Электронная библиотека » Габриэль Билич » » онлайн чтение - страница 4


  • Текст добавлен: 11 сентября 2014, 16:43


Автор книги: Габриэль Билич


Жанр: Биология, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 29 страниц) [доступный отрывок для чтения: 10 страниц]

Шрифт:
- 100% +
Хрящевая ткань

К опорным соединительным тканям относятся хрящевая и костная ткани. Хрящевая ткань, содержащая 70–80 % воды, 10–15 % органических и 4–7 % неорганических веществ, состоит из хрящевых клеток (хондробластов и хондроцитов) и хрящевого матрикса (межклеточного вещества), находящегося в состоянии геля, в котором имеются соединительнотканные волокна. Хондробласты – малые клетки – способные делиться, синтезирующие компоненты матрикса, хондроциты, зрелые клетки, которые не делятся, но активно вырабатывают компоненты матрикса. Различают три типа хрящевой ткани. Гиалиновый хрящ, в матриксе которого располагаются коллагеновые волокна. Из него построены суставные, реберные, эпифазарные хрящи и ряд хрящей гортани. Волокнистый хрящ, в матриксе которого содержится большое количество коллагеновых волокон, придающих хрящу повышенную прочность (из волокнистого хряща построены фиброзные кольца межпозвоночных дисков, суставные диски и мениски, этим хрящом покрыты суставные поверхности в височно-нижнечелюстном и грудино-ключичном суставах). Эластический хрящ, в матриксе которого имеются многочисленные сложно переплетающиеся между собой эластические волокна. Он желтоватого цвета, отличается упругостью. Из эластического хряща построены клиновидные и рожковидные хрящи гортани, голосовые отростки черпаловидных хрящей, надгортанник, хрящ ушной раковины, хрящевая часть слуховой трубы и наружного слухового прохода. В отличие от гиалинового эластический хрящ не окостеневает. Хрящи лишены кровеносных сосудов, их питание осуществляется за счет диффузии из окружающих тканей. Хрящ как орган построен из хрящевой ткани, покрытой надхрящницей (рис. 32).

Костная ткань, отличающаяся особыми механическими свойствами, состоит из костных клеток, замурованных в костный матрикс, содержащий коллагеновые волокна и пропитанный неорганическими соединениями. Количество воды в кости достигает 50 %. В сухом остатке костной ткани содержится около 33 % органических веществ и 67 % неорганических соединений. Различают костные клетки двух типов: остеобласты и остеоциты. Остеобласты – это многоугольные, кубические, отростчатые молодые клетки, богатые элементами зернистой эндоплазматической сети, рибосомами, хорошо развитым комплексом Гольджи. Их многочисленные отростки контактируют между собой и с отростками остеоцитов. Остеобласты синтезируют органические компоненты межклеточного матрикса и выделяют их из клетки через всю поверхность в различных направлениях, что и приводит к образованию пещер (лакун), в которых они залегают, превращаясь в остеоциты. Органический матрикс кости импрегнируется кристаллами гидроксиапатита Са10(РО4)6(ОН)2 и аморфным фосфатом кальция Са3(РО4)2, которые поступают в костную ткань из крови через тканевую жидкость. Кристаллы гидроксиапатита окутывают коллагеновые фибриллы и аморфное вещество, а также расположены внутри фибрилл.


Рис. 32. Хрящевая ткань (по Алмазову, Сутулову)

I – зона зрелого хряща; II – зона молодого хряща; III – надхрящница; 1 – базофильный интерриториальный хрящевой матрикс; 2 – базофильный территориальный хрящевой матрикс; 3 – хрящевая лакуна; 4 – изогенная группа хондроцитов; 5 – хрящевой матрикс; 6 – уплощенные одиночные хондроциты; 7 – хондрогенный слой; 8 – волокнистый слой; 9 – хондрогенные клетки; 10 – хондробласты; IV – зона зрелого хряща; V – зона молодого хряща; VI – надхрящница; 11 – эластические волокна; 12 – уплощенные одиночные хондроциты; 13 – хондрогенный слой; 14 – волокнистый слой; 15 – хондрогенные клетки; 16 – хондробласты; 17 – изогенная группа хондроцитов; 18 – пучки коллагеновых волокон; 19 – фиброциты; 20 – основное вещество; 21 – уплощенные одиночные хондроциты; 22 – хрящевой матрикс; 23 – изогенная группа хондроцитов


Остеоциты – зрелые, многоотростчатые веретенообразные клетки с крупным округлым ядром и малым количеством органелл. Остеоциты располагаются между костными пластинками в лакунах, однако тела клеток не соприкасаются непосредственно с кальцинированным матриксом, будучи окаймленными тонким слоем (1–2 мкм) неминерализованной ткани. Очень длинные (до 50 мкм) отростки остеоцитов проходят в канальцах, причем они отделены от кальцифицированного матрикса пространством шириной около 0,1 мкм, в котором циркулирует тканевая жидкость, осуществляющая питание клеток. Расстояние между каждым остеоцитом и ближайшим капилляром не превышает 0,1–0,2 мм.

В костной ткани имеется еще одна категория клеток – остеокласты, которые не являются костными, а имеют моноцитарное происхождение и относятся к системе макрофагов. Остеокласты – это крупные многоядерные (5–100 ядер) клетки размерами до 190 мкм, которые разрушают кость и хрящ.

Различают два типа костной ткани ретикулофиброзную (грубоволокнистую) и пластинчатую. Первая имеется у зародыша человека; у взрослого она располагается в зонах прикрепления сухожилий к костям, в швах черепа после их зарастания.

Пластинчатая кость наиболее распространена в организме. Она образована костными пластинками толщиной от 4 до 15 мкм, которые состоят из остеоцитов и тонковолокнистого костного матрикса. Волокна, образующие пластинки, лежат параллельно друг другу и ориентированы в определенном направлении. При этом волокна соседних пластинок разнонаправлены и перекрещиваются почти под прямым углом, что обеспечивает большую прочность кости. В зависимости от расположения костных пластинок различают плотное (компактное) и губчатое костное вещество (трабекулярная кость) (рис. 33). В компактном веществе костные пластинки располагаются в определенном порядке, образуя сложные системы – остеоны. Остеон – структурная единица кости. Он состоит из 5–20 цилиндрических пластинок, вставленных одна в другую (рис. 34). В центре каждого остеона расположен центральный канал (Гаверсов), в котором проходят кровеносные сосуды. Диаметр остеона – 0,3–0,4 мм. Каналы остеонов сообщаются между собой с помощью коротких поперечных каналов.

Между остеонами залегают интерстициальные (вставочные, промежуточные) пластинки, кнаружи от них находятся наружные окружающие (генеральные) пластинки, кнутри внутренние окружающие (генеральные) пластинки. На границе с костномозговой полостью имеется небольшое количество губчатого костного вещества. Губчатое костное вещество состоит из костных пластинок и перекладин (трабекул), перекрещивающихся между собой и образующих множество ячеек. Направление перекладин совпадает с кривыми сжатия и растяжения, образуя конструкции сводчатых арок. Такое расположение костных трабекул под углом друг к другу обеспечивает равномерную передачу давления или тяги мышц на кость.


Рис. 33. Строение трубчатой кости (по В. Баргману)

1 – надкостница; 2 – компактное вещество кости; 3 – слой наружных окружающих пластинок; 4 – остеоны; 5 – слой внутренних окружающих пластинок; 6 – костномозговая полость; 7 – костные перекладины губчатой кости


Мышечная ткань

Мышечная ткань осуществляет функцию движения, она способна сокращаться. Существуют две разновидности мышечной ткани: неисчерченная (гладкая) и исчерченная (скелетная и сердечная) поперечнополосатая.

Гладкая мышечная ткань состоит из веретенообразных клеток гладких миоцитов длиной до 500 мкм и толщиной 5–8 мкм, которые располагаются в стенках кровеносных и лимфатических сосудов, внутренних органов. Гладкая мышечная ткань расположена в стенках внутренних органов, протоков желез, кровеносных и лимфатических сосудов и других органов. Гладкие миоциты сокращаются под влиянием импульсов, поступающих из вегетативной нервной системы, помимо усилий воли человека.


Рис. 34. Строение остеона

1 – центральный канал (канал остеона); 2 – пластинки остеона; 3 – костная клетка (остеоцит)


Поперечнополосатая (скелетная) мышечная ткань образована цилиндрическими мышечными волокнами длиной от 1 до 40 мм и толщиной до 0,1 мкм, каждое из которых представляет собой комплекс, состоящий из миосимпласта и миосателлитоцитов, покрытых общей базальной мембраной. Под плазмолеммой миосимпласта располагается множество эллипсоидных ядер. Примерно две трети сухой массы миосимпласта приходится на цилиндрические миофибриллы, проходящие через цитоплазму (саркоплазму).

Между миофибриллами залегают многочисленные митохондрии. Миофибриллы отличаются поперечной исчерченностью (рис. 35): темные полосы (диск А) чередуются со светлыми (диск I). Диск А разделен светлой зоной (полоса Н), диск I темной линией Z (телофрагма). Волокна содержат сократительные элементы миофиламенты, среди которых различают толстые (миозиновые), занимающие диск А, и тонкие (актиновые), лежащие в диске I и прикрепляющиеся к телофрагмам, причем концы их проникают в диск А между толстыми филаментами. Участок миофибриллы, расположенный между двумя телофрагмами, представляет собой саркомер – сократительную единицу. На границе между дисками A и I сарколемма впячивается, образуя T-трубочки, которые разветвляются внутри волокна. В поперечнополосатых мышечных волокнах хорошо развита незернистая цитоплазматическая сеть саркоплазматическая сеть, которая окутывает саркомеры; сети, окружающие саркомеры, сообщаются между собой. Каналы этой сети образуют на границах саркомеров расширенные конечные цистерны, которые, располагаясь параллельно Т-трубочкам, соприкасаются с ними.


Рис. 35. Строение двух миофибрилл поперечнополосатого мышечного волокна, схема (по В. Г. Елисееву и др.)

1 – саркомер; 2 – полоска А (диск А) 3 – полоска H; 4 – линия М (мезофрагма) в середине диска А; 5 – полоска I (диск I); 6 – линия (телофрагма) в середине диска I; 7 – митохондрия; 8 – конечная цистерна; 9 – саркоплазматический ретикулум; 10 – поперечные трубочки


Каждое мышечное волокно иннервируется аксоном или его ветвью. Двигательный аксон несет импульс к сокращению мышцы, при этом он контактирует с сарколеммой, образуя синапсоподобное нервно-мышечное окончание. Нервный импульс передается по Т-трубочкам, а с них – на конечные цистерны саркоплазматической сети, вызывая изменение проницаемости последних, что ведет к выходу ионов кальция в цитоплазму. Это приводит к взаимодействию актина с миозином и мышечному сокращению. Мышечные волокна обильно кровоснабжаются.

ВНИМАНИЕ

Согласно теории X. Хэксли и Т. Хэнсона мышечное сокращение – это результат скольжения тонких (актиновых) филаментов относительно толстых (миозиновых), в результате чего длина диска А не изменяется, в то время как диск I уменьшается в размерах и исчезает.


Рис. 36. Кардиомиоцит (по Елисееву и др.)

1 – базальная мембрана; 2 – окончание миопротофибрилл на цитолемме кардиомиоцита; 3 – вставочный диск между кардиомиоцитами; 4 – саркоплазматическая сеть; 5 – саркосомы (митохондрии); 6 – миопротофибриллы; 7 – диск A (анизотропный диск); 8 – диск I (изотропный диск); 9 – саркоплазма Источником движущейся силы мышечного сокращения является освобождение энергии в результате гидролиза АТР. Скелетные мышцы иннервируются спинномозговыми и черепными нервами.


Исчерченная сердечная мышечная ткань, которая по своему строению и функции отличается от скелетной, состоит из сердечных миоцитов (кардиомиоцитов), образующих соединяющиеся друг с другом комплексы. В отличие от скелетных поперечнополосатых мышечных волокон кардиомиоциты почти прямоугольной формы имеют 1–2 овальных ядра, лежащих в центре; миофибриллы расположены по периферии строго прямолинейно. Характерны контакты двух соседних кардиомиоцитов в виде темных полосок (вставочных дисков), которые активно участвуют в передаче возбуждения от клетки к клетке.

