Текст книги "Физика: Парадоксальная механика в вопросах и ответах"
Автор книги: Гулиа Нурбей
Жанр: Физика, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 2 (всего у книги 6 страниц) [доступный отрывок для чтения: 2 страниц]
2. Инерция и инерциальные системы
2.1. Вопрос. По океану движется корабль, сила тяги винта которого уравновешена сопротивлением воды, вследствие чего корабль движется равномерно – с постоянной по величине скоростью. Можно ли сказать, что это – движение по инерции?
Ответ. Нет, этого сказать нельзя, потому что корабль движется не по прямой, а по кривой, близкой к окружности – поверхности океана. На него действует центростремительная сила – сила тяжести, поэтому он не сохраняет своего состояния по отношению к инерциальной системе отсчета. Если бы этот корабль двигался так же равномерно, но по прямой, тогда это движение было бы эквивалентно покою или движению по инерции. Заметим, что в этом вопросе серьезную ошибку допускал Галилей, считая, что покою эквивалентно движение именно по окружности.
2.2. Вопрос. Кто первым сформулировал сущность закона инерции?
Ответ. Достаточно точную формулировку закона инерции до Ньютона дал философ и математик Рене Декарт (1596–1650), современник Галилея. Декарт так же, как и Галилей, не знал о законе всемирного тяготения и описал этот закон интуитивно, по наитию. В 1644 году в своей книге «Начала философии», он так выразил законы инерции: 1) всякая вещь продолжает по возможности пребывать в одном и том же состоянии и изменяет его не иначе, как от встречи с другой; 2) каждая материальная частица в отдельности стремится продолжать дальнейшее движение не по кривой, а исключительно по прямой.
2.3. Вопрос. Как экспериментально доказать, что движение по кривой не может быть инерционным, и кто первым сделал это?
Ответ. Голландский ученый Христиан Гюйгенс (1629–1695), изучая движение маятника, установил, что массивное тело, подвешенное на нити и движущееся по окружности, например маятник, нагружает нить помимо своей силы тяжести G (рис. 4) дополнительной силойF, которую Гюйгенс назвал центробежным стремлением или центробежной силой. (Во времена Гюйгенса любили называть силой все, что угодно, начиная от мощности и кончая душевным стремлением). Эту дополнительную силу чувствует каждый, кто раскачивается на кольцах, трапеции, качелях, «тарзанке» и т. п.
Рис. 4. Схема действия сил в маятнике.
Наличие этой дополнительной силы, растягивающей нить, опровергает предположение Галилея, а ранее – и Аристотеля, о «естественном» круговом движении. Движение по кругу, оказывается, не может быть естественным – инерционным, потому что к телу, сворачивающему с прямого пути, должна быть приложена со стороны связи (нити) сила, направленная к центру кривой – центростремительная сила, также равная по модулю F. Такой центростремительной силой является, к примеру, сила тяготения, не позволяющая планетам «разбежаться» по прямым. Сила эта вызывает центростремительное ускорение (которое также называют нормальным), равное
где v – линейная скорость тела; / – длина нити.
Величина центростремительного ускорения была впервые определена Гюйгенсом [14]. Величина же центростремительной силы по второму закону Ньютона равна
где т– масса тела.
Следовательно, инерционное движение может быть только прямолинейным, а для того чтобы тело (точка) свернуло с прямолинейного пути, к нему должна быть приложена внешняя центростремительная сила.
2.4. Вопрос. Что такое «инерциальная система отсчета»?
Ответ. Это такая абстрактная система отсчета, которая считается неподвижной или движущейся равномерно и прямолинейно. Если это движение происходит со скоростями, далекими от скорости света, то отличить любым механическим экспериментом неподвижную систему от движущейся равномерно и прямолинейно невозможно. В инерциальных системах (их может быть множество) соблюдается закон инерции. Иначе говоря, тело, на которое не действуют никакие неуравновешенные силы, неподвижно относительно инерциальной системы отсчета.
Абсолютно точная инерциальная система невозможна в нашем реальном мире. Систему отсчета, близкую к инерциальной, можно получить, поместив ее центр в центр Солнца (а точнее – в центр масс Солнечной системы), а оси направив на три условно неподвижные звезды. Для более грубых целей, например, технических задач, центр системы можно перенести в центр Земли, а оси направить на те же звезды. В очень грубых случаях, когда ошибки будут видны, как говорится, «на глаз», можно эту систему связать с Землей, считая ее не только неподвижной в орбитальном движении вокруг Солнца, но и неподвижной в собственном (суточном) вращении.
На самом деле, система, связанная с Землей, неинерциальна. На тела в ней действуют силы, которых в природе не существует – силы инерции. Поэтому на экваторе вес тела меньше, чем на полюсе; реки подмывают в северном полушарии правые берега, а в южном – левые; снаряд, выпущенный из пушки со строго вертикальным стволом, падая, не попадет обратно в ствол, как это должно было бы случиться в инерциальной системе, а отклонится в сторону и т. д.
Инерциальные системы отсчета в физике часто называют галилеевыми системами. Но Галилей предполагал естественным, инерционным отнюдь не прямолинейное, а круговое движение, то есть то самое, где «оживают», становятся как бы реальными эйлеровы силы инерции. Если уж нужно назвать инерциальные системы отсчета чьим-то именем, то, наверное, справедливее было бы назвать их именем Декарта (см. вопрос 2.2).
Роль инерциальной системы отсчета в механике становится достаточно понятной только после тщательного изучения фундаментального свойства материи – инерции.
2.5. Вопрос. В древнем мире люди прекрасно знали, что некоторые тела продолжают свое движение даже после того, как силы перестают на них действовать. Чем же они объясняли это движение «по инерции», как сказали бы мы сегодня?
Ответ. Древние связывали движение тел только с приложением к ним сил. Нет сил – нет и движения. Но опыт подсказывал другое – брошенный камень продолжает свой полет уже после того, как рука перестала касаться его. Стрела, выпущенная из лука, пролетает большое расстояние уже тогда, когда тетива перестала давить на нее. Что же заставляет эти тела двигаться?
Виднейший античный ученый Аристотель предложил свою гипотезу такого движения без действующих на тело сил – «теорию антиперистасиса». В момент бросания камня или выстрела из лука рука или тетива приводят в движение не только камень или стрелу, но и окружающий эти предметы воздух. Этому воздуху якобы сообщается некий «виртус мовенс» (современного трактования этого термина нет, скорее всего, сюда подходит современное понятие импульса), который продолжает толкать тело и дальше. Постепенно, при передачах этого «виртус мовенс» от тела воздуху и обратно, часть его теряется, и движение тела замедляется.
Ясно, что в пустоте такого движения происходить не должно, хотя там из-за отсутствия сопротивления среды свойство инерции проявляется наиболее очевидно.
Но древние (как, впрочем, и все ученые до Торричелли), пустоты не видели и не представляли себе ее. Аристотель даже издевался над теми, кто пытался использовать понятие пустоты.
«Это место без помещенных туда тел», – так шутливо характеризовал пустоту Аристотель.
Таким образом, в античном мире понятие инерции было практически не осознано. Потребовалось почти два тысячелетия, чтобы осознать и четко выразить это фундаментальное, пожалуй, основное свойство материи.
2.6. Вопрос. В научной и технической литературе часто используется термин «силы инерции». Реальны или фиктивны эти силы?
Ответ. Одним из первых классиков математики и механики, который подчеркивал нереальность сил инерции, был Леонард Эйлер (1707–1783). Он писал: «Иногда пользуются выражением „сила инерции“, так как сила есть нечто противодействующее изменению состояния. Но если под силой понимать какую-то причину, изменяющую состояние тела, то здесь ее нужно понимать совсем не в этом смысле: проявление инерции в высшей степени отлично от того, которое свойственно обычным силам. Поэтому для избежания какой-либо путаницы слово „сила“ не будем употреблять и будем рассматриваемое свойство тел называть инерцией» [27].
Однако как ни боялся Эйлер путаницы, она все-таки произошла.
«Виновными» в этой путанице оказались французские математики и механики Жан Лерон Даламбер (1717–1783) и Жозеф Луи Лагранж (1736–1813). Первый сформулировал свой принцип, а второй математически его обработал, так что в современной формулировке он звучит так: «Если в любой момент времени к каждой из точек системы, кроме фактически действующих на нее внешних и внутренних сил, приложить соответствующие силы инерции, то полученная система сил будет находиться в равновесии и к ней можно будет применять все уравнения статики» [25].
Пожалуй, ни одно из положений механики не вызывало, да и сейчас не перестает вызывать столько споров и путаницы, как принцип Даламбера. В 20-е годы прошлого века против него выступали философы, обвиняя его автора в недиалектично сти: по принципу Даламбера изучение динамики сводится к исследованию статики, представляющей собой частный случай динамики. В 30-е годы возникла дискуссия о силах инерции между инженерами-практиками и механиками-теоретиками. Практики утверждали, что силы инерции реальны и именно они производят те действия, которые тела совершают «по инерции».
Последняя из этих дискуссий состоялась в 1983 году в актовом зале МВТУ им. Баумана и закончилась убедительной победой сторонников фиктивности сил инерции.
Каков же современный взгляд на реальность сил инерции? Исчерпывающий ответ на этот вопрос дал академик А. Ю. Ишлинский [17]: «Реально существующими объявляются лишь силы, вызывающие ускорения материальных точек и тел относительно „абсолютной“ системы координат (инерциальной системы отсчета – Н. Г.). Они выражают меру механического взаимодействия тел в природе… Следует отличать так называемые даламберовы силы инерции от сил инерции, вводимых при рассмотрении движения материальных точек и тел по отношению к подвижным системам координат. Последние будут именоваться эйлеровыми силами инерции. И даламберовы, и эйлеровы силы инерции не являются силами физическими и в этом смысле нереальны. Введение этих несуществующих сил чисто условное…»
Тем не менее в технической литературе существует огромное количество ошибок этого плана. Например, при изучении движения гибких связей – ремней, цепей – по криволинейным траекториям, силу, действующую на элемент массы, в учебниках чаще всего направляют не в сторону нормального ускорения, а в противоположную. Между тем, учащиеся из курса физики уже знают, что сила должна быть направлена в ту же сторону, что и вызываемое ею ускорение, согласно второму закону Ньютона. Возникает путаница, которой так боялся Эйлер!
Этому вопросу следует уделить в школе повышенное внимание, особенно со школьниками, которые в дальнейшем будут обучаться в технических вузах.[1]1
Гулиа Н. В. Правильно трактовать явление инерции. – Вестник высшей школы. – 1983. – № 5.
[Закрыть]
2.7. Вопрос. Что такое инерцоид?
Ответ. Самым «вредным» последствием признания «реальности» сил инерции являются так называемые инерцоиды, или безопорные движители. Согласно определению одного из создателей инерцоида «это механизм, осуществляющий самостоятельное перемещение, независимое от окружающей среды, преодолевая ее сопротивление». Конечно же, это определение некорректно.
В Российской государственной библиотеке даже заведен новый библиографический раздел: «Инерцоиды. Их теория.»
Созданием конструкций «безопорных движителей» и их теории заняты тысячи, если не более, человек только в России – почти столько же, сколько занимаются «вечными двигателями». Изобретатели получают патенты, изготавливают на заводах опытные образцы; публикуют статьи и даже книги по этому вопросу.
Каким же образом должны, по замыслу изобретателей, работать инерцоиды? Движение инерцоида иллюстрирует рис. 5. Если бить молотком по заднему краю санок, то они толчками будут двигаться вперед. То же самое произойдет и с колесной тележкой. Если в этом опыте человека заменить механизмом, то получится инерцоид.
Рис. 5. Схема, поясняющая движение инерцоида.
Действие самых различных инерцоидов, как бы сложны они ни были, сводится к одному: созданию кратковременного импульса, но с развитием большой силы, в одну сторону, и длительного, но с малой силой – в другую. Сумма импульсов равна нулю, и машина одними внутренними силами с места не сдвинется. Хитрость здесь в том, что длительность второго импульса можно сделать весьма большой, а силу – очень малой, меньше любого, даже очень незначительного трения. Тогда механизм и не сдвинется во время отведения молотка, а в сторону коротких и резких импульсов будет продвигаться толчками.
Таким образом, реально инерцоид движется только из-за сопротивления окружающей среды, например, сил трения, удерживающих его от движения назад. Создатели же инерцоидов отрицают необходимость каких-либо внешних сил для их движения, приписывая весь эффект действию «реальных» сил инерции, и планируют их применение главным образом для передвижения в космосе, где нет окружающей среды. Использование же инерцоидов в реальной сопротивляющейся среде их не интересует, хотя такие машины давно созданы и работают.
2.8. Вопрос. Какие устройства применяют «принцип инерцоида» для работы в реальных условиях?
Ответ. Такие устройства, называемые обычно виброходами, достаточно широко используются. В 1927 году в России был получен патент на машину, в которой эксцентрично укрепленные вращающиеся грузы передвигают машину прыжками по земле. В 1939 году в Институте механики АН СССР был разработан виброход (по принципу, показанному на рис. 5), а в институте НАМИ – импульсно-фрикционный движитель, который аналогичным образом перемещался по дороге, причем при движении вперед основание «отрывалось» от дороги, а при импульсе назад – прижималось к ней, чтобы машина не дала хода назад.
Более того, созданы устройства аналогичного действия, пробивающие себе ходы в земле для прокладки кабелей и других коммуникаций под насыпями, путями и т. д.
Вибромолоты, устанавливаемые на сваи, тоже относятся к описанному типу устройств, причем этими же вибромолотами можно не только забивать, но и вытаскивать сваи. Надо сказать, что вытаскивание сваи вибромолотом, закрепленным на ее вершине – зрелище поистине фантастическое!
А совсем недавно найдено еще одно неожиданное применение устройств подобного рода. В 2003 году автором вместе с австралийскими врачами запатентована самоходная «виброкапсула», перемещающаяся в кишечнике человека для его обследования. Для перемещения в петлях кишечника, пожалуй, другой способ движения невозможен. Устройство было испытано в Австралии и показало хороший результат.
2.9. Вопрос. Что такое масса гравитационная и масса инертная? Как соотносятся между собой эти массы?
Ответ. Для определения массы тела в физике имеются две основные зависимости. Из второго закона Ньютона массу можно определить как
где F – сила, действующая на массу т;
a – ее ускорение.
Таким образом определяется инертная масса, так как в основе этого закона лежит свойство инертности.
Из закона всемирного тяготения, также открытого Ньютоном, массу т, например падающего у поверхности Земли тела, можно определить как
где F– сила тяжести тела;
g – ускорение свободного падения, равное GM/R2, где G – гравитационная постоянная, М – масса Земли, R – радиус Земли.
При постоянных G, М, R ускорение свободного падения у поверхности Земли g постоянно. Однако масса, определенная из выражения (2.6), уже не инертная, а гравитационная. Так равны ли эти массы – инертная и гравитационная, или нет?
Доказательство их равенства может быть получено из следующего рассуждения. Если в вакууме одновременно сбросить на Землю два тела, одно из которых массивнее другого, то оба тела будут падать с одинаковым ускорением. Так как для обоих тел а – g, следовательно, и масса инертная равна массе гравитационной
Как это ни удивительно, проводились достаточно хитроумные и дорогостоящие опыты, подтверждающие равенство инертной и гравитационной масс с точностью до 10-11. Эта точность лишний раз свидетельствует о том, что инертная и гравитационная массы эквивалентны друг другу, попросту – это одно и то же. На этом «принципе эквивалентности» Альберт Эйнштейн (1879–1955) построил свою общую теорию относительности [24].
3. Вращение и инерция
3.1. Вопрос. Можно ли вращаться «по инерции»? Чем отличается инерция прямолинейного движения от инерции вращения?
Ответ. С первого взгляда вращение даже нагляднее демонстрирует свойства инерции, чем прямолинейное движение. Вращающийся в вакууме на магнитной подвеске маховик может двигаться годами, так как внешние воздействия на него сведены к минимуму [11, 12].
Ньютон, поясняя открытый им закон инерции, дает такое разъяснение [20]: «Волчок, коего части вследствие взаимного сцепления, отвлекают друг друга от прямолинейного движения, не перестает равномерно вращаться, поскольку это вращение не замедляется сопротивлением воздуха». Это фраза Ньютона заставляет серьезно задуматься над поставленным вопросом.
Однако, строго говоря, движение по инерции может быть только равномерным и прямолинейным. Значит, вращения по инерции в принятой нами ньютоновой механике быть не может. Но ведь твердое массивное тело сохраняет состояние покоя или равномерного вращения, пока его не выведет из этого состояния момент внешних сил. Стало быть, фактически и здесь имеет место явление инерции, хотя и отличное от классического случая. Что же общего и в чем различие между инерцией вращения и инерцией при прямолинейном движении?
Инертность массивной точки (тела) зависит только от ее массы. Масса является мерой инертности тела при поступательном, в том числе и прямолинейном, движении. Значит, при таком движении на инерцию не влияет распределение масс в теле, и это тело можно смело принять за материальную (массивную) точку. Масса этой точки равна массе тела, а расположена точка в центре масс или центре инерции тела. Если же вращать вокруг вертикальной оси Z стержень с насаженными на него массивными грузами (рис. 6), то можно заметить, что пока грузы находятся близ центра, раскрутить стержень легко. Но если грузы раздвинуть, то раскрутить стержень станет труднее, хотя масса его не изменилась.
Рис. 6. Схема изменения момента инерции тела.
Стало быть, инертность тела при вращении зависит не только от массы, но в большей степени от распределения этой массы относительно оси вращения. Мерой инертности тела при вращении является осевой момент инерции I, равный сумме произведений масс т всех частиц тела на квадраты их расстояний h от оси вращения:
Осевой момент инерции играет при вращательном движении ту же роль, что и масса при поступательном (прямолинейном), и таким образом, он является мерой инертности (инерции) тела при вращательном движении.
Как мы знаем, закон инерции устанавливает эквивалентность относительного покоя и равномерного прямолинейного движения – движения по инерции. Нельзя никаким механическим опытом определить, покоится ли данное тело или движется равномерно и прямолинейно. Во вращательном движении это не так. Например, совсем не безразлично, покоится ли волчок, или вращается равномерно с постоянной угловой скоростью. Как отмечал А. Ю. Ишлинский [17], угловая скорость твердого тела является величиной, характеризующей его физическое состояние. Угловую скорость можно измерить, например, с помощью определения упругих деформаций тела, без какой-либо информации о положении тела по отношению к «абсолютной» системе координат. Поэтому термин «абсолютная угловая скорость тела» в отличие от «абсолютной скорости точки» должен употребляться в прямом смысле (без кавычек).
Таким образом, механические явления в покоящейся и вращающейся системах будут протекать по-разному, не говоря уже о том, что если тело достаточно сильно раскрутить, то его разорвет на части из-за возникших в нем напряжений.
Еще одно отличие состоит в том, что прямолинейное равномерное движение и покой эквивалентны, а вращение, даже с постоянной угловой скоростью, может быть четко отграничено не только от покоя, но и от вращения с другой угловой скоростью.
Здесь уместно упомянуть о взглядах австрийского физика Эрнста Маха (1838–1916), оказавшего большое влияние на формирование принципа эквивалентности Эйнштейна. Мах «подбором» соответствующей системы координат стремился придать законам механики такой вид, чтобы они не зависели от вращения. Что получилось бы, если бы ему это удалось? Давайте поместим быстро вращающегося наблюдателя на неподвижный маховик. Тогда можно сказать, что относительно наблюдателя маховик быстро вращается, может, даже быстрее, чем позволяет его прочность. Но маховик не разорвется, хотя наблюдателю кажется, что на него действуют огромные напряжения. А сам вращающийся наблюдатель может пострадать, так как при вращении именно в нем возникают механические напряжения.
3.2. Вопрос. Можно ли сформулировать законы инерции вращения аналогично первому закону Ньютона?
Ответ. Можно взять на себя смелость по образу и подобию первого закона Ньютона сформулировать «закон» инерции вращательного движения: «Изолированное от внешних моментов абсолютно твердое тело будет сохранять состояние покоя или равномерного вращения вокруг неподвижной оси до тех пор, пока приложенные к этому телу внешние моменты не заставят его изменить это состояние».
Почему же абсолютно твердое тело, а не любое? Потому, что у нетвердого тела из-за вынужденных деформаций при вращении изменится момент инерции, а это равносильно изменению массы точки для первого закона Ньютона.
В случае вращательного движения, если момент инерции непостоянен, придется принять за константу не угловую скорость, а произведение угловой скорости ю на момент инерции /– так называемый кинетический момент К. В этом случае «закон» инерции вращения примет более общую форму: «Изолированное от внешних моментов тело будет сохранять вектор своего кинетического момента постоянным». Если же тело вращается вокруг неподвижной оси: «Изолированное от внешних моментов относительно оси вращения тело будет сохранять кинетический момент относительно этой оси постоянным». Эти законы, правда, в несколько иной формулировке, называются законами сохранения кинетического момента.
3.3. Вопрос. Земля и Луна вращаются вокруг общего центра масс. Действуют ли на эти небесные тела центробежные силы?
Ответ. Представление, что при вращении материальных точек и тел вокруг оси или неподвижной точки на них должны действовать центробежные (т. е. направленные от центра вращения) силы, является обывательским заблуждением.
Например, и на Землю, и на Луну действуют силы тяготения, направленные друг к другу, а следовательно, к центру вращения (рис. 7). Каких-либо сил, направленных от центра, здесь вообще нет. Чтобы тела, движущиеся по инерции, т. е. равномерно и прямолинейно, свернули с этого пути и стали двигаться по кривым, на них должны подействовать центростремительные, т. е. направленные к центру вращения, силы. Такими являются силы тяготения.
Рис. 7. Схема сил, действующих на систему «Земля – Луна».
В случае, если вращается точка А, привязанная к опоре О на гибкой невесомой связи – нити (рис. 8, а), то, пренебрегая силой тяжести (допустим, опыт поставлен в невесомости), можно сказать, что на эту точку также действует центростремительная сила Fц. На саму же нить, как на связь, со стороны точки А действует направленная от центра реакция R1 = Fц, а со стороны опоры О – сила R2 = Fц (рис. 8, б). На опору О действует сила Fц, направленная от центра. На нить действует уравновешенная система сил, которая не может влиять на движение точки А.
Рис. 8. Силы, действующие на тела во вращающейся системе: а – силы, действующие на вращающуюся по окружности точку А и опору О; б – силы, действующие на связь.
В некоторых учебниках, например, для школ с углубленным изучением физики [26, с.254] специально выделено, что «центробежные силы инерции действуют не на все тела на поверхности Земли». Такая формулировка означает, что центробежные силы существуют и действуют на некоторые тела. Разумеется, это неверно.
3.4. Вопрос. Почему при быстром вращении тела оно испытывает механические напряжения и может даже разрушиться, ведь никакое другое тело с ним не контактирует, на него не действуют никакие силовые поля и т. д.?
Ответ. Действительно, если опыт по вращению, допустим, металлического кольца поставить в невесомости и в вакууме, то с этим телом не будет взаимодействовать никакое другое тело, даже воздух. Разогнать это кольцо можно вращающимся электромагнитным полем (например, возникающим в статоре асинхронного электродвигателя), особенно если кольцо стальное. После окончания разгона свободно вращающееся с угловой скоростью ω кольцо будет обладать кинетической энергией Е:
и будет растягиваться механическим напряжением σ:
где I – осевой момент инерции кольца;
ρ – плотность материала кольца;
v – линейная скорость кольца.
Чем же вызвано это напряжение? Выше мы видели, что на связь – нить (см. рис. 8, а, б) действуют растягивающие усилия, вызываемые точкой А, вращающейся вокруг опоры О. Ведь именно связь, действуя на точку А центростремительной силой Fц, постоянно сворачивает ее с естественного прямолинейного пути. В этом случае масса (точка А) и связь (невесомая нить) четко выделены. Но если точку А устранить, вместо нити взять массивное тело – стержень или цепь – и вращать его вокруг точки О, то картина усложнится.
В таких случаях, когда связь сама обладает массой, удобно представить ее в виде невесомой связи (нити), нагруженной отдельными массивными точками (рис. 9).
Рис. 9. Невесомая связь – нить, нагруженная точечными массами.
Если число точек невелико, центростремительные силы, действующие на эти точки, легко определить: в точке 1 это Fц1, B точке 2 – сумма двух сил (Fц1 + Fц2), а в точке 3 она максимальна – сумма трех сил (Fц1 + Fц2 + Fц3). Отсюда легко перейти к случаю, когда масса распределена по длине связи равномерно.
Так и с вращающимся кольцом – если представить, что его заменяет многоугольник из невесомых нитей с помещенными в вершинах углов грузами т (рис. 10, а), то выделив один из грузов (рис. 10, б), можем определить силы Fсв, действующие на груз (их реакции действуют на нить):
где Fц = mω2R или mv2/R, что следует из формулы (2.4).
Распределив грузы т по нити равномерно, получим массивное кольцо плотностью ρ, обладающее прочностью связи (рис. 11). Для простоты вычислений отбросим нижнюю половину кольца и обозначим через F растягивающие усилия, действующие с его стороны на верхнее полукольцо. Учитывая, что центр масс верхнего полукольца С расположен на расстоянии 2R/π вверх от центра О, нормальное ускорение этого центра масс:
Записываем второй закон Ньютона в проекции на направление нормального ускорения:
Учитывая, что напряжения σ = F/S, где S – площадь сечения кольца, масса полукольца М = πρRS, и что линейная скорость v = ωR, записываем с учетом (3.6):
Таким образом, получаем формулу (3.3).
Следовательно, вращающееся кольцо будет растягиваться с силой F и напряжениями σ даже без контакта с каким-нибудь другим телом. Аналогичным образом возникают напряжения во вращающихся телах любой конфигурации, например, в движущихся гибких массивных замкнутых связях – ремнях, цепях, а также маховиках – накопителях кинетической энергии.
Рис. 10. Схематичное представление вращающегося кольца: а – замкнутый вращающийся многоугольник с помещенными в вершинах углов точечными массами; б – силы, действующие на отдельный груз.
Рис. 11. Схема для определения напряжений во вращающемся кольце.
3.5. Вопрос. Как накопить во вращающемся маховике наибольшую кинетическую энергию?
Ответ. Кинетическая энергия вращающегося тонкого кольца массой т, как и для прямолинейно движущейся массы, пропорциональна квадрату его линейной (окружной) скорости:
Ведь и в том и в другом случаях масса т движется с одной и той же скоростью v. Разница лишь в том, что в случае прямолинейного движения в движущемся теле не возникает никаких напряжений, а при вращении кольца (как и ремня, цепи, любой плоской массивной замкнутой связи), в нем возникают напряжения, не зависящие от радиуса кольца и определяемые формулой (3.3). Следовательно, в прямолинейно движущейся массе можно беспредельно (в рамках классической механики) повышать скорость и кинетическую энергию. Во вращающейся же массе, в данном случае кольце, мы жестко лимитированы прочностью материала, причем и кинетическая энергия и напряжения в материале пропорциональны квадрату окружной скорости.
А если это будет не кольцо, а тело иной формы? Удастся ли при той же прочности материала накопить большую кинетическую энергию? Для анализа этого вопроса удобнее всего выразить энергию и прочность через удельные показатели – удельную энергоемкость е = Е/т и удельную прочность х = σ/ρ. Тогда для маховика в виде вращающегося кольца:
Для маховиков других форм коэффициент k будет принимать другие значения. Например, для диска с очень маленьким центральным отверстием он будет равен 0,3; для диска вообще без отверстия – 0,6. Самой лучшей формой маховика для накопления кинетической энергии является диск равной прочности. Такую форму имеют, например, диски паровых и газовых турбин – толстые в центре и тонкие на периферии.
3.6. Вопрос. Можно ли создать энергоемкий маховик с переменным моментом инерции?
Ответ. Устройство, изображенное на рис. 6, в принципе позволяет как накапливать кинетическую энергию, так и изменять момент инерции. Но из-за низкой прочности такая конструкция будет иметь ничтожную удельную энергоемкость. Если изготовить маховик из резины, то в процессе вращения его момент инерции будет расти тем более, чем больше угловая скорость маховика. К кинетической энергии при этом добавится потенциальная, накопленная при растяжении резины.
Но интерес представляют не маховики с «пассивным» изменением момента инерции, а те, у которых этот показатель можно менять принудительно. Для чего же это может потребоваться?
При постоянном кинетическом моменте маховика можно увеличивать момент инерции за счет уменьшения угловой скорости и наоборот. Пример – человек с гантелями в руках на так называемой платформе Жуковского – диске, закрепленном на стойке на подшипниках (рис. 12, а, б).
Рис. 12. Человек на платформе (скамье) Жуковского: а – с разведенными в сторону руками и большим моментом инерции; б – со сдвинутыми к центру руками и минимальным моментом инерции
Если человек, стоя на этой платформе с разведенными в стороны руками, вращается (рис. 12, а), то сведя руки с гантелями к центру (рис. 12, б), он снижает свой момент инерции, за счет чего значительно увеличивает угловую скорость. Маховики с регулируемым переменным моментом инерции могли бы обеспечить практически любую угловую скорость, необходимую рабочему органу машины, например, колесам автомобиля.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?