть]. Нужно было извлечь ДНК из всех находящихся там микробов, покромсать ее на небольшие фрагменты и сразу все секвенировать. «Да мы, черт возьми, могли так любой ген достать!» – хвастается Пейс. С помощью 16S рРНК они могли узнать, кто там был, но еще у них была возможность выяснить, на что местные виды бактерий были способны. Для этого нужно было поискать гены, отвечающие за синтез витаминов, переваривание клетчатки или невосприимчивость к антибиотикам.
Раз уж эта технология должна была стать для микробиологии революционной, нужно было придумать для нее название поинтереснее. Его придумала Джо Хэндельсман в 1998 году – метагеномика, то есть геномика сообществ[73]73
Handelsman, 2007; National Research Council (US) Committee on Metagenomics, 2007.
[Закрыть]. Она как-то сказала, что «появление метагеномики, пожалуй, стало самым важным событием в микробиологии со времен изобретения микроскопа». Наконец-то появился ключ к пониманию того, каких масштабов достигла на Земле жизнь. Хэндельсман и другие начали изучать микробов, обитающих в почве Аляски, на полях Висконсина, в кислотных отходах шахт в Калифорнии, в водах Саргассова моря, в телах глубоководных червей и пищеварительных трактах насекомых. Разумеется, некоторые микробиологи, как и Левенгук в свое время, решили работать в одиночку.
Как и многие другие ученые, в конце концов пересмотревшие свое отношение к микробам, Дэвид Релман изначально собирался их уничтожать и даже стал для этого практикующим врачом, специализирующимся на инфекционных заболеваниях. В конце 1980-х годов он воспользовался методикой Пейса, чтобы выяснить, что за микробы становились причиной загадочных болезней у людей. Поначалу вся его работа казалась тщетной, ведь в каждом образце тканей, где мог потенциально находиться новый патоген, было полно микробов, составляющих нормальную микрофлору. Они лишь сбивали Релмана с толку, пока он не решил, что эти микробы сами по себе могут представлять для него интерес. Почему бы не заняться описанием этих микробов вместо поисков болезнетворного меньшинства?
Для начала Релман отправился к стоматологу и попросил его соскоблить немного налета с десны, а затем поместить образец в стерильную пробирку – так у микробиологов появилась традиция секвенировать собственный микробиом. Этот образец он отнес в свою лабораторию и расшифровал содержащуюся в нем ДНК, зная, что это вряд ли к чему-то приведет. Рот на предмет микробов к тому времени исследовали вдоль и поперек. Микробов полости рта разглядывал Левенгук и изучал Розбери. Микробиологам удалось вырастить почти 500 штаммов бактерий из различных уголков рта. Если и была часть тела, на которой было открыто все, что можно, то только рот. Тем не менее Релман выявил целый ряд новых бактерий на своих деснах – намного больше, чем он смог бы вырастить из тех же образцов[74]74
Kroes et al., 1999.
[Закрыть]. Даже в самой тщательно исследованной среде в теле человека новые виды в огромном количестве сидели и ждали, пока их кто-нибудь откроет. В 2005 году Релман обнаружил то же самое в кишечнике. Он взял пробы с различных участков кишечника у трех добровольцев и обнаружил почти 400 видов бактерий и один вид архей, причем 80 % из них прежде не были известны науке[75]75
Eckburg, 2005.
[Закрыть]. Другими словами, догадки Дюбо оказались верны – все исследования человеческой микрофлоры в его время были только началом.
В начале 2000-х прогресс начал набирать обороты – исследователи провели секвенирование генов в образцах со всего тела человека. Джефф Гордон, микробиолог-новатор, с которым мы познакомимся позже, доказал, что микробы отвечают за накопление жира и создание новых кровеносных сосудов, а также что у людей, страдающих ожирением, микробы в кишечнике не такие, как у стройных[76]76
Важные ранние исследования, проведенные в лаборатории Гордона: Bäckhed et al., 2004; Stappenbeck et al., 2002; Turnbaugh et al., 2006.
[Закрыть]. Да и сам Релман назвал микрофлору «крайне важным органом». Эти первопроходцы привлекли как соратников из всех остальных областей биологии, так и внимание газет и журналов, а еще финансирование для крупных международных проектов, исчисляющееся миллионами долларов[77]77
В декабре 2007 года Национальные институты здравоохранения США запустили пятилетний проект «Микробиом человека», цель которого – описать микробиом ноздрей, ротовой полости, кожи, кишечника и гениталий 242 физически здоровых добровольцев. В проекте, подкрепленном 115 миллионами долларов из государственного бюджета, было занято около двух сотен ученых. В результате появился «самый подробный список живых организмов и генов нашего микробиома на настоящий момент». Год спустя подобный проект под названием MetaHIT был запущен в Европе. Его главной целью стало исследование кишечного микробиома, а финансирование составило 22 миллиона евро. Похожие проекты появились в Китае, Японии, Австралии и Сингапуре. Эти проекты описаны у Mullard, 2008.
[Закрыть]. На протяжении столетий микробиом человека таился на задворках биологии, а отстаивать его необходимость пытались лишь бунтари и мятежники. Теперь же он стал частью истеблишмента. История микробиома – это рассказ о том, как представления о науке и организме перемещаются с периферии в центр внимания.
У входа в Королевский зоопарк «Артис» в Амстердаме стоит двухэтажное здание, на стене которого изображена огромная шагающая фигура человека. Человек этот составлен из маленьких пушистых шариков – оранжевых, бежевых, желтых и голубых – и символизирует микробиом человека. Он словно машет прохожим, приглашая их в «Микропию» – первый музей в мире, полностью посвященный микробам[78]78
О своем путешествии по «Микропии» я рассказал в журнале New Yorker (Yong, 2015а).
[Закрыть].
Этот музей открылся в сентябре 2014 года после двадцати лет разработок. Его стоимость – 10 миллионов евро. Логично, что его открыли именно в Нидерландах: всего в 65 километрах от этого места стоит город Делфт, где Левенгук впервые представил миру невидимое царство бактерий. Первое, что я вижу, проходя через турникет в «Микропии», – точная копия одного из его прекрасных микроскопов. Этот скромный и незамысловатый микроскоп помещен в стеклянную банку, а вокруг него разложены образцы того, что в свое время, должно быть, рассматривал Левенгук, – в том числе перцовые настойки, ряска из пруда неподалеку и зубной налет.
Оттуда я вместе с приятелем и небольшой семьей захожу в лифт. Поднимая взгляд вверх, мы видим на потолке экран с видеотрансляцией, а на нем – себя. Лифт поднимается, и видео постепенно увеличивает наши лица, все сильнее и сильнее, вот уже видны ресничные клещи, клетки кожи, бактерии и, наконец, вирусы. На втором этаже двери лифта открываются, и мы видим знак, состоящий из мелких огоньков, мерцающих, словно живые. «Если приглядитесь как следует, вам откроется новый мир – куда более прекрасный и удивительный, чем вы можете себе представить, – написано на знаке. – Добро пожаловать в «Микропию».
Мы тут же получаем возможность взглянуть на этот новый мир своими глазами через ряд микроскопов, наведенных на личинки комаров, водяных блох, круглых червей, слизевиков и прудовых бактерий. Бактерии увеличены в 200 раз, и я с удивлением размышляю: ведь самодельный микроскоп Левенгука на первом этаже мог так же! Сам Левенгук, наверное, тоже видел эти чудеса, хоть и без особых удобств. Ему приходилось щуриться в крошечную линзу, а я могу просто прижаться глазом к специальному окуляру с подушечкой для комфорта и смотреть на четкий цифровой дисплей.
За микроскопами находится экран, демонстрирующий биогеографию человеческого микробиома в натуральную величину. Посетители встают перед камерой, та сканирует их туловище и выдает изображение всех микробов на нем – получается этакий микробный аватар. Его кожа подсвечена белыми точками, внутренние органы обозначены яркими цветами. Аватар повторяет движения посетителя: машет рукой, пританцовывает вместе с ним. Двигая руками, посетитель указывает на разные органы и открывает данные о микробах на коже, в желудке, кишечнике, в волосах, во рту, в носу и много где еще. Там можно узнать, кто где живет и чем занимается. В этой инсталляции представлены десятки лет исследований и открытий – от Кендалла до Розбери, от Розбери до Релмана. Собственно говоря, весь музей – это дань уважения истории. Тут можно найти ряд лишайников – это симбиотические ассоциации грибов и зеленых водорослей, благодаря которым ученые в XIX веке впервые осознали важность симбиоза. Тут можно полюбоваться на молочнокислых бактерий, столь обожаемых Мечниковым, – это увеличенные в 630 раз крошечные сферы, которые весьма изящно шевелятся.
Я поражен тем, насколько беззастенчиво и правдиво до зрителей доносится вся эта информация и как быстро и легко они признают существование мира микробов. Никто не шарахается, не хмурится, не морщит нос. На красной платформе в форме сердца парочка целуется перед устройством под названием Kiss-o-Meter («Поцелуеметр»), которое подсчитывает, сколькими бактериями эти двое обменялись. Девушка с интересом разглядывает образцы фекалий горилл и капибар, рыжих панд и валлаби, львов и муравьедов, слонов и ленивцев, хохлатых павианов и многих других – их собрали в зоопарке по соседству, запечатали в герметичные банки и накрыли оргстеклом. Группа подростков не сводит глаз с чашек Петри с подсветкой, где в агаровой среде растут плесневые грибы и бактерии, некоторые из которых были собраны на предметах повседневного пользования. Если приглядеться, можно различить отпечатки ключей, мобильных телефонов, компьютерных мышек, пультов от телевизора, зубных щеток, дверных ручек и даже прямоугольный контур банкноты. Подростки удивленно глазеют на оранжевые точки клебсиеллы, голубые коврики энтерококка и серые кляксы стафилококка, напоминающие штрихи карандашом.
Семья, с которой я ехал в лифте, любуется красивым изображением древа жизни Карла Везе, которое занимает всю стену. Здесь животные и растения сместились в небольшой кружок в углу, а на стволе и ветвях вовсю доминируют бактерии и археи. Отец семейства, скорее всего, родился еще до того, как о существовании архей вообще стало известно, а сегодня его дети узнают о них, находясь в одной из главных достопримечательностей Амстердама.
В «Микропии» представлены три с половиной века, во время которых мы узнавали о микробах все больше, а отношение к ним постоянно менялось. Здесь они не какие-нибудь второстепенные персонажи и не жестокие злодеи. Здесь они захватывающие, прекрасные, стоящие нашего внимания. Здесь они – настоящие звезды. Джордж Элиот в романе «Миддлмарч» писала: «Большинству из нас великие первооткрыватели становятся известны лишь тогда, когда они, засияв новыми звездами, уже правят нашими судьбами». Она могла бы так сказать не только об ученых, открывших для нас мир микробов, но и о самих микробах.
Глава 3
Телостроители
«То, что нам нужно, размером где-то с мячик для гольфа», – объясняет Нелл Бекиэрес[79]79
Эта сцена также встречается в моем описании Макфолл-Най для Nature (Yong, 2015b).
[Закрыть].
Я стою в лаборатории Висконсинского университета в Мадисоне, уставившись на небольшой аквариум. По-моему, он пустой – ничего размером с мячик для гольфа я точно не вижу. Собственно говоря, я там вообще ничего не вижу, только песок на дне. Бекиэрес опускает руку в воду – и тут из песка вдруг что-то вырывается и выпускает густое облако чернил. Это самка гавайского моллюска Euprymna scolopes, размером с мой большой палец. Бекиэрес зачерпывает воду с ней в миску, и она продолжает стрелять во все стороны чернилами, побледнев от возбуждения, растопырив щупальца и неистово махая плавниками. Вскоре она успокаивается, подбирает под себя щупальца и, замерев на месте, меняет форму – теперь она напоминает не дротик, а большую мармеладную горошину. Кожа тоже меняется: крохотные цветные пятнышки моментально расширяются и превращаются в темно-коричневые, красные и желтые круги в переливающуюся крапинку. Она больше не белая – ее окраска больше напоминает осенний пейзаж, написанный Жорж-Пьером Сера.
«Когда они коричневые, как сейчас, они довольны, – улыбается Бекиэрес. – Коричневый – это хорошо. Самцы обычно злее – все чернила выстреляют, пока успокоятся. Бывает, пульнут тебе на лицо или на грудь водой – а ты потом верь, что они не специально».
Я впечатлен. Из этой самки прямо-таки сочится индивидуальность. И выглядит она просто прекрасно.
Других животных в миске нет, но моллюск не одинок. Под мантией у него расположены две камеры – органы свечения, а в них – уйма люминесцентных бактерий Vibrio fischeri, подсвечивающих его тело снизу. При флуоресцентном лабораторном освещении их свет кажется слабым, но на отмели среди рифов вокруг Гавайских островов его видно куда лучше. Считается, что свечение этих бактерий по ночам походит на падающий сверху лунный свет и скрывает силуэт моллюска от глаз хищников. Тени E. scolopes не отбрасывает.
Снизу этих моллюсков, может, и не видно, зато сверху заметить их очень легко. Нужно всего-то прилететь на Гавайи, дождаться ночи и отправиться на мелководье, вооружившись налобным фонариком и сетью. Если у вас хорошая реакция, с полдюжины за ночь вы точно поймаете. Они, кстати, прекрасно питаются и размножаются в неволе и не требуют особого ухода. «Если уж посреди Висконсина они выжили, значит, выживут где угодно», – заверяет зоолог Маргарет Макфолл-Най, заведующая этой лабораторией. Элегантная, спокойная и уравновешенная, Макфолл-Най вот уже почти тридцать лет изучает гавайских эупримн и их люминесцентных бактерий. Она превратила их в символ симбиоза, а сама в процессе стала символом идеального микробиолога. Коллеги описывают ее по-разному – как смелую бунтарку, увлеченную скейтбордистку и неутомимую защитницу микробов, причем ставшую ей еще до того, как слово «микробиом» вошло в моду. «Когда Маргарет говорит о «новой биологии», кажется, будто она капс не выключила», – поделился со мной один биолог. И она не всегда была такой – ее изменил моллюск[80]80
Исследование гавайской эупримны: McFall-Ngai, 2014. О роли цилий в привлечении V. fischeri: Nawroth et al., 2017. Об изменениях в организме эупримны, происходящих с появлением V. fischeri: Kremer et al., 2013. О процессах, начинающихся после того, как V. fischeri достигнет лакун: McFall-Ngai, Ruby, 1991. Макфолл-Най впервые заявила, что V. fischeri влияет на развитие организма гавайской эупримны, в 1994 году: Montgomery, McFall-Ngai, 1994. Микроб-ассоциированные молекулярные паттерны были описаны Таней Коропатник и другими в 2004 году: Koropatnick et al., 2004.
[Закрыть].
В аспирантуре Макфолл-Най изучала рыб, в организме которых тоже обитали светящиеся бактерии. Она была от них в восторге, но при этом в смятении. Выяснилось, что в лаборатории эти рыбы не размножаются, так что все особи, с которыми она работала, были уже заселены бактериями. Из-за этого Маргарет не могла ответить ни на один из интересующих ее вопросов. Что происходит, когда рыба и бактерия встречаются впервые? Как они устанавливают друг с другом связь? Почему организм-хозяин не заселяют другие микробы? А потом коллега спросил у нее: «Слушай, ты вот об этом моллюске слыхала?»
Гавайская эупримна была уже давно известна эмбриологам, а микробиологи знали о ее светящихся бактериях, но вот их парт-нерство никто никогда не исследовал – а Макфолл-Най именно оно и интересовало. Чтобы ее изучить, Маргарет тоже понадобился партнер, достаточно хорошо разбирающийся в бактериях, чтобы дополнить ее знания и опыт в зоологии. Им стал Нед Руби. «Кажется, я был третьим микробиологом, к которому она обратилась за помощью, и первым, кто согласился», – говорит он. Маргарет и Нед образовали профессиональный союз, который вскоре перерос в романтический. Невозмутимый «инь» серфера Руби идеально дополнил пылкий «ян» деятельной Макфолл-Най. У них, как выразился один из их друзей, «настоящий симбиоз». Сейчас они руководители лабораторий по соседству друг от друга и гордые хозяева головоногих питомцев.
Здесь животные обитают в аквариумах, выставленных в ряд в узком коридоре. Места хватает ровно на 24 особи. Как только приезжает новая партия, Бекиэрес, менеджер лаборатории, выбирает букву, и студенты по ней подбирают животным имена. Самку, с которой мы познакомились выше, зовут Йоши. В соседних аквариумах живут Йаху, Изольда, Йардли, Ира, Ив, Иосиф, Йокель и мистер Йук[81]81
В оригинале: Yoshi, Yahoo, Ysolde, Yardley, Yara, Yves, Yusuf, Yokel, and Yuk (Mr). – Прим. ред.
[Закрыть]. У самок каждые две недели свидания с самцами. После спаривания их рассаживают по аквариумам с трубами из ПВХ, в которые они откладывают сотни яиц. Через несколько недель из них вылупляются малыши-моллюски. Сейчас на полке у аквариумов стоит пластмассовая чаша, а в ней шевелятся несколько десятков этих малышей, каждый длиной всего несколько миллиметров. Десять самок гавайской эупримны способны произвести на свет до 60 000 детенышей в год – вот первая причина, по которой они отлично подходят для разведения в лаборатории. Вторая заключается в том, что свежевылупившиеся моллюски стерильны. В природных условиях V. fischeri населят их за пару часов, а в лаборатории Макфолл-Най и Руби имеют возможность этот процесс контролировать. Пометив клетки V. fischeri светящимися белками, они могут следить за тем, как бактерии добираются до светящихся органов моллюска. У них есть возможность увидеть, как начинается партнерство.
А начинается оно с физики. Снаружи органы свечения покрыты слизью и пульсирующими ресничками – их еще называют «цилии». Реснички создают завихряющийся поток, в который попадают частицы размером с бактерию, но не крупнее. Микробы, в том числе V. fischeri, вязнут в слизи. Теперь физика сменяется химией. Если одна клетка V. fischeri коснется моллюска, ничего не произойдет. Две клетки – все еще ничего. А вот если в контакт с моллюском вступят пять клеток, они включат целый ряд его генов. Одни из них производят смесь антибактериальных веществ, которые никак не вредят V. fischeri, зато создают враждебную среду для остальных микробов. Другие выделяют ферменты, расщепляющие слизь моллюска, производя тем самым вещество, которое привлекает еще больше V. fischeri. Таким образом, V. fischeri вскоре начинает доминировать в слизистом слое, хотя поначалу другие бактерии численно превосходили ее в тысячу раз. Она и только она способна превращать наружные ткани моллюска в пейзаж, привлекающий сородичей и отталкивающий соперников. Она напоминает главных героев научно-фантастических рассказов, терраформирующих суровые планеты, превращая их в комфортные дома, – только она «терраформирует» животных.
Изменив моллюска снаружи, V. fischeri начинает продвигаться внутрь. Она проскальзывает в одну из нескольких пор, спускается по длинному каналу, протискивается сквозь узкий проход и, наконец, оказывается перед несколькими лакунами, которые заканчиваются тупиками. Прибытие бактерии изменяет моллюска еще сильнее. Лакуны устланы клетками, похожими на колонны, – они увеличиваются в размерах и заключают прибывающих микробов в крепкие объятия. Пока бактерии устраиваются на новом месте, дверь за ними захлопывается. Вход в лакуну сужается. Каналы сокращаются. Реснички вянут. Светящийся орган достигает зрелости. В него заселились нужные бактерии (весь этот путь проделывают только V. fischeri) – и больше в него не сможет заселиться никто.
И, собственно, что? Вряд ли кому-то нужно знать столько интимных деталей жизни какого-то малоизвестного животного. Однако все эти детали подчеркивают один немаловажный факт, на который Макфолл-Най сразу обратила внимание. В 1994 году, завершив первый этап изучения эупримн, она написала: «Результатом этих исследований стали первые экспериментальные данные, показывающие, что определенный бактериальный симбионт может играть в развитии животного ведущую роль».
Другими словами, микробы формируют организмы животных.
Как? В 2004 году научная группа Макфолл-Най выяснила, что в основе трансформирующих способностей V. fischeri лежат две молекулы с ее наружной оболочки – пептидогликан и липополисахарид. Это было неожиданно. Эти молекулы тогда были известны лишь в контексте патологий. Их относили к патоген-ассоциированным молекулярным паттернам (PAMP) – это характерные вещества, оповещающие иммунную систему животного об инфекции. Но ведь V. fischeri – не патоген. Она состоит в родстве с бактерией, вызывающей холеру у людей, но моллюску она не вредит никак. Так что Макфолл-Най заменила в аббревиатуре патогенное «П» на более общее микробное «М» и назвала эти молекулы MAMP – микроб-ассоциированные молекулярные паттерны. Новый термин символичен для науки о микробиоме в целом. Он говорит миру, что эти молекулы – не только признак заболевания. Да, они могут спровоцировать тяжело протекающий воспалительный процесс, но они же могут положить начало восхитительной дружбе животного и бактерии. Без них орган свечения не сможет развиться полностью. Без них моллюск выживет, но так никогда и не достигнет полной зрелости.
Сейчас нам известно, что многие животные, от рыб до мышей, растут под влиянием партнеров-бактерий, причем часто под эгидой тех же MAMP, что формируют светящиеся органы моллюска[82]82
Карен Гиллемин доказала, что кишечник данио-рерио может достичь зрелого состояния лишь в том случае, когда в нем есть микробы, на оболочке которых имеются липополисахариды (Bates et al., 2006). А Джерард Эберл выяснил, что пептидогликаны оказывают похожий эффект на кишечник мыши (Bouskra et al., 2008). Влияние микробов на развитие организма животного обсуждают Cheesman, Guillemin, 2007; Fraune, Bosch, 2010.
[Закрыть]. Благодаря этим открытиям мы можем взглянуть на развитие – процесс превращения животного из одной клетки во взрослую, приспособленную к жизни особь – в новом свете.
Если осторожно отделить оплодотворенную яйцеклетку – человека, моллюска, да кого угодно – и рассмотреть ее под микроскопом, можно увидеть, как она разделяется на две части, затем четыре, затем восемь. Клеточный шарик растет, деформируется, искажается. Клетки обмениваются молекулярными сигналами, указывающими, какие ткани и органы нужно создавать. Начинают формироваться части тела. Зародыш растет и будет расти, пока ему хватает питательных веществ. Весь процесс кажется автономным – словно очень мощная компьютерная программа выполняется сама собой. Однако гавайская эупримна и другие животные говорят, что развитие – это нечто большее. Оно продвигается по инструкциям генов животного, но также и микробных генов. Оно является результатом непрерывных переговоров между несколькими видами, лишь один из которых в их процессе развивается. Это развертывание целой экосистемы.
Чтобы понять, нуждается ли животное в микробах для нормального развития, проще всего их у него забрать. Одни попросту погибают: комар Aedes aegypti, переносчик лихорадки денге, доживает до стадии личинки, но дальше не развивается[83]83
Coon et al., 2014.
[Закрыть]. Другие легче переносят стерильность. Гавайская эупримна, например, просто перестает светиться по ночам – в лаборатории Макфолл-Най ей, может, и без разницы, а вот в естественных условиях без маскировки она станет легкой добычей. Ученые вырастили стерильные версии почти всех стандартных лабораторных животных, включая рыбок, мушек и мышек. Животные эти выживают, но все-таки они другие. «Стерильное животное – несчастное создание, ведь ему, по всей видимости, постоянно требуется искусственный заменитель микробов, которых у него нет, – писал Теодор Розбери. – Он – что ребенок, которого держат за стеклом, защищая от всех трудностей внешнего мира»[84]84
Rosebury, 1969, с. 66.
[Закрыть].
Лучше всего странности биологии стерильных животных заметны в кишечнике. Правильно функционирующему кишечнику для всасывания питательных веществ требуется большая площадь поверхности, поэтому его стенки покрыты множеством длинных ворсинок, по форме напоминающих палец. Ему нужно непрерывно регенерировать клетки стенок, так как проходящий по нему поток еды отшелушивает и уносит их вместе с собой. Ему необходима обширная сеть прилежащих кровеносных сосудов, чтобы переносить питательные вещества по организму. Еще он должен быть недоступным для чужеродных молекул и микробов – его клетки должны плотно прилегать друг к другу, чтобы в вышеупомянутые сосуды не попало ничего лишнего. Без микробов каждая из этих важнейших характеристик оказывается под угрозой. Если рыбки данио-рерио или мыши будут расти без бактерий, их кишечники не смогут как следует развиться, ворсинки в них окажутся более короткими, а стенки – менее прочными. Сеть кровеносных сосудов будет скорее напоминать редкие тропинки на окраине, чем оживленные городские улицы, а регенерационный цикл перейдет на пониженную передачу. Большинство из этих дефектов можно исправить, просто предоставив животным необходимых микробов или даже отдельные микробные молекулы[85]85
Fraune, Bosch, 2010; Sommer, Bäckhed, 2013; Stappenbeck et al., 2002.
[Закрыть].
Сами по себе бактерии облик кишечника непосредственно не меняют. Напротив, они работают через хозяев. Они не рабочая сила, а скорее руководство. Лора Хупер продемонстрировала это, введя стерильным мышам обычную кишечную бактерию Bacteroides thetaiotaomicron – для друзей просто B-theta[86]86
Hooper, 2001.
[Закрыть]. Она выяснила, что микробы активировали множество мышиных генов, отвечающих за всасывание питательных веществ, создание неприступного барьера, расщепление токсинов, формирование кровеносных сосудов и созревание клеток. Другими словами, микробы объяснили мышам, как наладить работу кишечника с помощью своих же генов[87]87
Исследования Хупер вдохновили Джона Ролза провести похожую серию экспериментов на данио-рерио. Многие активируемые микробами гены из найденных им оказались такими же (Rawls et al., 2004).
[Закрыть]. Биолог Скотт Гилберт называет этот процесс совместным развитием. Вот какой путь проделала наука. Когда-то считалось (да и сейчас эта живучая идея не сдает позиций), что микробы – это лишь угроза, а оказывается, они помогают нам стать теми, кто мы есть[88]88
Gilbert et al., 2012.
[Закрыть].
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?