Нервная ткань

Нервная ткань образует центральную нервную систему (головной и спинной мозг) и периферическую нервы с их концевыми приборами, нервные узлы (ганглии). Нервная ткань состоит из нейронов и нейроглии, которая образована глиоцитами. Нейрон с отходящими от него отростками является структурно-функциональной единицей нервной системы. Основная функция нейрона – получение, переработка, проведение и передача информации, закодированной в виде электрических или химических сигналов. В нейроне различают его тело (перикарион), где информация обрабатывается, и отходящие от тела отростки, проводящие информацию иногда на дальние расстояния. Один или несколько отростков, по которым нервный импульс приносится к телу нейрона, называется дендритом. Единственный отросток, по которому нервный импульс направляется от нервной клетки, – аксон. Нервная клетка динамически поляризована, т. е. способна пропускать нервный импульс только в одном направлении от дендрита к телу и от тела к аксону. В зависимости от количества отростков различают униполярные, или одноотростчатые (они имеются в эмбриональном периоде), биполярные, или двухотростчатые и мультиполярные, или многоотростчатые, нейроны. Последние преобладают.

Как правило, нейроны – одноядерные клетки; два ядра имеют некоторые нейроны ганглиев вегетативной нервной системы. Сферическое ядро диаметром около 18 мкм в большинстве нейронов расположено центрально (рис. 37). Основными особенностями строения нейронов является наличие многочисленных нейрофибрилл и скоплений хроматофильного вещества (вещество Ниссля), богатого РНК, которое представляет собой группы параллельных цистерн зернистого эндоплазматического ретикулума и полирибосомы. Вещество Нисселя и свободные рибосомы располагаются по всей цитоплазме клетки и в дендритах, они отсутствуют в аксоне. Нейрофибриллы формируют в перикарионе густую трехмерную сеть и проникают в отростки. Нейрофибриллы обеспечивают прочность перикариона и отростков и осуществляют химическую интеграцию клетки. Макромолекулы, синтезируемые в перикарионе, направляются в самые отдаленные участки отростков.


Рис. 37. Строение нервной клетки

1 – аксонодендритический синапс, 2 – аксоносоматический синапс; 3 – пресинаптические пузырьки; 4 – пресинаптическая мембрана; 5 – синаптическая щель; 6 – постсинаптическая мембрана; 7 – эндоплазматическая сеть; 8 – митохондрия; 9 – внутренний сетчатый аппарат (комплекс Гольджи); 10 – нейрофибриллы; 11 – ядро; 12 – ядрышко


Нейроны, которые передают возбуждение от точки восприятия раздражения в центральную нервную систему и далее к рабочему органу, связаны между собой с помощью множества межклеточных контактов синапсов (от греч. synapsis – «связь»), передающими нервный импульс от одного нейрона к другому (рис. 38). В синапсах происходит преобразование электрических сигналов в химические и обратное химических в электрические. Различают синапсы аксосоматические, в которых окончания аксона одного нейрона образуют контакты с телом другого, аксодендритические аксоны вступают в контакт с дендритами, а также аксоаксональные и дендродендритические, когда контактируют одноименные отростки. Это создает возможность для проведения возбуждения по одной из множества цепочек нейронов благодаря наличию физиологических контактов в определенных синапсах и физиологическому разъединению в других.

Синапсы, в которых передача осуществляется с помощью биологически активных веществ, называются химическими, а вещества, осуществляющие передачу, нейромедиаторами (от лат. mediator – «посредник»). Роль медиаторов выполняют норадреналин, ацетилхолин, серотонин, дофамин и др. Медиатор поступает в синапс по пресинаптическому окончанию, которое ограничено пресинаптической мембраной (пресинаптическая часть) и воспринимается постсинаптической мембраной (постсинаптическая часть). Между обеими мембранами расположена синаптическая щель. В пресинаптическом окончании множество митохондрий и пресинаптических пузырьков, содержащих медиатор. Нервный импульс, поступающий в пресинаптическое окончание, вызывает освобождение в синаптическую щель молекул медиатора, которые, действуя на постсинаптическую мембрану, вызывает образование в ней нервного импульса.


Рис. 38. Химический синапс

1 – митохондрия, 2 – гладкий эндоплазматический ретикулум; 3 – нейротрубочка; 4 – синаптические пузырьки; 5 – пресинаптическая мембрана с гексагональной сетью; 6 – синаптическая щель; 7 – постсинаптическая мембрана; 8 – зернистая эндоплазматическая сеть; 9 – нейрофиламенты


В нервной ткани наряду с нейронами имеется нейроглия, в которой представлены два типа клеток: микроглия и макроглия. Микроглия выполняет опорную, разграничительную, секреторную и трофическую функции. Среди элементов макроглии различают: эпендимоциты (выстилающие спинномозговой канал и желудочки мозга); астроциты (проплазматические и волокнистые), которые образуют поддерживающую сеть и пограничные мембраны между капиллярами и нейронами; олигодендроциты, образующие оболочки нервных волокон и окружают тела нейронов. Клетки микроглии имеют моноцитарное происхождение и способны к фагоцитозу. Клетки глии преобладают. Так, количество глиальных клеток в головном мозге примерно в 10 раз больше количества нейронов.

Нервные волокна представляют собой один или несколько отростков нервных клеток вместе с покрывающими их оболочками невролеммами. При этом отросток нейрона (аксон или дендрит) называется осевым цилиндром. Они подразделяются на миелиновые и безмиелиновые волокна. Безмиелиновые нервные волокна образованы одними или несколькими осевыми цилиндрами, каждый из которых погружен в тело шванновской клетки (олигодендроцит), прогибая ее плазмолемму так, что между ней и плазмолеммой осевого цилиндра остается пространство (рис. 39А). Соприкасающиеся участки плазмолеммы шванновской клетки над осевым цилиндром образуют мезаксон. Скорость проведения нервного импульса по безмиелиновому волокну менее 1 м/сек. Безмиелиновые волокна находятся главным образом в вегетативной нервной системе.

Миелиновые нервные волокна образованы одним осевым цилиндром, окруженным муфтой из шванновских клеток. Миелиновый слой представляет собой многократно спирально закрученную вокруг осевого цилиндра шванновскую клетку. В связи с тугой укладкой каждый виток состоит из двух слоев плазмолеммы шванновской клетки, между которыми расположена очень тонкая прослойка цитоплазмы. Снаружи располагается цитоплазма шванновской клетки, содержащая органеллы и ядро, покрытая плазмолеммой. Скорость проведения импульса по миелиновому волокну – 70–100 м/сек. Для того чтобы понять происхождение миелиновой оболочки, следует рассмотреть образование миелинового волокна: инвагинация одного осевого цилиндра в цитолемму шванновской клетки (прогибание цитолеммы последней, образование мезаксона, наматывание шванновской клетки вокруг аксона и спиральное закручивание мезаксона) (рис. 39 Б, В).

Нервная ткань обеспечивает анализ и синтез сигналов (импульсов), поступающих в мозг. Она устанавливает взаимосвязь организма с внешней средой и участвует в координации функции внутри организма, обеспечивая его целостность (вместе с гуморальной системой кровью, лимфой).


Рис. 39. Строение нервных волокон, схема

А – безмиелиновые волокна: 1 – шванновская клетка, 2 – нервные волокна, 3 – цитоплазма, 4 – ядро Б – образование миелина: 1 – ядро, 2 – цитоплазма, 3 – аксон, 4 – ядро шванновской клетки, 5 – плазматическия мембрана шванновской клетки В – строение миелинового волокна: 1 – нейрофибриллы, 2 – ядро шванновской клетки, 3 – миелин, 4 – цитоплазма шванновской клетки, 5 – плазматическия мембрана шванновской клетки, 6 – перехват Ранвье (граница между двумя шванновскими клетками, 7 – аксон


Нейроны воспринимают, проводят и передают информацию, закодированную в виде электрических и химических сигналов. Заряженные молекулы или атомы называют ионами. Натрий, калий, кальций и магний положительные ионы; хлор, фосфат, остатки некоторых кислот (например, угольной), крупные ионы белков отрицательные. Во внеклеточной жидкости положительные и отрицательные ионы находятся в равных соотношениях. Внутри клеток преобладают отрицательно заряженные ионы, чем обусловлен общий отрицательный заряд клетки. Калий – внутриклеточный ион, его концентрация в нервных и мышечных клетках в 20–100 раз выше, чем вне клетки, натрий – внеклеточный ион, его внутриклеточная концентрация в клетке в 5–15 раз ниже внеклеточной. И наоборот, внутриклеточная концентрация Cl в 20–100 раз ниже внеклеточной.

По обе стороны мембраны нервных и мышечных клеток, между внеклеточной и внутриклеточной жидкостями существует мембранный потенциал – разность потенциалов, его величина 80 мВ. Это связано с избирательной проницаемостью плазматической мембраны для различных ионов. К+ легко диффундирует через мембрану. В связи с его высоким содержанием в клетке он выходит из нее, вынося положительный заряд. Возникает мембранный потенциал. Мембранный потенциал клетки, находящейся в состоянии покоя, называется потенциалом покоя (рис. 40).


Рис. 40. Ионные токи через мембрану аксона при прохождении потенциала действия развитие потенциала действия, сопровождающееся изменением электрического напряжения (от -70 до +40 мВ), обусловлено восстановлением равновесия между положительными и отрицательными ионами по обе стороны мембраны, проницаемость которой на короткое время увеличивается (по Стернбергу и соавт., с изм.)


Когда нервная или мышечная клетка активизируется, в ней возникает потенциал действия – быстрый сдвиг мембранного потенциала в положительную сторону. При этом в определенном участке мембраны в ответ на раздражение клетка начинает терять свой отрицательный заряд и Na+ устремляется в клетку, в результате чего на 1/1000 с на этом участке возникает деполяризация, внутри клетки генерируется положительный заряд – потенциал действия, или нервный импульс (см. рис. 40). Таким образом, потенциал действия – это проникновение потока ионов Na+ через мембрану в клетку, К+, содержащийся в большом количестве внутри клетки и обладающий высокой проницаемостью, начинает покидать клетку. Это приводит к восстановлению в ней отрицательного заряда. Движение ионов, возникающее вблизи деполяризированного участка, приводит к деполяризации следующего участка мембраны, поэтому нервный импульс распространяется по нейрону.

В зависимости от функции выделяют три основных типа нейронов:

1. Чувствительные, рецепторные, или афферентные, нейроны (лат. afferens – «приносящий»). Как правило, эти клетки имеют два вида отростков. Дендрит следует на периферию и заканчивается чувствительными окончаниями рецепторами, которые воспринимают внешнее раздражение и трансформируют его энергию в энергию нервного импульса; второй единственный аксон направляется в головной или спинной мозг. В зависимости от локализации различают несколько типов рецепторов: 1) экстерорецепторы, воспринимающие раздражения внешней среды, расположены в коже, слизистых оболочках и органах чувств; 2) интерорецепторы, получающие раздражение главным образом при изменениях химического состава внутренней среды и давления, расположены в сосудах, тканях и органах; 3) проприорецепторы, заложенные в мышцах, сухожилиях, связках, фасциях, надкостнице, суставных капсулах. В зависимости от характера раздражения выделяют терморецепторы, механорецепторы и ноцирецепторы. Первые воспринимают изменения температуры, вторые – различные виды механических воздействий (прикосновение к коже, ее сдавление), третьи – болевые раздражения.

2. Эфферентные. Тела эфферентных (эффекторных, двигательных или секреторных) нейронов (лат. efferens – «выносящий») находятся в центральной нервной системе (или в симпатических и парасимпатических узлах). Их аксоны идут к рабочим органам (мышцам или железам). Различают два вида рабочих, или исполнительных, органов: анимальные поперечнополосатые (скелетные) мышцы и вегетативные гладкие мышцы и железы. Соответственно этому имеются нервные окончания аксонов эфферентных нейронов двух типов: двигательные и секреторные. Первые оканчиваются на мышечных волокнах, образуя бляшки, которые в поперечнополосатых мышцах представляют аксомышечные синапсы. Нервные окончания гладкой мышечной ткани образуют вздутия, в которых также содержатся синаптические пузырьки. Секреторные окончания контактируют с железистыми клетками. Аксоны двигательных нейронов разветвляются, и каждый из них иннервирует большое количество мышечных волокон. Окончание одного двигательного нейрона и иннервируемое им поперечнополосатое мышечное волокно образуют двигательную единицу.

3. Вставочные нейроны передают возбуждение с афферентного на эфферентный нейрон.

Нервная, мышечная ткани и железистый эпителий относятся к возбудимым тканям, которые в ответ на воздействие раздражителя переходят из состояния покоя в состояние возбуждения. При этом возбуждение, возникающее в одном участке мышечного или нервного волокна, быстро передается на соседние участки этого волокна, а также с нервного волокна на другие через синапс или с нервного волокна на иннервируемую ими структуру. Возбудимость – это способность клеток воспринимать изменения внешней среды и отвечать на них реакцией возбуждения. Проводимость – способность тканей проводить возбуждение. Мышечные ткани обладают сократимостью, т. е. способностью отвечать сокращением на раздражение.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 | Следующая
  • 4.6 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации