Электронная библиотека » Гульноза Умарова » » онлайн чтение - страница 3


  • Текст добавлен: 14 февраля 2023, 13:42


Автор книги: Гульноза Умарова


Жанр: Математика, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 15 страниц) [доступный отрывок для чтения: 4 страниц]

Шрифт:
- 100% +
Основная часть

Для построения измерителя влагомеров на полупроводниковых излучателях важнқм является свойство воды поглощать ИК – излучение определенной длины волны [4]. Все вещества и материалы обладает определенной гигроскопичностью и, следовательно, поглощают влагу из внешней среды. Анализ спектральных характеристик показал, что полосы поглощения лежат в пределах 0,76…0,97 и 1,19…1,94 мкм [5].

В таблице 1 приведены спектры поглощения воды и их принадлежность.



Из разных спектральных характеристик сухого вещества (рис. 1, кривая 1) и при влажности 9% Н2О (кривая 2) следует, что на длине волны 1,94 мкм вода обладает значительным поглощением [6]. В измерителе влажности на полупроводниковых излучателях в качестве опорного канала использованы светодиоды со спектрами излучения 2,2 мкм, а в качестве измерительного канал светодиоды со спектрами излучения 1,94 мкм).


Рис. 1. Спектры излучения светодиодов LED1, LED2 и спектральная чувствительность фотодиода PD24.


Разработаны светодиоды на основе полупроводникового соединения GaSb и его твердых растворов GaInAsSb и AlGaAsSb для измерения влажности хлопка – сырца. Светодиодные структуры изготовлены методом ЖФЭ и выращены на подложках GaSb n-типа проводимости, легированы Te до концентрации электронов 8·1017 см-3. Излучатели для измерения влажности хлопка-сырца состояли из активного слоя n – GaInAsSb (Eg = 0,51 эВ) толщиной 2—3 мкм и выращены на подложках n – GaSb а также легировались Te до концентрации носителей заряда 9·1017 см-3, широкозонный эмиттер p – AlGaAsSb, легирован германием до концентрации 5·1018 см-3 (рис.2).


Рис.2. Светодиод на основе GaSb для измерения влажности.


Светодиоды на основе полупроводникового соединения GaSb для измерения влажности хлопка – сырца, при температуре 24 0С имели внешний квантовый выход фотонов 5,9 – 6,5% и оптическую мощность 3,9 мВт в постоянном токе.

Для максимального вывода оптического излучения использован корпус ТО-18 с параболическим отражателем, позволяющий сколлимировать излучение под углом 10—11о. На рис. 3 приведена конструкция ИК – светодиода:


Рис. 3. Светодиод с параболическим рефлектором: а) конструкция, б) спектры излучения, в) ВАХ (где:1 – светодиодный чип (1, 94 мкм), 2 – термохолодильник, 3 – светодиодный чип (2, 2 мкм), 4 – параболический рефлектор)


Светодиоды на основе двойной гетероструктуры GaAlAsSb/GaInAsSb/ GaAlAsSb, имели квантовый выход 5,8%, длину волны излучения 1,94 мкм для измерения влажности хлопка – сырца, на таблице 2 приведены её основные параметры.

Предложенной конструкции обеспечивается равные условия для двух кристаллов светодиода, таким образом устраняются временные и температурные нестабильности их основных параметров.



На рис. 3 приведена блок-схема цифрового измерителя влажности, которая состоит из следующих элементов: задающей генератор – ЗГ; триггер – Т; делитель частоты – ДЧ; дифференцирующие устройства – ДУ1, ДУ2; модулятор экспоненты – МЭ; эммитерный повторитель – ЭП; импульсный усилитель – ИУ; приемник излучения – ФП; малошумящий усилитель – МШУ; схема совпадения – СС; счетчик – СЧ; дешифратор – ДШ; индикатор – ИН; опорный светодиод – ИД1; измерительный светодиод – ИД2.


Рис.4. Блок схема измерителя влажности на полупроводниковых излучателях


Характерными особенностями измерителя влажности на полупроводниковых излучателях является высокая избирательность, чувствительность, точность и воспроизводимость измерений, а также возможность непрерывного неразрушающего контроля, бесконтактность и экспрессность анализа

Заключение

Для создания измерителя влажности на полупроводниковых излучателях определена оптимальная полоса поглощения, свободная от полосы поглощения мешающих компонентов l1 = 1.94 мкм.

В оптоэлектронном устройстве использованы в качестве излучающего диода на опорной длине волне светодиоды на основе GaAlAsSb/GaInAsSb/ GaAlAsSb (2.2 мкм), а излучающего диода на измерительной длине волны светодиоды на основе GaAlAsSb/GaInAsSb/GaAlAsSb (1.94 мкм).

Абсолютная погрешность результатов измерения содержания влаги составляло 0,5%.

Литература

1. Башкатов А. С., Мещерова Д. Н. «Основные тенденции развития оптоэлектронной техники до 2030 года,» Тезисы докладов Российской конференции и школы молодых ученых по актуальным проблемам полупроводниковой фотоэлектроники «Фотоника-2019», 2019, doi: 10.34077/rcsp2019—25. с.25—26.

2. Богданович М. В. «Измеритель содержания воды в нефти и нефтепродуктах на основе инфракрасных оптоэлектронных пар светодиод-фотодиод,» Журнал технической физики, 2017, doi: 10.21883/jtf.2017.02.44146.1791.

3. Машарипов Ш. М. Анализ современных методов и технических средств измерения влажности хлопковых материалов. // Приборы, 2016, №4., с 31—37.

4. Демьянченко М. А. Поглощение инфракрасного излучения в многослойной болометрической структуре с тонким металлическим поглотителем // Оптический журнал. – 2017. Том 84 – С. 48 – 56.

5. Rakovics V., Именков А. Н., Шерстнев В. В., Серебренникова О. Ю., Ильинская Н. Д., Яковлев Ю. П. «Мощные светодиоды на основе гетероструктур InGaAsP/InP,» fiz. i tekhnika poluprovodn., 2014.Т.48.с.1693—1697.

6. Артёмов В. Г., Волков А. А., Сысоев Н. Н. «Спектр поглощения воды как отражение диффузии зарядов // Известия Российской академии наук. Серия физическая, Известия Российской академии наук. Серия физическая. – 2018. – Т.82. – С. 67 – 71. doi: 10.7868/s0367676518010143.

УСТРОЙСТВА ДЛЯ ДИСТАНЦИОННОГО КОНТРОЛЯ ТЕМПЕРАТУРЫ НА ОСНОВЕ СВЕТОДИОДОВ (λ=2,0 мкм)

УДК 621.38

Кулдашов Оббозжон Хокимович
Доктор технических наук, профессор Научно-исследовательского института «Физики полупроводников и микроэлектроники» при Национальном Университете Узбекистана
Эргашев Дониёр Жамолиддин угли
Магистр 2 курса кафедры «Физики полупроводников и полимеров» физического факультета Национального Университета Узбекистана имени Мирзо Улугбека

Научно-исследовательский институт «Физики полупроводников и микроэлектроники» при Национальном университете Узбекистана

Аннотация. Предложено оптоэлектронное устройство для дистанционного контроля температуры малоразмерных объектов, которое может быть успешно использовано при исследовании температурных характеристик гелиотехнических установок.

Ключевые слова: температура, оптоэлектроника, датчик, контроль, светодиод, фотодиод, блок схема, конструкция.

Annotation. An optoelectronic device for remote temperature control of small-sized objects is proposed, which can be successfully used in the study of temperature characteristics of solar installations.

Keywords: temperature, optoelectronics, sensor, control, LED, photodiode, block diagram, design.


Устройство для дистанционного контроля температуры содержит объект контроля 1, который через модулятор 2 оптически связан с первым приемником излучения 3, выход которого через первый усилитель 4, первый амплитудный детектор 5 и первый интегратор 6, соединённый с первым входом устройства получения отношения сигналов 13, второй приемник излучения 7, выход которого через второй усилитель 8, второй амплитудный детектор 9 и второй интегратор 10 соединен со вторым входом устройства получения отношения сигналов 13 выход которого соединен с входом регистрирующего устройство 14, устройство управления источника колмированного излучения 12, вход которого соединен с выходом первого усилителя 4, а выход соединен с входом источника колмированного излучения 11, который через отражение от поверхности контролируемого объекта 1 оптически связан со вторым приемником излучения 7, электрическим двигателем 15, ротор, которого механически связан с осью вращения модулятора 2. На рис.4.13. показана конструкция модулятора. Здесь: 16-ось вращения модулятора; 17-модулирующие отверстия; 18-металлический диск. На рисунок 4.14 приведены временные диаграммы, поясняющие принцип работы предлагаемого устройства. На рис.1 приведена блок схема, а на рис 2 конструкция датчика.

Оптоэлектронное устройство работает следующим образом. Тепловой поток излучения ФПИ1 (λ) объекта контроля 1, который пропорционален его температуре, проходит дистанцию l, модулируется модулятором 2 и поступает на чувствительную площадь первого приемника излучения. Поток, достигающий чувствительную площадь первого приемника излучения, согласно с теории оптоэлектронных приборов определяется как:



где: τc (λ) – спектральный коэффициент пропускания атмосферы; Mко (λ) – спектральная плотность энергетической светимости, излучающая поверхности контролируемого объекта; Ако – площадь излучающей поверхности контролируемого объекта; DПИ1 – диаметр входного зрачка первого приемника излучения; l – расстояние между контролируемым объектом и первым фотоприемником.

На таблице 1 приведены основные характеристики фотодиодов

С учетом что



выражения (1) примет вид:



где: εко (λ) – спектральный коэффициент теплового излучения контролируемого объекта; MЧТ (λ) – спектральная плотность энергетической светимости черного тела. Учитывая, что приемник излучения работает в ограниченном спектральном диапазоне выражение (2) для длин волн λ1m которое соответствует максимуму чувствительности первого приемника излучений можно записать как:



где: ελ1mк0 – спектральный коэффициент теплового излучения контролируемого объекта на длинах волн λ1m; Mλ1mчт – спектральная плотность энергетической светимости черного тела на длинах волн λ1m; τλ1mс – коэффициент пропускания атмосферы на длинах волн λ1m.


Рис.1. Блок схема оптоэлектронного устройства.


Рис.2. Конструкция модулятора.


Рис.3. Временные диаграммы оптоэлектронного устройства.


Рис.4. Конструкция датчика.


С учетом закона Стефана– Больцмана что Mλ1mчт=σТ4 выражение (4) примет вид:



где: Т – температура контролируемого объекта; σ=5,6697*10—8 Вт*м-2-4 – постоянная Стефана-Больцмана.

Кроме этого на чувствительную площадь первого приемника излучений 3 воздействует тепловой поток излучения от модулятора 2 который может быт описан соотношением



где: ελ1mм0 – спектральный коэффициент теплового излучения модулятора на длинах волн λ1m; Tмо – температура модулятора; Амо – площадь излучаемой поверхности модулятора; lмо – расстояние между модулятором и первым приемником излучения.

Поэтому суммарный поток воздействующий на чувствительную площадь первого приемника излучения имеет вид.



Тогда напряжение на выходе первого приемника излучений определяется как:



или



где: – коэффициент передачи первого приемника излучения.

Напряжение соответствующее выражению (9) с выхода второго приемника излучения 3 усиливается первым усилителем 4, в результате чего на его выходе формируется переменный электрический сигнал (см. фиг.3.в) амплитуда которого определяется как:



где ky1 – коэффициент передачи первого усилителя 4.

Так как из-за использования дискового модулятора с симметричным модулирующими отверстиями, теплового излучения самого модулятора, который воздействует на чувствительную площадь первого приемника излучения в течение периода модуляции остается постоянным (см. рисунок 3 а) т.е.



Поэтому постоянная составляющего суммарного сигнала первого приёмника излучения 3 через усилитель переменного тока 4 не проходит. Т.е. амплитуда переменного составляющего усиленного сигнала является пропорциональным только лишь амплитуде потока Фλ1mПИ1.

Переменное составляющее усиленного сигнала детектируется первым амплитудным детектором 5. Детектированный сигнал (см. рисунок 3.д) с выхода первого амплитудного детектора 5 интегрируется первым интегратором 6 и подается на первый вход устройства получения отношения сигналов 13.

При этом напряжение, подводимое на первый вход устройства получения отношения сигналов 13, с учетом вышеизложенных может, быть описано выражением:



где k1=kПИ1kУ1kАД1kИНТ1 – общий коэффициент передачи блоков последовательно соединенных с первым приемником излучения 3, первого усилителя 4, первого амплитудного детектора 5 и первого интегратора 6; kАД1 – коэффициент передачи первого амплитудного детектора; kИНТ1 – коэффициент передачи первого интегратора.

При воздействии выходного сигнала первого усилителя 4 на вход устройства управления источника коллимированного излучении 12 на его выходе формируется противофазный электрический сигнал. Последний подается на вход источника коллимированного излучения 11 и вызывает на его выходе импульсный поток коллимированного излучения.

Сформированный поток, источником коллимированного излучения 11 наводится к площади контролируемого объекта 1. При этом поток достигающий поверхность контролируемого объекта 1 в случае, Ако≤Акиопределяется как:



где Аки – площадь поперечного сечения коллимированного излучения; τλ2mc – коэффициент пропускания атмосферы на длинах волн λ2m; Фоλ2 – начальный поток коллимированного излучения. При этом отраженный поток от поверхности контролируемого объекта 1 определяется как:



где γко – коэффициент отражения поверхности контролируемого объекта на длинах волн λ2.

При этом выражение для отраженного модулированного потока от поверхности контролируемого объекта и достигающего на чувствительную площадь второго приемника излучения 7 имеет вид:



где: DПИ2 – диаметр входного зрачка второго приемника излучения.

Кроме этого, в случае частичного совпадения спектр излучения контролируемого объекта со спектральной чувствительностью второго приемника излучений 7 на чувствительную площадь последнего воздействует немодулированный поток излучения от контролируемого объекта на длине волне λ2m.



где: ελ2mко – спектральный коэффициент теплового излучения контролируемого объекта на длинах волн λ2m;

Тогда суммарный поток излучения, воздействующий на чувствительную площадь второго приемника излучения 7 имеет вид.



Поэтому напряжение на выходе второго приемника излучений определяется как:



или



где kФП2 – коэффициент передачи второго приемника излучения.

Напряжение соответствующее выражению (18) с выхода второго приемника излучения 7 усиливается вторым усилителем 8 в результате чего на его выходе формируется переменный электрический сигнал (см. рис.3. г) амплитуда которого определяется как:



где ky2 – коэффициент передачи второго усилителя 8.

Так как в течение периода повторение модуляции Uλ2mПИ2 можно считать постоянным т.е. (см. фиг.3.б)



Поэтому постоянная составляющая суммарного сигнала второго приёмника излучения 7 через усилитель переменного тока 8 не проходит. Т.е. амплитуда переменного составляющие усиленного сигнала является пропорциональным только лишь амплитуде потока Фλ2mПИ2.

Переменное составляющее усиленного сигнала детектируется вторым амплитудным детектором 9. Детектированный сигнал (см. рисунок 3. е) с выхода второго амплитудного детектора 9 интегрируется вторым интегратором 10 и подается на второй вход устройства получения отношения сигналов 13.

При этом напряжение, подводимое на второй вход устройства получения отношения сигналов 13, с учетом вышеизложенных может, быть определено как:



где k2=kФП2kУ2kАД2kИНТ2 – общий коэффициент передачи блоков последовательно соединенных второго приемника излучения 7, второго усилителя 8, второго амплитудного детектора 9 и второго интегратора 10; kАД2 – коэффициент передачи второго амплитудного детектора; kИНТ2 – коэффициент передачи второго интегратора.

Известно, что у оптических приборов, предназначенных для измерения температуры в основном применяется прозрачная область спектра атмосферы. Поэтому для небольшой дистанции между объектом контроля и приемником излучений можно считать, что, τλ1mcλ2mc»1. Тогда при использовании идентичных электронных блоков для потоков излучения Фλ1mПИ1 и Фλ2mПИ2 имеем k1=k2. Поэтому на выходе устройства получения отношения сигналов 13, пропорционально температуре объекта контроля 1, формируется отношение напряжений:



или



Так как у солнечных параболоцилиндрических концентраторов коэффициент отражения в ближней и средней ИК области спектра является постоянным и составляет γλ2ко=0,1.

Тогда температура в локальной фокусной зоне солнечных параболоцилиндрических концентраторов определяется как:



Таким образом, из последнего выражения видно, что температура в локальной фокусной зоне солнечных параболоцилиндрических концентраторов пропорциональна отношению напряжений Uλ1m и Uλ2m, которая регистрируется регистрирующим устройством, где учитывается.

Литература

1. Эргашев С. Ф., Кулдашов О. Х. Контроль концентрации газов в геотермальной энергетике. НТЖ ФерПИ, 2014.№3. с 105—109.

2. Далиев С. Х., Насриддинов С. С., Кулдашов О. Х. Использование светодиодов (1,94 µm) для измерения влажности хлопка-сырца. Материалы международной конференции «Oптические и фотоэлектрические явления в полупроводниковых микро– и наноструктурах». Фергана, 2020, С.426—427.

3. Кулдашов О. Х. Оптоэлектронное устройство для дистанционного контроля температуры бунтов хлопка – сырца. Международная конференция «Геоинформационное обеспечение аэрокосмического мониторинга опасных природных процессов». Иркутск, НИУ,2010.

4. Безъязычная Т. В., Богданович М. В., Кабанов В. В., Кабанов Д. М., Лебедок Е. В., Паращук В. В., Рябцев А. Г., Рябцев Г. И., Шпак П. В., Щемелев М. А., Андреев И. А., Куницына Е. В., Шерстнев В. В., Яковлев Ю. П. Оптоэлектронные пары светодиод-фотодиод на основе гетероструктуры InAs/InAsSb/InAsSbP для детектирования углекислого газа. Физика и техника полупроводников, 2015, том 49, вып. 7. С1003—1006.

5. Jha S. et al.«Violet-blue LEDs based on p-GaN/n-ZnO nanorods and their stability // Nanotechnology. – 2011, doi: 10.1088/0957—4484/22/24/245202.

МАТЕМАТИЧЕСКИЕ НАУКИ

ПОПУЛЯРНЫЕ В СОВРЕМЕННОЙ НАУКЕ ПАРАДОКСЫ МАТЕМАТИКИ

УДК 520.254

Алиев Ибратжон Хатамович
Студент 2 курса факультета математики-информатики Ферганского государственного университета
Арипова Сайёра Боходировна

Педагог общеобразовательной школы №1 города Фергана

Аннотация. В фундаменте математики есть слабое место, из-за чего нельзя знать всё наверняка, всегда будут истинные утверждения, которые нельзя доказать, никто точно не знает, что это за утверждения, но они похожи на гипотезу о «числах близнецах». Так пары простых чисел, где одна из них больше другого на 2, например 11 и 13 или 17 и 19. Если идти выше по числовой прямой простые числа встречаются всё реже, не говоря уже о таких парах. Но гипотеза о простых числах гласит, что их бесконечно много. До сих пор никто ещё не смог это доказать или опровергнуть.

Ключевые слова: математика, расчёты, дискретная математика, логика.

Annotation. There is a weak spot in the foundation of mathematics, because of which it is impossible to know everything for sure, there will always be true statements that cannot be proved, no one knows exactly what these statements are, but they are similar to the hypothesis of «twin numbers». So pairs of prime numbers, where one of them is larger than the other by 2, for example 11 and 13 or 17 and 19. If you go higher up the numerical line, prime numbers are becoming rarer, not to mention such pairs. But the hypothesis about prime numbers says that there are infinitely many of them. So far, no one has been able to prove or disprove this yet.

Keywords: mathematics, calculations, discrete mathematics, logic.

Но поражает то, что это вероятнее всего никто и никогда это попросту не сможет сделать. Ведь точно известно, что в любой математической системе, где определены операции, всегда будут истинные утверждения, которые невозможно доказать. Самым лучшим примером является математическая модель игры «Жизнь», созданная математиком Джоном Конвеем в 1970-м году.

«Жизнь» разворачивается на бесконечном поле из квадратных ячеек, каждая из которых либо «жива», либо «мертва», в игре всего 2 правила: любая мёртвая клетка, имеющая 3 соседей – оживает и любая живая клетка, у которой меньше 2 или больше 3 соседей – умирает. Так можно задать начальную конфигурацию расположения точек и модель создаёт первое, второе, третье и последующие поколения. Всё происходит автоматически хотя правила простые, они порождают довольно сложное поведение, где возникают следующие ситуации:

1. Стабильные состояния, которые застывают на месте;

2. Зацикливаются в бесконечной петле, постоянно мерцая;

3. Убегают в бесконечном поле, подобно глайдерам;

4. Попросту взаимно уничтожаются;

5. Живущие вечно и создающие новые клетки.

И смотря на такие условия хочется предположить, что любое поведение можно предсказать, придут ли они в покой или будут бесконечно расти в зависимости от начальных условий. Но как бы это не было странным, сделать это не представляется возможным. То есть нельзя создать алгоритм, который находил бы ответ за конечный промежуток времени, не выполняя сам алгоритм, до какого-то момента, но даже при этом, возможно говорить только о конечном счёте времени, то есть до какого-то числа поколений, а не о бесконечности.

Но что ещё более удивительно – это то, что подобные неразрешимые системы не единичны и явно не редки. Можно привести плитки Вана, квантовую физику, продажа авиабилетов или же карточные игры. Но чтобы понять, как возникает неразрешимость в этих случаях, придётся вернуться во времена XIX века, когда в математике и случился этот раскол.

В 1874 году немецкий математик Георг Кантор опубликовал свою работу, дав начало «Теории множеств». Множества – это точно описанное собрание чего либо, к которым можно отнести всё что угодно – обувь, планетарии мира, людей. Но среди таких множеств есть и пустые – в них попросту ничего нет, но также есть и множества содержащие абсолютно всё – это универсальные множества.

Но Кантора интересовали не сколько множества вещей, сколько множества чисел, а именно множества натуральных чисел – это все целые, рациональных чисел – все числа, которые можно представить в виде дроби, сюда же входят и целые, а также входящие в множество рациональных – множество иррациональных чисел – число «пи», Эйлера, корень из двух, а также любое другое число, которое можно представить как бесконечную десятичную дробь. Вопрос Кантора заключался в том, чтобы определить каких чисел больше – натуральных или вещественных в промежутке от 0 до 1. С одной стороны, ответ кажется очевидным – обоих по бесконечности, то есть множества равны, но для демонстрации этого была создана некоторая таблица.

Идея таблицы предельно проста – каждому натуральному числу пусть соответствует определённое вещественное число в промежутке от 0 до 1. Но поскольку это бесконечные десятичные дроби их можно записать в случайном порядке, но самое главное, чтобы присутствовали абсолютно все и не было ни единого повторения. Если же в результате лишних чисел не остаётся при проверке некой супермашиной, то получалось, что множества одинаковые.

И даже если допустить, что это так, Кантор предлагает придумать ещё одно вещественное число следующим образом. Он прибавляет к первой цифре после запятой первого числа единицу, затем единицу ко второй цифре второго числа, единицу третьей цифре третьего числа и т.д., если попадается 9 отнять единицу, и получившееся число находится всё в том же промежутке между 0 и 1, при этом ни разу не повторяясь во всём списке, ведь от первого числа оно отличается первым, от второго вторым, от третьего третьим и т. д. числами до самого конца.

То есть от каждого числа оно отличается как минимум одной диагональной цифрой, отсюда и название – Диагональный метод Кантора, который доказывает, что между 0 и 1 есть больше рациональных чисел, чем всех натуральных. Получается, что бесконечности могут быть разными, откуда и вытекают понятия континуума, а также счётного и несчётного множества. И признаться, эта работа стала не плохим стрессом для математиков того времени, ибо уже на протяжении 2000 лет считавшаяся идеальной Евклидова геометрия, итак, переживала трудные времена благодаря Лобачевскому и Гауссу, открывшие неевклидову геометрию, это приводило к плохому определению предела – основам математического анализа.

А теперь господин Кантор решил внести и свой вклад в эти процессы, показывая, что бесконечность гораздо сложнее чем казалось. Из-за этого разгорелись не малые споры, поделив математиков на 2 лагеря – интуиционистов, которые считали, что работа Кантора кошмарны, а математика – это изобретение человеческого ума, а Канторовы бесконечности не могут просто быть. К большому сожалению, к ним относился и Анри Пуанкаре, написавший: «Потомки прочитают о теории множеств, как о хвори, которую им удалось побороть», а Леопольд Кроникер называл Кантора учёным-шарлатаном и растлителем молодых умов. А также старательно мешал его карьере.

Им противостояли формалисты, которые считали, что теория множеств поставит математику на чисто логическую основу. И их не официальным лидером был немецкий математик Дэвид Гильберт, в то время ставший живой легендой, с работами практически во всех сферах математики, создав концепции, ставшие основой квантовой механики, и он прекрасно знал, что работа Кантора гениальна. Ведь такая идея, строгой и чёткой системы доказательств, опирающаяся на теорию множеств смогла бы решить все математические трудности, и многие с ним соглашались. Это также доказывают его слова: «Никто не сможет изгнать нас из Рая, который создал Кантор».

Но в 1901 году Бертран Рассел указал на серьёзную проблему в теории множеств, ведь если множество может содержать что угодно, оно также содержит и другие множества и даже себя. К примеру, множество всех множеств, должно содержать и себя, как и множество множеств с более чем 5-ю или 6-ю элементами или множество всех множеств, содержащих себя. И если это принять, получается странная проблема, ведь как поступить с множеством всех множеств, которые себя не содержат?

Ведь если это множество не содержит себя, оно должно содержать себя, а если оно не содержит себя, то по определению, оно должно содержать себя. Получается парадокс само-референции, где множество содержит себя, только если оно себя не содержит и не содержит себя, только когда содержит. Но более популярна его аллегория, с городом, где живут одни мужчины и брадобрей должен брить только тех мужчин, которые не бреются сами, но сам брадобрей тоже мужчина и там же живёт. Но если он не бреет себя, значит его должен брить брадобрей, но он не может брить себя, поскольку он не бреет тех, кто бреется сам, получается, он должен брить себя только если он не бреет себя. И разумеется, интуитивисты были рады этому парадоксу.

Но последователи Гильберта решили эту проблему просто изменив определение на то, что множество всех множеств – это не множество, как и множество множеств, которое не содержит себя. И хотя «битва» была выиграна, само-референция оставалась и ожидала своего реванша.

Эта проблема возродилась с 60-х годах XX века, когда математик Хао Ванг размышлял о способах разложения разноцветной плитки задав следующие условия – совмещать можно края одного цвета, но вращать или переворачивать клетку нельзя. И тогда встаёт вопрос, можно ли по случайному набору плиток сказать можно ли замостить всю плоскость? Получается ли это сделать до бесконечности и на удивление, эта задача стала не разрешимой, подобно игре «Жизнь» и вся проблема вновь свелась к уже знакомой само-референции, о которой ещё только предстояло узнать.

И тогда Гильберт решил создать надёжную систему доказательств. Основная идея такой модели была ещё в древней Греции, где какое-то изначальное утверждение принималось за истину без доказательств – аксиому, к примеру, то что между двумя точками можно провести только одну прямую и на основе этих утверждений строятся доказательства из следствий. Так получается сохранить истинность утверждений, где если верны исходные – верны и новые.

Так Гильберт хотел получить систему символов – язык со строгим набором операций, где математические и логические утверждения можно было бы перевести на этот язык, и фраза если бросить книгу – она упадёт сводиться к (1).



Которое читалось: «Если А, то В». А утверждение, что «Нет бессмертных людей» выглядела бы как (2).



Так формалисты хотели придать математическим аксиомам форму символических утверждений и установить правило вывода в качестве математических операций в этой системе. Рассел вместе с Уайтхедом разложили и описали такую формальную систему в трёхтомнике «Принципы математики», опубликованная в 1913, ставший монументальным трудом в 2000 страниц плотного математического текста, где на 762 странице приводится доказательство, что 1+1=2, после чего констатируется, что «приведённое выше приложение иногда оказывается полезным» («The above proposition is occasionally useful»). Они планировали написать 4-й том, но кажется судьбе это не было угодно, говоря более образно и приводя не плохой пример.

Всё дело в том, что хоть такие математические записи слишком непривычны, но они кратки и точны, чем обычный язык, не оставляя место ошибкам или нечёткой логике, позволяя описывать свойства самой формальной системы. И если такая возможность наконец появилась, то это самое время для исследования самой математики, поставив три основных вопроса:

1. Полнота математики, то есть возможно ли доказать любое истинное утверждение?

2. Непротиворечивость, то есть свободна ли математика от противоречий? Ведь если можно сказать, что А – истинно и что А – ложно, одновременно, значит можно доказать что угодно и пропадает всякий смысл в самой науке.

3. Разрешимость математики, то есть ли такой алгоритм, который сказал бы – следует ли какой-то вывод из аксиом?

Гильберт был убеждён, что на все три вопроса можно ответить положительно, произнеся пламенную речь на конференции 30-го года, завершив фразой: «Пусть нашим лозунгом будет не ignorabimus, что значит „мы не узнаем“, а нечто совершенно иное: „мы должны знать – мы будем знать!“», эти слова и были высечены на его надгробии, но за день до выступления, на той же конференции, 24 летний логик Курт Гёдель рассказывал о том, что смог найти ответ на первый вопрос Гильберта о полноте и на удивление ответ был полностью отрицательным.

Неужели невозможно полностью сформулировать математику? И единственным, кто проявил интерес к юноше был Джон фон Нейман – бывший студент Гильберта, задавая различные уточняющие вопросы, после чего на следующий 1931-й год Гёдель опубликовал статью о неполноте и все, вместе с Гильбертом после этого обратили на него и его доказательство внимание.

А доказательство выглядело следующим образом. Он хотел использовать логику и математику, чтобы найти ответы на вопросы о том, как работают, логика и математика, для чего он взял все знаки математической системы и присвоил каждому из них свой номер, приводя нумерацию Гёделя.


Страницы книги >> Предыдущая | 1 2 3 4 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации