Электронная библиотека » Говерт Шиллинг » » онлайн чтение - страница 1


  • Текст добавлен: 24 октября 2018, 13:00


Автор книги: Говерт Шиллинг


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 1 (всего у книги 22 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +

Говерт Шиллинг
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Переводчик Наталья Колпакова

Научный редактор Олег Верходанов, д-р физ. – мат. наук

Редактор Антон Никольский

Руководитель проекта И. Серёгина

Корректоры Е. Аксёнова, С. Чупахина

Компьютерная верстка М. Поташкин

Дизайн обложки Ю. Буга

Иллюстрация на обложке Shutterstock


© Govert Schilling, 2017

This edition published by arrangement with The Science Factory, Louisa Pritchard Associates and The Van Lear Agency LLC

© Издание на русском языке, перевод, оформление. ООО «Альпина нон-фикшн», 2019


Все права защищены. Данная электронная книга предназначена исключительно для частного использования в личных (некоммерческих) целях. Электронная книга, ее части, фрагменты и элементы, включая текст, изображения и иное, не подлежат копированию и любому другому использованию без разрешения правообладателя. В частности, запрещено такое использование, в результате которого электронная книга, ее часть, фрагмент или элемент станут доступными ограниченному или неопределенному кругу лиц, в том числе посредством сети интернет, независимо от того, будет предоставляться доступ за плату или безвозмездно.

Копирование, воспроизведение и иное использование электронной книги, ее частей, фрагментов и элементов, выходящее за пределы частного использования в личных (некоммерческих) целях, без согласия правообладателя является незаконным и влечет уголовную, административную и гражданскую ответственность.

* * *

Издание подготовлено в партнерстве с Фондом некоммерческих инициатив «Траектория» (при финансовой поддержке Н.В. Каторжнова).



Фонд поддержки научных, образовательных и культурных инициатив «Траектория» (www.traektoriafdn.ru) создан в 2015 году. Программы фонда направлены на стимулирование интереса к науке и научным исследованиям, реализацию образовательных программ, повышение интеллектуального уровня и творческого потенциала молодежи, повышение конкурентоспособности отечественных науки и образования, популяризацию науки и культуры, продвижение идей сохранения культурного наследия. Фонд организует образовательные и научно-популярные мероприятия по всей России, способствует созданию успешных практик взаимодействия внутри образовательного и научного сообщества.

В рамках издательского проекта Фонд «Траектория» поддерживает издание лучших образцов российской и зарубежной научно-популярной литературы.

Предисловие

Среди выдающихся ученых Эйнштейн заслуженно занимает особое место. Его понимание пространства и времени полностью изменило наши представления о гравитации и космосе. Знакомый каждому образ веселого мудреца с седой шевелюрой тиражируется на плакатах и футболках, однако свои главные труды он завершил в молодости – мировая слава настигла его, когда ему не было и 40 лет. 29 мая 1919 г. произошло солнечное затмение. Группа под руководством астронома Артура Эддингтона фотографировала звезды вблизи Солнца, которые во время затмения становятся доступными для наблюдения. Измерения показали, что звезды смещены относительно нормального положения в небе, поскольку их свет отклоняется гравитацией Солнца. Это подтвердило один из ключевых прогнозов Эйнштейна. О результатах сообщили в Лондонском Королевском обществе, и мировая пресса подхватила новость. «Лучи искривляются в небесах: триумфальное подтверждение теории Эйнштейна!» – гласил несколько преувеличенный заголовок в The New York Times.

Общая теория относительности (ОТО), предложенная Эйнштейном в 1915 г., – это торжество чистой мысли и научного прозрения. Практические следствия из нее нам, землянам, почти незаметны. Требуется разве что чуть-чуть подстраивать часы, используемые в современных системах навигации, но для запуска и сопровождения космических аппаратов достаточно наследия Ньютона.

Осознанная Эйнштейном связь пространства и времени – тот факт, что «пространство указывает материи, как двигаться, материя указывает пространству, как искривляться», – играет решающую роль во многих космических явлениях. Однако проверить теорию, эффекты которой проявляются на огромном удалении, сложно. Почти полвека ОТО оставалась на обочине развития физики, но с 1960-х гг. накопилось достаточно свидетельств в пользу двух ключевых предположений Эйнштейна – Большого взрыва, предопределившего расширение Вселенной, и существования черных дыр (ЧД).

В феврале 2016 г., почти через 100 лет после знаменитого собрания Королевского общества, где прозвучал отчет об экспедиции астрономов, наблюдавших солнечное затмение, теория Эйнштейна была подкреплена заявлением – на сей раз в пресс-клубе в Вашингтоне – о регистрации обсерваторией LIGO[1]1
  Laser Interferometer Gravitational-Wave Observatory – Лазерно-интерферометрическая гравитационно-волновая обсерватория. – Прим. ред.


[Закрыть]
гравитационных волн. Этой теме посвящена книга Говерта Шиллинга – увлекательное повествование, охватывающее период более 100 лет.

Эйнштейн видел силу гравитации как «искривление» пространства. Меняя форму, гравитирующие объекты возбуждают волны в пространстве. Когда такая волна оказывается вблизи Земли, наша область пространства «дрожит» – попеременно растягивается и сжимается по мере прохождения сквозь нее гравитационных волн. Однако этот эффект практически незаметен, поскольку сила гравитации – слабое взаимодействие. Гравитационное притяжение объектов, окружающих нас в повседневной жизни, ничтожно. Взмахнув двумя гантелями, вы возбудите гравитационные волны, но пренебрежимо слабые. Даже планеты, вращающиеся вокруг звезд, или взаимно обращающиеся двойные звезды не создают достаточно сильных волн, чтобы их можно было зарегистрировать.

Астрономы пришли к выводу, что источники, доступные для наблюдения LIGO, должны обладать намного более мощной гравитацией, чем обычные звезды и планеты. В идеале это события с участием ЧД. О существовании ЧД известно почти 50 лет. Большинство являются остатками звезд в 20 и более раз массивнее Солнца. Такие звезды ярко светят и гибнут в катаклизме (о котором свидетельствует вспышка сверхновой), причем их внутренняя часть коллапсирует в ЧД. Звездная материя «изымается» из Вселенной, оставляя на покинутом пространстве гравитационный отпечаток.

Две ЧД, которым предстоит образовать двойную систему, постепенно сближаются по спирали. По мере их сближения прилегающее пространство испытывает все большее возмущение, наконец они сливаются в одну вращающуюся ЧД, которая колеблет пространство и «звенит», порождая все новые волны, пока не успокоится и не затихнет. Чирп – сотрясение пространства, ускоряющееся и усиливающееся вплоть до момента слияния ЧД, а затем затухающее, – может зафиксировать LIGO. В нашей Галактике такой катаклизм случается реже чем раз в 1 млн лет. Однако подобное событие порождает сигнал, поддающийся регистрации LIGO, даже если происходит за 1 млрд световых лет[2]2
  Далее св. лет. – Прим. ред.


[Закрыть]
от нас – миллионы галактик находятся на меньшем расстоянии. Для обнаружения даже самых благоприятствующих наблюдению событий требуется невероятно чувствительная и очень дорогая аппаратура. В детекторах LIGO пучки мощного лазерного излучения проходят через четырехкилометровые трубы с вакуумом внутри и отражаются от зеркал, установленных в каждом торце труб. Анализируя параметры световых сигналов, можно выявить изменение расстояния между зеркалами, попеременно увеличивающегося и уменьшающегося при расширениях и сжатиях пространства. Амплитуда этого колебания чрезвычайно мала – около 0,0000000000001 см (1×10–13 см), в миллионы раз меньше размера атома[3]3
  Боровский радиус атома водорода около 5 × 10–11 м. Оценка амплитуды колебания для атома водорода – в десятки тысяч раз меньше его размера. – Прим. науч. ред.


[Закрыть]
. В обсерватории LIGO используется два одинаковых детектора, разнесенных на расстояние 3000 км, – один находится в штате Вашингтон, другой – в Луизиане. Единичный детектор реагировал бы на микросейсмические волны, проезжающие мимо транспортные средства и т. п. Чтобы исключить ложную тревогу, экспериментаторы берут в расчет лишь те события, которые регистрируются обоими детекторами.

Несколько лет LIGO ничего не обнаруживала. Обсерватория была модернизирована и вновь полноценно заработала в сентябре 2015 г., и тогда после десятилетий разочарований пришел успех – был зарегистрирован чирп, свидетельствующий о столкновении двух ЧД более чем в 1 млрд св. лет от Земли. Возникла новая область науки – экспериментальное исследование динамических характеристик пространства.

К сожалению, широко разрекламированные заявления ученых об открытиях иногда оказываются ошибкой или преувеличением. Подобное случалось и в этой сфере наук, примеры чего я привожу в своей книге. Я считаю себя скептиком, не склонным к легковерию. Но заявления исследователей, работающих с LIGO, – итог нескольких десятков лет усилий опытных ученых и инженеров – звучат убедительно, и на сей раз я уверен, что не разочаруюсь.

Получение этих данных – настоящий прорыв, одно из величайших открытий десятилетия, не уступающее по значимости открытию бозона Хиггса, вызвавшему ажиотаж в 2012 г. Существование бозона Хиггса являлось базисом Стандартной модели физики элементарных частиц, развивавшейся несколько десятилетий. Аналогично гравитационные волны – пульсации ткани пространства – важнейшее и принципиальное следствие ОТО Эйнштейна.

Питер Хиггс 50 лет назад предсказал существование частицы, названной его именем, но обнаружение бозона и установление его свойств стало возможным лишь с развитием технологий. Для этого потребовалась огромная установка – Большой адронный коллайдер. Гравитационные волны были предсказаны еще раньше, но с их обнаружением пришлось повременить, поскольку зафиксировать крайне слабый эффект невозможно без крупномасштабного и исключительно точного оборудования.

Полученные результаты не только с помощью нового метода подтверждают теорию Эйнштейна, но и углубляют знания о звездах и галактиках. Астрономических свидетельств существования ЧД и массивных звезд мало – трудно спрогнозировать, сколько таких объектов окажется в пределах, доступных для наблюдения. Пессимисты полагали, что эти события чрезвычайно редки и даже обновленная, усовершенствованная LIGO ничего не обнаружит, по крайней мере год или два. В действительности, если это не исключительная «везучесть новичка», была открыта новая область астрономии, изучающая динамические характеристики самого пространства, а не наполняющей его материи. К исследованиям подключились другие детекторы в Европе, Индии и Японии, разрабатываются планы запуска аппаратуры в космос.

К сожалению, очень многие ученые уклоняются от популярного объяснения своих идей и открытий, считая их слишком мудреными и сложными для понимания. Ученые излагают свои мысли языком математики, большинству не знакомым, но самое важное можно объяснить обычными словами, если владеешь ремеслом писателя. Говерт Шиллинг – один из лучших авторов, пишущих о науке, – в этой книге он превзошел самого себя. Его повествование охватывает более 100 лет. Ключевые понятия излагаются ясно и интересно и помещаются в исторический контекст, дополняясь образами ученых, отметившихся на этом пути. Некоторые из них были буквально одержимы наукой, что неудивительно, – нужно быть одержимым, чтобы посвящать годы и даже десятилетия сложным экспериментам без малейших гарантий результата. Усилия одиночек опирались на труд сотен специалистов, объединявшихся в команды. Говерт Шиллинг рассказывает о яростных спорах, неудачах и поразительных технических достижениях ученых и инженеров, десятилетиями добивавшихся фантастической точности измерений и получивших эпохальные свидетельства существования пульсаций пространства и времени. Это удивительная история в захватывающем изложении.

Мартин Рис

Введение

На далекой окраине спиральной галактики вокруг заурядной звезды – желтого карлика – обращается маленькая планета, образовавшаяся примерно 3,3 млрд лет назад из скопления пыли и более крупных частиц. Из космического пространства в ее теплые океаны попали органические соединения, из которых сформировались самореплицирующиеся молекулы. Теперь эти воды изобилуют одноклеточными формами жизни. Пройдет не слишком много времени, и жизнь на голубой планете начнет осваивать пустынные прежде континенты.

В другой оконечности огромной Вселенной короткое существование двух сверхмассивных звезд завершается колоссальными вспышками сверхновых. Вследствие этого катастрофического события образуется тесная двойная система ЧД, каждая из которых в десятки раз массивнее далекого желтого карлика. Их гравитация притягивает газ и пыль, оказавшиеся поблизости, и искривляет траекторию света в прилегающем пространстве. Ничто не может вырваться из чудовищного гравитационного поля этой космической бездонной ямы.

Вращаясь вокруг общего центра масс, ЧД порождают волны – слабые пульсации пространства-времени, распространяющиеся со скоростью света. Волны уносят энергию, вследствие чего ЧД все больше сближаются, пока не начинают совершать несколько сотен оборотов в секунду со скоростью вполовину скорости света. Пространственно-временной континуум растягивается и сжимается, слабые возмущения превращаются в мощные волны. Наконец, две ЧД коллапсируют и сливаются в одну, что сопровождается сильнейшим выбросом гравитационной энергии. На месте катастрофы вновь воцаряется покой, но отголоски события – последние мощные всплески гравитации – распространяются в космосе, словно цунами.

Отзвуки гибели пары ЧД достигают границ нашей спиральной галактики лишь через 1,3 млрд лет. За это время они становятся гораздо слабее, и, хотя по-прежнему сжимают и растягивают все объекты на своем пути, этого никто не замечает. Поверхность голубой планеты теперь покрыта папоротниками и деревьями, гигантские рептилии уже вымерли из-за последствий столкновения с астероидом, а эволюция одного из множества видов здешних млекопитающих увенчалась появлением любознательных двуногих созданий.

Гравитационные волны, порожденные слиянием двух ЧД, входят во внешнюю область Млечного Пути. Теперь им потребуется всего лишь 100 000 лет, чтобы достичь окрестностей Солнца. Пока они несутся со скоростью 300 000 км/с к Земле, ее разумные обитатели приступают к изучению Вселенной, частью которой являются. Они шлифуют линзы для телескопов, открывают новые планеты и их спутники и составляют карту Млечного Пути.

За 100 лет до момента встречи гравитационных волн с Землей – когда они прошли 99,99999 % пути продолжительностью 1,3 млрд лет – 26-летний ученый Альберт Эйнштейн заявляет о теоретической возможности их существования. Проходит еще полвека, прежде чем люди всерьез берутся за поиски этих волн. Наконец в начале XXI в. появляются достаточно чувствительные детекторы. Проработав лишь несколько дней, аппаратура регистрирует слабые колебания, амплитуда которых много меньше размера атомного ядра.

В понедельник, 14 сентября 2015 г., в 09:50:45 по Гринвичу предположение, выдвинутое Эйнштейном 100 лет назад, подтверждается: астрономы получают гравитационное «сообщение» о коллапсе ЧД, произошедшем в чрезвычайно отдаленной галактике.

Первая прямая регистрация гравитационной волны по праву считается одним из величайших научных открытий нового столетия. Последующая регистрация волн с помощью еще более чувствительных приборов откроет перед астрономами совершенно новые возможности изучения Вселенной и подарит физикам надежду разгадать наконец тайну пространства и времени.

Замысел этой книги зародился у меня за несколько лет до появления в интернете информации о проекте LIGO – лазерно-интерферометрической обсерватории гравитационных волн. Было бы замечательно, подумал я, окончить рукопись одновременно с первым в истории наблюдением гравитационной волны. Книгу можно было бы опубликовать вскоре после сообщения об эксперименте, упомянув о полученных результатах в эпилоге.

Научно-технический прогресс, однако, оказался более стремительным, чем я предполагал. Едва ли кто ожидал, что первые же дни использования детектора принесут успех. Как результат, большую часть исследований и работы над рукописью мне пришлось проделать после эпохального открытия. Теперь, когда книга окончена, я вижу, что все сложилось наилучшим образом – открытие стало не постскриптумом, а неотъемлемой частью повествования.

Историю гравитационно-волновой астрономии писали и до меня. В этой книге она лишь часть сюжета. В ней речь идет также о развитии науки, путях, ведущих к открытиям, событиях сегодняшнего дня и видах на будущее, в котором изучение гравитационных волн станет полноценной областью астрономии. Обнаружение GW150914 – сигнала, зарегистрированного в памятный понедельник, – это и кульминация вековых поисков, и первая страница совершенно новой главы в исследовании Вселенной.

1
Знакомство с пространственно-временным континуумом

Джо Купер облачается в скафандр НАСА и надевает шлем. Если при запуске возникнут неполадки, ему понадобится кислород. Техники помогают ему войти в космический аппарат, расположенный на самом верху ракеты. По радиосвязи он слышит обратный отсчет и чувствует, как адреналин разливается по кровеносной системе. Купер не робкого десятка, но невозможно сохранить абсолютное хладнокровие, когда готовишься устремиться в космос на столбе пламени.

Вскоре он и трое других астронавтов в пути. Все идет по плану. За маленькими окнами корабля синева небес уступает место черноте безвоздушного пространства. Двигатели выключаются, возникает невесомость. Им остается сблизиться с огромной космической станцией, обращающейся вокруг Земли со скоростью более 8 км/с, и пристыковаться. Проще простого.

Казалось бы, рядовой полет к Международной космической станции (МКС) на борту российского корабля «Союз». Обычное дело… или нет? Никто не слышал об астронавте НАСА по имени Джо Купер. И трех спутников у Купера быть не могло. Любой астронавт объяснит, что «Союз» слишком мал для четверых – в нем и троим тесно.

История продолжается. Корабль, к которому пристыковываются астронавты, называется «Эндьюранс» и не имеет ничего общего с МКС. Наконец, они летят на «Эндьюранс» к Сатурну, исчезают в «кротовой норе», выныривают в другой галактике, выходят на орбиту гигантской ЧД под названием «Гаргантюа» и посещают чужие планеты. Купер даже наведывается в гиперпространство.

Это сюжет голливудского блокбастера 2014 г. «Интерстеллар»[4]4
  Фильм «Интерстеллар» режиссера Кристофера Нолана с актерами Мэттью Макконахи, Энн Хэтуэй, Джессикой Честейн и Майклом Кейном вышел в прокат в США 5 ноября 2014 г.


[Закрыть]
, снятого Кристофером Ноланом с актером Мэттью Макконахи в роли астронавта Купера. Если вы интересуетесь космической тематикой, то всё поняли по одному только имени героя. Возможно, вы даже посмотрели «Интерстеллар» большее число раз, чем я. Это выдающееся кино.

Из ряда научно-фантастических фильмов «Интерстеллар» выделяет наряду с прочим подбор исполнительных продюсеров. Это Джордан Голдберг («Бэтмен», «Начало»), Джейк Майерс («Выживший»), Томас Тулл («Мир Юрского периода»), а также Кип Торн, почетный фейнмановский профессор теоретической физики Калифорнийского технологического института в Пасадене. Не многие физики-теоретики по совместительству продюсируют фильмы.

Что происходит, когда ученый участвует в работе над научно-фантастической картиной? Можно надеяться, что результат не будет противоречить научным знаниям. «Интерстеллар» соответствует им на очень высоком уровне. Торн помог выстроить сюжетную линию. Он познакомил сценариста, режиссера, команду создателей спецэффектов и актеров с астрономией и ОТО. Торн даже написал уравнения на доске одного из персонажей, профессора Джона Бранда (в исполнении Майкла Кейна). К сожалению, Торн не появился на экране в роли самого себя. Очевидно, впрочем, что робот КИПП назван в его честь.

Трудно было бы найти человека, более подходящего на роль научного консультанта фильма о ЧД, чем Кип Торн. Он один из немногих людей, понимающих удивительные свойства пространственно-временного континуума. В 1990 г. Торн даже выиграл пари, которое заключил 15 годами ранее с британским коллегой и другом Стивеном Хокингом в отношении истинной природы космического источника рентгеновского излучения – Лебедь Х-1. (Призом стала годовая подписка на журнал «Пентхаус».) Вышедшая в 1994 г. книга Торна «Черные дыры и складки времени» стала национальным бестселлером.

В начале 2016 г. имя Торна вновь было у всех на слуху. 11 февраля ученые объявили о первом успехе в прямой регистрации гравитационных волн. В отдаленной области Вселенной коллапсировали и слились две ЧД. Столкновение вызвало возмущения пространственно-временного континуума. Проделав путь, превышающий 1 млрд св. лет, волны 14 сентября 2015 г. достигли Земли. Два гигантских детектора LIGO в США зафиксировали мельчайшую дрожь. LIGO – это детище Торна и его коллег-физиков Райнера Вайсса и Рональда Древера.

_________

Никто не видел ЧД вблизи. Никто не знает, существуют ли «кротовые норы». Гравитационные волны настолько малы, что их можно зарегистрировать только сверхчувствительными приборами. Искривление пространства, замедление времени – все это слишком сложно и оторвано от повседневного опыта. Чтобы действительно понимать подобные вещи, нужно разбираться в ОТО Эйнштейна.

Широко известна история об английском астрономе Артуре Стэнли Эддингтоне. В начале XX в. Эддингтон – мы вновь встретимся с ним в главе 3 – был одним из крупнейших популяризаторов новой теории пространственно-временного континуума, предложенной Эйнштейном. После публичной лекции один из слушателей спросил его: «Профессор Эддингтон, правда ли, что только три человека в мире действительно понимают общий принцип относительности?» Поразмыслив, Эддингтон произнес: «Интересно, кто третий?»

Разумеется, все не настолько сложно. Десятки тысяч физиков-теоретиков по всему миру владеют базовыми принципами ОТО. Постоянно появляются новые теоретические разработки, особенно касающиеся ЧД, где становятся важны квантовые эффекты: теория испарения ЧД Стивена Хокинга, «кротовые норы» как кратчайшие пути в пространстве в представлении Кипа Торна, голографический принцип Герарда т’Хоофта и «стена огня» Леонарда Сасскинда.

Я не стану сейчас вдаваться в детали, но, если величайшие умы современности продолжают высказывать поразительные догадки (и спорить о них), следовательно, они еще не овладели ОТО в полной мере. Приведенные примеры – немногие идеи, не кажущиеся высосанными из пальца. В журнале Physical Review Letters выходят статьи об 11-мерном пространственно-временном континууме, путешествиях во времени и множественной Вселенной. И вы считали, что в «Интерстеллар» слишком много натяжек?

Вероятно, поэтому многие интересуются этой, казалось бы, оторванной от жизни темой. Незачем знать, что такое ЧД, чтобы баллотироваться в президенты. Гравитационные волны не решат проблему глобального потепления. Можно прожить жизнь, не задумываясь об общем принципе относительности (единственное впечатляющее исключение я приберег для главы 3). Но это очень интересно, захватывающе и, бесспорно, будоражит воображение – возможно, достаточно веские причины.

Более того, ОТО объясняет, как функционирует мир на фундаментальном уровне. Что, как не стремление понять мир, отличает нас от животных?

Честно говоря, долгие тысячелетия нам это не особенно удавалось. Первые сельскохозяйственные культуры возникли около 12 000 лет назад на Среднем Востоке. К тому времени люди прекрасно знали о круговом движении Солнца и Луны. Они увидели закономерности в расположении звезд и даже заметили, что несколько ярких звезд медленно движутся через созвездия. Вот, собственно, и все. Люди не имели ни малейшего представления о том, как в действительности устроены небесные тела. И даже не стремились узнать. Солнце, Луна и планеты представлялись им богами – внешними и высшими по отношению к обыденности.

Эта картина почти не менялась вплоть до появления великих греческих философов примерно 2500 лет назад. Сотни поколений миновали 9500 лет без существенного прогресса. Если сжать 12 000 лет истории в одни сутки, начав отсчет с полуночи, получим, что Аристотель предложил первую модель Вселенной в виде вложенных хрустальных сфер уже после семи вечера. Наши предки обладали интеллектом – в конце концов, они относились к тому же виду Homo sapiens, что и мы. Просто эта тема не особенно их занимала.

Греки заинтересовались ею. Они справедливо предположили, что Земля представляет собой сферу, и даже вычислили ее окружность с удивительной точностью. (В некоторых учебниках до сих пор утверждается, что Христофор Колумб первым определил форму Земли, но это чушь.) Пусть греки не знали, что такое Солнце, Луна, планеты и звезды, они по крайней мере пытались раскрыть тайну их сложного движения.

Их усилия увенчало появление геоцентрической картины мира Клавдия Птолемея, жившего около 19 веков назад на территории нынешнего северного Египта. (В условных сутках, начавшихся с возникновения сельского хозяйства, это примерно 20:10.) Как явствует из названия, Птолемеева модель мира помещала в центр мироздания Землю. Солнце, Луна и планеты двигались вокруг Земли по сложным комбинациям первичных и вторичных орбит. Птолемеева картина мира даже объясняла, почему планеты то и дело движутся в обратном направлении.

Хорошо, но мимо! Прошли столетия, прежде чем люди поняли, что они что-то упускают. Все изменилось с обнародованием гелиоцентрической картины мира польского астронома Николая Коперника в 1543 г. – сразу после 23:00 условных суток. Человечество шло к пониманию мира удручающе долго, бóльшую часть своей 12-тысячелетней истории.

С открытием Коперника развитие науки ускорилось. Ученые установили, что книга природы написана на языке математики, как изящно сформулировал итальянский физик Галилео Галилей. Галилей изучал движение тел, доказал ошибочность ряда предположений Аристотеля и описал собственные выводы с помощью математических уравнений. Вскоре немецкий ученый Иоганн Кеплер сформулировал знаменитые законы движения планет.

Какое отношение эта история имеет к ЧД, гравитационным волнам и загадкам пространственно-временного континуума? Самое непосредственное. Коперник, Галилей и Кеплер заложили фундамент, на котором Исаак Ньютон выстроил теорию всемирного тяготения, впервые опубликованную в 1678 г. А теория относительности Альберта Эйнштейна – послужившая научной основой фильма «Интерстеллар» – заменила идеи Ньютона. Мы способны постигать мир, лишь совершенствуя работу других. Хрустальные сферы Аристотеля и «кротовые норы» Кипа Торна связаны великой дугой научного постижения и открытий.

Следующая революция свершилась в начале XVII в. Это была революция инструментов. Телескоп изобрел датский изготовитель очков Ханс Липперхей, но первым применил Галилей, открывший кратеры и горы на Луне, темные пятна на Солнце, спутники Юпитера и бесчисленные звезды в Млечном Пути. Впоследствии все более крупные телескопы рассказали нам о существовании двойных звезд, астероидов, туманностей и галактик – а также, разумеется, ЧД. Без телескопа астрономия до сих пор пребывала бы в зачаточном состоянии.

_________

Давайте совершим краткую виртуальную экскурсию по космосу, чтобы убедиться, что верно представляем себе общую картину[5]5
  Прекрасный обзор истории астрономии: Тимоти Феррис. Становление Млечного Пути (Timothy Ferris, Coming of Age in the Milky Way. New York: William Morrow & Co., 1988).


[Закрыть]
.

Земля – это планета. Наряду с другими семью планетами она обращается вокруг Солнца. Четыре внутренние планеты (Меркурий, Венера, Земля и Марс) невелики и состоят из металлов и скальных пород. Четыре внешние (Юпитер, Сатурн, Уран и Нептун) огромны; их преимущественный состав – газ и лед. Между орбитами Марса и Юпитера расположен пояс астероидов – каменистых остатков процесса формирования Солнечной системы. За Нептуном – еще один пояс остаточного происхождения, включающий шарики льда и заледеневшие карликовые планеты, самой крупной из которых является Плутон.

Взгляните на небо днем, и вы увидите огромную сферу раскаленного газа – Солнце[6]6
  Не стоит смотреть на дневное солнце без специальных защитных фильтров – это опасно для глаз. – Прим. ред.


[Закрыть]
. Планеты Солнечной системы получают свет и тепло только от Солнца. Ночью на небе видны тысячи других «солнц» – звезды. Они кажутся маленькими, бледными и холодными, но только потому, что находятся чудовищно далеко. Солнце на подобном расстоянии также выглядело бы крохотным пятнышком.

В главе 5 я расскажу о звездах намного больше. Пока просто запомним, что каждая звезда является «солнцем» и что большинство из них, вероятно, имеют собственные системы планет. На данный момент открыто значительно больше 3000 экзопланет[7]7
  Современный взгляд на Вселенную для широкого круга читателей: Нил Деграсс и др. Добро пожаловать во Вселенную: Астрофизический обзор. (Neil deGrasse Tyson, Michael A. Strauss, and J. Richard Gott, Welcome to Universe: An Astrophysical Tour [Princeton, NJ: Princeton University Press, 2016]).


[Закрыть]
.

Очень жаль, что мы не можем отправиться к звездам и изучить их вблизи, во всяком случае в обозримом будущем. Даже свету, движущемуся со скоростью 300 000 км/с, требуется 4,3 года, чтобы дойти от Солнца до ближайшей звезды Проксима Центавра. Поэтому астрономы говорят, что Проксима Центавра находится на расстоянии 4,3 св. лет. (Один световой год равен 300 000 × 60 × 60 × 24 × 365,25 км. Это почти 9,5 трлн км.)

Вы когда-нибудь пытались считать звезды на ночном небе? Невооруженным глазом видно несколько тысяч, в зависимости от того, насколько темным является небо. Большинство находится в нескольких десятках или сотнях световых лет – невероятно далеко для большинства людей, но относительно близко с точки зрения астрономов. Для нас это космическое подворье.

Огромное большинство звезд нашей галактики Млечный Путь находится гораздо дальше. Их можно увидеть только в телескоп. Они имеют различные цвета и размеры, а их названия – красные карлики, белые карлики, желтые субгиганты, голубые сверхгиганты – наводят на мысль об обитателях сказочного леса. Их очень много. В настоящее время астрономы считают, что Млечный Путь включает несколько сот миллиардов звезд. Одна из них – наше Солнце.

Это еще не все. Млечный Путь не единственная галактика, во Вселенной их множество. Величественные спирали, например Млечный Путь и туманность Андромеды, гигантские эллиптические скопления старых звезд, карликовые галактики неправильной формы – это ошеломляющее разнообразие и ошеломляющее множество в пространстве протяженностью многие миллиарды св. лет.

В декабре 1995 г. астрономы впервые направили космический телескоп «Хаббл» на крохотную область неба, казавшуюся пустой. Затворы фотокамеры оставались открытыми 10 дней. Так было сделано потрясающее фото более тысячи бледных далеких галактик в области, которую можно было бы заслонить головкой булавки, зажатой в вытянутой руке. Сместившись вправо или влево на расстояние, равное диаметру булавочной головки, мы получили бы изображение еще тысячи отдаленных галактик.

Итак, современникам наблюдаемая Вселенная видится большой, темной, холодной и пустой. Но повсюду в космическом пространстве разбросано около 2 трлн галактик, сгруппированных в скопления и кластеры. Вы оказались далеко в космосе и хотите найти дорогу домой? Надеюсь, вы обзавелись сверхточной навигационной системой – на «космических хайвеях» нет дорожных указателей. Проще нашарить хрестоматийную иголку в стоге сена.


Страницы книги >> 1 2 3 4 5 6 | Следующая
  • 4.6 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации