Электронная библиотека » Иосиф Шкловский » » онлайн чтение - страница 5


  • Текст добавлен: 27 октября 2017, 13:40


Автор книги: Иосиф Шкловский


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 36 страниц) [доступный отрывок для чтения: 9 страниц]

Шрифт:
- 100% +

Вернемся, однако, к вопросу о дальнейшей эволюции звезд. Что с ними произойдет, когда реакция «гелий – углерод» в центральных областях исчерпает себя, так же как и водородная реакция в тонком слое, окружающем горячее плотное ядро? Какая стадия эволюции наступит вслед за стадией красного гиганта? Совокупность данных наблюдений, а также ряд теоретических соображений говорят о том, что на этом этапе эволюции звезды, масса которых меньше, чем 1,2 массы Солнца, существенную часть своей массы, образующую их наружную оболочку, «сбрасывают». Такой процесс мы наблюдаем, по-видимому, как образование так называемых планетарных туманностей (фото 10-IV). После того как от звезды отделится со сравнительно небольшой скоростью наружная оболочка, «обнажатся» ее внутренние, очень горячие слои. При этом отделившаяся оболочка будет расширяться, все дальше и дальше отходя от звезды.

Мощное ультрафиолетовое излучение звезды – ядра планетарной туманности – будет ионизовать атомы в оболочке, возбуждая их свечение. Через несколько десятков тысяч лет оболочка рассеется и останется только небольшая очень горячая плотная звезда. Постепенно, довольно медленно остывая, она превратится в белый карлик.

Таким образом, белые карлики как бы «вызревают» внутри звезд – красных гигантов – и «появляются на свет» после отделения наружных слоев гигантских звезд. В других случаях сбрасывание наружных слоев может происходить не путем образования планетарных туманностей, а путем постепенного истечения атомов. Так или иначе, белые карлики, в которых весь водород «выгорел» и ядерные реакции прекратились, по-видимому, представляют собой заключительный этап эволюции большинства звезд. Логическим выводом отсюда является признание генетической связи между самыми поздними этапами эволюции звезд и белыми карликами. Постепенно остывая, они все меньше и меньше излучают, переходя в невидимые «черные» карлики. Это мертвые, холодные звезды очень большой плотности, в миллионы раз плотнее воды. Их размеры меньше размеров земного шара, хотя массы сравнимы с солнечной. Процесс остывания белых карликов длится много сотен миллионов лет. Так кончает свое существование большинство звезд. Однако финал жизни сравнительно массивных звезд может быть значительно более драматическим. Об этом будет идти речь в гл. 5.

Мы неоднократно подчеркивали, что скорость эволюции звезд определяется их первоначальной массой. Так как по ряду признаков со времени образования нашей звездной системы – Галактики – прошло около 15–20 млрд лет, то за это конечное (хотя и огромное) время весь описанный эволюционный путь прошли только те звезды, массы которых превышают некоторую величину. По-видимому, эта «критическая» масса всего лишь на 10–12 % превышает массу Солнца. С другой стороны, как уже подчеркивалось, процесс образования звезд из межзвездной газопылевой среды происходил в нашей Галактике непрерывно. Он происходит и сейчас. Именно поэтому мы наблюдаем горячие массивные звезды в верхней левой части главной последовательности. Но даже звезды, образовавшиеся в самом начале формирования Галактики, если масса их меньше чем 1,2 солнечной, еще не успели сойти с главной последовательности. Заметим, кстати, что темп звездообразования в настоящее время значительно ниже, чем много миллиардов лет назад. Солнце образовалось около 5 млрд лет назад, когда Галактика уже давно сформировалась и в основных чертах была сходна с «современной». Вот уже по крайней мере 4,5 млрд лет оно «сидит» на главной последовательности, устойчиво излучая благодаря ядерным реакциям превращения водорода в гелий, протекающим в его центральных областях. Сколько еще времени это будет продолжаться? Расчеты показывают, что наше Солнце станет красным гигантом через 8 млрд лет. При этом его светимость увеличится в сотни раз, а радиус – в десятки. Эта стадия эволюции нашего светила займет несколько сот миллионов лет.[21]21
  Удивительно, что такую эволюцию Солнца предсказал Уэллс задолго до возникновения теоретической астрофизики. Его путешественник по времени, как, может быть, помнит читатель, увидел в далеком будущем над пустынным океаном огромное красное Солнце… Правда, Уэллс не учел, что температура Земли при этом была бы очень высокой, порядка 300–500 °C. Ведь светимость такого Солнца – красного гиганта – очень велика… Но не будем мелочно придираться к великому провидцу…


[Закрыть]
Наконец, тем или иным способом разбуXIIIее Солнце сбросит свою оболочку и превратится в белый карлик. Вообще говоря, нам, конечно, небезразлична судьба Солнца, так как с нею тесно связано развитие жизни на Земле.

5. Сверхновые звезды, пульсары и черные дыры

В предыдущей главе была набросана картина эволюции «нормальной» звезды от момента ее зарождения в виде сгустка сжимающейся газопылевой туманности до глубокой «старости» – сверXIIлотного холодного «черного» карлика. Однако не все звезды проходят такой «спокойный» путь развития. Некоторые на заключительном этапе своей эволюции взрываются, вспыхивая могучим космическим фейерверком. В таких случаях говорят о вспышке «сверхновой» звезды. От «сверхновых» звезд следует отличать «обычные» новые звезды. Мощность вспышки у этих звезд в тысячи раз меньше, чем у сверхновых. Вспыхивают новые звезды сравнительно часто (в нашей Галактике – около 100 вспышек в год). Для новых звезд характерна повторяемость вспышек. При каждой такой вспышке звезда выбрасывает с большой скоростью 10_3—10-5 своей массы. Доказано, что все новые звезды являются очень тесными двойными системами (см. гл. 8). Вспышки новых не приводят к существенному изменению структуры звезд. Напротив, вспышка сверхновой – это радикальное изменение, и даже частичное разрушение структуры звезды.

Пока нам еще не известны катастрофы, по своим масштабам более грандиозные, чем вспышки сверхновых.[22]22
  В последнее время, по-видимому, обнаружены удивительные объекты – взрывающиеся ядра галактик, явление несравненно более грандиозное, чем вспышка сверхновых (см. гл. 6).


[Закрыть]
За какие-нибудь несколько суток вспыхнувшая звезда увеличивает свою светимость иногда в сотни миллионов раз. Бывает так, что в течение короткого времени одна звезда излучает света больше, чем миллиарды звезд той галактики, в которой произошла вспышка.

В отличие от вспышек «обыкновенных» новых звезд, это явление принадлежит к числу весьма редких. В больших звездных системах, подобных нашей Галактике, вспышки сверхновых происходят в среднем раз в столетие или несколько чаще. Поэтому такие вспышки изредка наблюдаются в других галактиках (фото 11-V). Если держать систематически «под наблюдением» несколько сот галактик, то можно с большой вероятностью утверждать, что в течение одного года хотя бы в одной из таких галактик вспыхнет сверхновая звезда. Во всяком случае, такой способ наблюдений гораздо более целесообразен, чем ожидание в собственной Галактике вспышки в течение нескольких столетий… Сейчас ежегодно открывают около 20 внегалактических сверхновых. Полное их число достигает почти 600.

Тем не менее история сохранила довольно значительное число хроник и даже научных трактатов, содержащих описание вспышек сверхновых в нашей Галактике. Так, например, сохранился ряд китайских хроник, в которых рассказывается о появлении на небе в июле 1054 г. «звезды-гостьи». Эта звезда была настолько ярка, что ее видели даже днем; по своему блеску она превосходила Венеру, – самое яркое светило неба после Солнца и Луны. Несколько месяцев звезда была видна невооруженным глазом, а потом постепенно погасла.

Через семь с половиной веков французский астроном Шарль Мессье, составляя знаменитый каталог туманностей, под № 1 поместил объект необычайной формы. Впоследствии этот объект получил название Крабовидная туманность. Фотография этой туманности в красных лучах приведена на фото 12-V (слева). Дальнейшие наблюдения показали, что Крабовидная туманность медленно расширяется, как бы «расползаясь» по небу. Так как расстояние до этой туманности равно 2000 пк, то заметное, хотя и медленное, увеличение ее размеров на небе означает, что скорость разлета образующих ее газов огромна. Эта скорость достигает 1500 км/с, т. е. больше, чем в 100 раз превосходит скорости искусственных спутников Земли. Между тем скорость движения обычных газовых туманностей в Галактике редко превышает 20–30 км/с. Только гигантских масштабов взрыв мог сообщить такой большой массе газа столь высокую скорость.

Из наблюдаемой скорости расплывания Крабовидной туманности следует, что приблизительно 900 лет назад вся туманность была сосредоточена в очень малом объеме. В сочетании с тем, что Крабовидная туманность находится как раз в той области неба, где некогда вспыхнула удивительная «звезда-гостья», наблюдаемая скорость расширения доказывает, что эта туманность не что иное, как остаток грандиозной космической катастрофы – вспышки сверхновой, которая произошла в 1054 г.

В истории астрофизики последних двух десятилетий Крабовидная туманность сыграла особенно важную роль. И это не случайно. Ведь эта туманность – один из ближайших и поэтому лучше других исследовавшихся остатков взрыва звезды. Тут и там по небу разбросаны удивительные, характерной формы туманности – остатки некогда вспыхивавших в нашей звездной системе сверхновых (две такие туманности приведены на фото 13-VI и 14-VI). Все они, за немногими исключениями, «старше» Крабовидной. Так, возраст туманностей на фото 13-VT и 14-VT исчисляется несколькими десятками тысячелетий. Казалось бы, очень легко спутать такие объекты с обыкновенными газовыми, так называемыми диффузными туманностями, подобными приведенной на фото 15-VI. Есть, однако, два обстоятельства, которые безошибочно позволяют отличить туманности – остатки вспышек сверхновых звезд – от обыкновенных туманностей.

В 1949 г. было обнаружено, что Крабовидная туманность является мощным источником радиоизлучения. Вскоре удалось объяснить природу этого явления: излучают сверхэнергичные электроны, движущиеся в магнитных полях, находящихся в этой туманности. Раньше мы уже упоминали, что та же причина объясняет общее радиоизлучение Галактики. Таким образом, при вспышке сверхновой звезды каким-то способом (пока еще до конца не понятным) образуется огромное количество частиц сверхвысоких энергий – космических лучей. Применяя теорию «синхротронного» излучения релятивистских электронов, по измеренному потоку радиоизлучения и известным расстояниям и размерам туманности удалось оценить полное количество находящихся в ней космических лучей. По мере расширения и рассеяния туманности заключенные в ней космические лучи выходят в межзвездное пространство. Если учесть, как часто вспыхивают сверхновые звезды в Галактике, то образующихся при этих вспышках космических лучей оказывается достаточно для заполнения ими всей Галактики с наблюдаемой плотностью.

Таким образом, впервые со всей очевидностью удалось доказать, что вспышки сверхновых звезд являются одним из основных источников пополнения Галактики космическими лучами; кроме того, они обогащают межзвездную среду тяжелыми элементами. Это имеет огромное значение для эволюции звезд и всей Галактики в целом.

Крабовидная туманность обладает еще одной удивительной особенностью. Как показал автор этой книги в 1953 г., ее оптическое излучение по крайней мере на 95 % обусловлено также сверхэнергичными электронами, т. е. имеет «синхротронную» природу. Энергия электронов, излучающих в оптическом диапазоне длин волн, в сотни раз больше энергии электронов, излучающих радиоволны, она достигает 1011—1012 эВ. На основе новой теории оптического излучения Крабовидной туманности удалось предсказать, что это излучение должно быть поляризованным. Советские и американские наблюдения полностью подтвердили этот вывод теории. Тем самым все теоретические выводы, касающиеся природы радиоизлучения и оценок количества космических частиц, нашли полное подтверждение. В настоящее время синхротронное оптическое излучение обнаружено еще у нескольких объектов, преимущественно радиогалактик. Его исследование имеет очень большое значение для астрономии и физики.

В 1963 г. при помощи ракеты с установленными на ней приборами удалось обнаружить довольно мощное рентгеновское излучение от Крабовидной туманности. В следующем, 1964 г., во время покрытия этой туманности Луной удалось показать, что этот источник рентгеновского излучения протяженен, хотя его угловые размеры в 5 раз меньше угловых размеров «Краба». Следовательно, рентгеновское излучение испускает не звезда, некогда вспыхнувшая как сверхновая, а сама туманность. Было доказано, что рентгеновское излучение Крабовидной туманности имеет также синхротронную природу и обусловлено сверхэнергичными релятивистскими электронами с энергией порядка 1013—1014 эВ.

Дальнейшие наблюдения показали, что все без исключения туманности – остатки вспышек сверхновых звезд – оказываются более или менее мощными источниками радиоизлучения, имеющего ту же природу, что и у Крабовидной туманности. Особенно мощным источником радиоизлучения является туманность, находящаяся в созвездии Кассиопеи. На метровых волнах поток радиоизлучения от нее в 10 раз превышает поток от Крабовидной туманности, хотя она дальше последней. В оптических лучах эта быстро расширяющаяся туманность очень слаба. Как сейчас доказано, туманность в Кассиопее – остаток вспышки сверхновой, имевшей место около 300 лет назад. Не совсем ясно, почему вспыхнувшую звезду тогда не заметили. Ведь уровень развития астрономии в Европе был тогда довольно высок.

Туманности – остатки вспышек сверхновых звезд, случившихся даже десятки тысяч лет назад, выделяются среди других туманностей своим мощным радиоизлучением. В частности, источниками радиоизлучения, правда, раз в 10 менее мощными, чем Крабовидная туманность, являются туманности, показанные на фото 13-VI и 14-VI.

Другим отличительным признаком туманностей – остатков вспышек сверхновых звезд – является испускаемое ими рентгеновское излучение. Это излучение полностью поглощается земной атмосферой и может наблюдаться только с помощью аппаратуры, установленной на ракетах и спутниках. Особенно ценные результаты были получены в последние годы на специализированном спутнике «Эйнштейн», запущенном в ознаменование столетия со дня рождения великого ученого. На рис. 9 приведена схема структуры рентгеновского изображения сверхновой, которую наблюдал Тихо Браге в 1572 г. Рентгеновское излучение в таких туманностях вызвано нагревом межзвездного газа до температуры в несколько миллионов градусов движущимися через него с большими скоростями наружными слоями взорвавшейся звезды. Как в радио-, так и в рентгеновских лучах структура таких источников носит «оболочечный» характер. В противоположность этому Крабовидная туманность и несколько сходных с ней объектов в рентгеновских лучах не имеют оболочек (см. фото 12-V).


Рис. 9. Схема оптической, радио– и рентгеновской структуры остатка сверхновой 1572 г. Жирные сплошные линии – оптические волокна. Две концентрические окружности определяют оболочку, излучающую рентгеновские кванты


До сих пор речь шла преимущественно о туманностях, образующихся при вспышках сверхновых остатка сверхновой 1572 г. Жирные сплошные линии – оптические волокна. Две концентрические окружности определяют оболочку, излучающую рентгеновские кванты звезд. Что же можно сказать о самих вспыхивающих звездах? Как уже упоминалось, данные наблюдений относятся к сверхновым, вспыхивающим в других звездных системах. В нашей Галактике последняя такая вспышка наблюдалась в 1604 г. Эту звезду, в частности, наблюдал Кеплер. Тогда еще не был изобретен телескоп, а спектральный анализ – этот мощнейший метод астрономических исследований – стал применяться только спустя два с половиной столетия…

По наблюдениям вспышек в других галактиках удалось установить, что сверхновые бывают двух типов. Сверхновые I типа – это довольно старые звезды с массой, лишь немного превосходящей солнечную. Такие сверхновые вспыхивают в эллиптических галактиках, а также в спиральных звездных системах. Мощность излучения у таких сверхновых особенно велика, хотя массы выброшенных газовых оболочек не превышают нескольких десятых массы Солнца.

Так называемые сверхновые II типа вспыхивают в спиральных галактиках. Они никогда не вспыхивают в эллиптических звездных системах. Сверхновые этого типа, как принято думать, массивные молодые звезды. Именно по этой причине они, как правило, наблюдаются в спиральных ветвях, где еще продолжает идти процесс звездообразования. Не исключено, что если не большая, то по крайней мере значительная часть горячих массивных звезд спектрального класса О кончает свое существование вспышкой сверхновой этого типа.

Существует несколько гипотез о причине взрывов звезд, наблюдаемых как сверхновые. Однако общепризнанной теории, основывающейся на известных фактах и могущей предсказать новые явления, пока нет. Можно, однако, не сомневаться, что такая теория будет создана в самом ближайшем времени. По всей вероятности, причиной взрыва является катастрофически быстрое выделение потенциальной энергии тяготения при «спаде» внутренних слоев звезды к ее центру.

Мы сейчас остановимся на этой важной для всей современной астрофизики проблеме более подробно. В предыдущей главе была нарисована общая картина образования звезд из межзвездной среды. Решающим фактором в этом процессе является сила всемирного тяготения, которая всегда стремится сблизить отдельные части вещества и тем самым образовать более компактные тела. Можно сразу же задать «детский» вопрос: а есть ли предел уплотнения вещества под воздействием силы тяжести? не может ли звезда в конце концов сжаться в точку? Хорошо известно, что многие из так называемых детских вопросов самым глубоким образом затрагивают коренные проблемы мироздания и бытия. Может быть, именно поэтому они и называются детскими… Сформулированный выше вопрос как раз относится к этой категории.

Как же отвечает на него современная наука? Когда протозвезда сожмется до таких размеров, что температура в ее недрах станет достаточно высокой и пойдут ядерные реакции, она перестанет сжиматься и будет долгое время находиться в равновесном состоянии. Это равновесие осуществляется в каждом элементе ее объема под действием двух равных и противоположно направленных сил: гравитации и разности газового давления. Первая сила стремится сжать звезду, вторая – расширить.

Звезда в таком равновесном состоянии находится на главной последовательности, о чем речь шла в предыдущей главе. Но равновесие не будет продолжаться вечно. Когда ядерное горючее – водород в недрах звезды – будет исчерпано, наступят радикальные и довольно быстрые перемены в ее жизни. В предыдущей главе мы писали, что после исчерпания водородного горючего из центральной части звезды образуется весьма горячее и плотное ядро, сама звезда превращается в красный гигант, а затем, после «сброса» оболочки, – в белый карлик.

Но такой путь эволюции могут проделать только звезды, у которых массы, оставшиеся после сброса оболочки, не слишком велики, например не больше 1,2 солнечной массы. Звезды, у которых оставшаяся масса находилась в пределах 1,2–2,5 солнечных масс, как показывают надежные теоретические расчеты, не могут образовать устойчивую конфигурацию белого карлика. Они катастрофически быстро сжимаются до ничтожных размеров порядка 10 км, причем их средняя плотность достигает 1015 г/см3, что превышает плотность атомного ядра. Как показывают специальные теоретические исследования, вещество таких звезд состоит из чрезвычайно плотно «упакованных» нейтронов, ибо свободные электроны как бы «вдавливаются» в протоны. Именно поэтому такие объекты получили название «нейтронных звезд». Расчеты показывают, что первоначальная температура поверхности у нейтронных звезд около 1 млрд К. В дальнейшем нейтронная звезда будет быстро остывать, а температура ее поверхности – быстро падать.

Открытые теоретически «на кончике пера» нейтронные звезды должны были представлять собой объекты, чрезвычайно трудные для наблюдений.

В самом деле, совершенно безнадежно обнаружить тепловое оптическое излучение такой звезды по причине ничтожно малой излучательной поверхности. Если, например, температура поверхности нейтронной звезды около 6000 К (т. е. такая же, как у Солнца), а радиус равен 6 км (т. е. примерно в 100 000 раз меньше солнечного), то светимость ее будет в 10 млрд раз меньше, чем у Солнца. Это означает, что ее абсолютная величина будет близка к 30. Если бы даже такая звезда находилась от нас на расстоянии всего лишь 1 пк (т. е. ближе любой другой звезды), ее блеск соответствовал бы объекту 25-й величины.

Высокая температура поверхности образовавшихся после взрыва сверхновых нейтронных звезд позволяла надеяться, что можно будет обнаружить их рентгеновское излучение. В самом деле, если температура поверхности такой звезды 1 млрд К, то, согласно известному закону Стефана – Больцмана, поток излучения с единицы поверхности нагретого непрозрачного тела пропорционален четвертой степени его температуры; наша крохотная нейтронная звезда будет излучать ~1045 эрг/с, т. е. больше, чем вся наша Галактика. Однако совершенно очевидно, что такую огромную мощность нейтронная звезда будет излучать только очень короткий промежуток времени. Остывание будет происходить главным образом за счет излучения нейтрино, которые в больших количествах образуются во всем ее объеме при столь высокой температуре. Но даже если температура поверхности была бы «всего лишь» 10 млн К, мощность ее рентгеновского излучения была бы ~ 1037 эрг/с, что в несколько тысяч раз больше мощности всего излучения Солнца.

Еще в 1963 г. в созвездии Скорпиона был открыт с помощью счетчика фотонов, установленного на борту ракеты, первый рентгеновский источник, находящийся за пределами Солнечной системы. Вскоре было открыто рентгеновское излучение от Крабовидной туманности (см. выше). В настоящее время известно уже несколько сотен рентгеновских источников, причем многие из них отождествляются с туманностями – остатками вспышек сверхновых. Большая часть рентгеновских источников – звездообразные объекты. Сразу же после открытия в 1964–1965 гг. многие астрономы и физики решили, что наконец-то долгожданные нейтронные звезды обнаружены… Увы, их ликование, как это часто бывало в истории астрономии, оказалось преждевременным. Понадобилось еще 20 лет, чтобы обсерватория «Эйнштейн» обнаружила в некоторых остатках вспышек сверхновых точечные рентгеновские источники, которые можно интерпретировать как излучение поверхности нейтронной звезды. Теоретики подсчитали, что остывание нейтронных звезд происходит даже быстрее, чем считали раньше: всего лишь за несколько месяцев температура поверхности нейтронной звезды упадет значительно ниже 10 млн К, а такой объект методами современной рентгеновской астрономии уже не сможет быть обнаружен. Столь быстрый срок остывания нейтронных звезд, во всяком случае за время, много меньшее, чем средний промежуток между вспышками сверхновых, как будто бы означает, что среди наблюдаемых космических рентгеновских источников нейтронных звезд быть не может.[23]23
  И все же оказалось, что рентгеновские звезды – это нейтронные звезды в двойных системах (см. гл. 8). Но это стало ясно только после 1970 г.


[Закрыть]

Таким образом, надежда обнаружить нейтронные звезды по их тепловому рентгеновскому излучению оказалась вроде бы преждевременной. И вдруг, буквально «как гром среди ясного неба», было сделано открытие, превратившее таинственные нейтронные звезды в наблюдаемые объекты. Речь идет об открытии пульсаров, едва ли не самом впечатляющем открытии в астрономии за несколько последних десятилетий.

Мы слишком часто злоупотребляем словом «открытие», отчего оно постепенно «стирается». Между тем в истории науки количество подлинных открытий очень невелико…

Даже по самым строгим критериям обнаружение пульсаров действительно является подлинным открытием. Оно, как это всегда бывает с настоящим открытием, произошло случайно. Летом 1967 г. аспирантка известного английского радиоастронома Хьюиша мисс Белл неожиданно обнаружила на небе совершенно необычный радиоисточник. Этот источник излучал кратковременные радиоимпульсы, которые строго периодически, через каждые 1,33 с, повторялись. Вскоре были обнаружены еще три таких же источника с другими, также «почти секундными», периодами.

Это открытие настолько ошеломило исследователей, что они, заподозрив, что эти сигналы имеют искусственное происхождение и посылаются некими «сверхцивилизациями» (см. часть 3 нашей книги), засекретили эти наблюдения и в течение почти полугода никто об этом не знал – случай беспрецедентный в истории астрономии… Только после того, как они убедились, что эти сигналы – не результат активности внеземных разумных цивилизаций, результаты наблюдений были опубликованы.

Не сразу было понято, что причиной строгой периодичности радиоимпульсов от этих новых источников (получивших название «пульсары») является быстрое вращение звездообразных объектов. Только вращение массивного тела может объяснить удивительное постоянство (с точностью до стомиллионной доли) периодов пульсаров. Более тщательные наблюдения показали, что на самом деле периоды не строго постоянны, а медленно растут. Представим себе, что излучение радиоволн не равномерно по всем направлениям, а сосредоточено внутри некоторого конуса, ось которого образует определенный угол с осью вращения. Теперь вообразим себе наблюдателя, который в какой-то момент времени находится на продолжении оси конуса. Ясно, что он сможет наблюдать радиоизлучение. Это будет возможно в течение некоторого времени до тех пор, пока из-за вращения звезды ось конуса уйдет достаточно далеко. Однако через промежуток времени, равный периоду вращения звезды, радиоизлучение снова можно будет наблюдать. Эта простая модель пульсара изображена на рис. 10.

Что же это за звезды, быстрое вращение которых есть причина наблюдаемого явления пульсаров? В 1967 г. был открыт пульсар с рекордно коротким периодом в 0,033 с (об этом замечательном пульсаре речь пойдет дальше). Так быстро вращаться может только очень маленькое тело. Ведь линейная скорость вращения на экваторе определяется школьной формулой: v = 2πR/T, где R – радиус вращающегося тела, Т – период его вращения. Из этой формулы следует, что при Т = 1/30 с, учитывая, что скорость вращения никак не может превышать скорости света, радиус тела не превышает 1500 км, что в 4 раза меньше Земли. Но это является очень грубой оценкой верхней границы размеров вращающегося тела. Так как линейная экваториальная скорость вращения по простым причинам должна быть в десятки раз меньше скорости света, непосредственно ясно, что линейные размеры пульсаров не могут превышать нескольких десятков километров. Но если это так, то пульсары – это не что иное, как нейтронные звезды!

Имеется и другое доказательство этого важнейшего вывода. Упомянутый выше рекордно короткопериодический пульсар (получивший название NP 0532) расположен… в центре Крабовидной туманности! Другой пульсар, период которого всего лишь в три раза длиннее (0,089 с), также находится внутри туманности, являющейся более старым остатком вспышки сверхновой. Итак, пульсары находятся там, где положено находиться нейтронным звездам, которые должны образоваться при вспышках сверхновых! То обстоятельство, что не во всех остатках вспышек сверхновых наблюдаются пульсары и только малая часть пульсаров (их сейчас известно свыше 2000) находится в остатках сверхновых, не должно нас смущать. Дело в том, что пульсар может быть обнаружен только при «благоприятной» по отношению к нам ориентации его оси вращения. Это ясно из рис. 10. Если учесть это, оказывается, что едва ли 5 % всех пульсаров можно хотя бы в принципе наблюдать. Поразительно, что Крабовидная туманность, помимо тех замечательных особенностей, о которых говорилось выше, еще имеет и пульсар, «удачно» ориентированный по отношению к Земле…


Рис. 10. Модель пульсара


С другой стороны, легко понять, почему большинство пульсаров не связано с туманностями – остатками вспышек сверхновых. Дело в том, что последние представляют собой подобно планетарным туманностям сравнительно короткоживущие образования. Благодаря расширению образующих их газовых волокон и находящихся там космических лучей они «расплываются» и через сотню тысяч лет перестают быть наблюдаемыми. Между тем возраст большинства пульсаров исчисляется миллионами и десятками миллионов лет. Это следует из наблюдаемого очень медленного замедления их вращения. Ясно, например, что если за год период какого-нибудь пульсара изменится на одну десятимиллионную долю, то его возраст должен быть близок к 10 млн лет. Итак, пульсары «переживают» туманности, в которые они были «погружены» при рождении.

На основании наблюдений пульсаров можно нарисовать такую картину развития нейтронной звезды. Она образуется при вспышке сверхновой как быстро вращающийся объект огромной плотности. Причину быстрого вращения понять легко: это следствие одного из основных законов механики – сохранение момента количества движения. Проиллюстрируем этот закон на примере воображаемой звезды, являющейся «двойником» нашего Солнца. Период ее вращения вокруг оси очень велик – около месяца (о вращении звезд подробнее см. гл. 10).

Допустим теперь, что по каким-то причинам эта звезда катастрофически сжалась, причем ее радиус R стал равном 10 км, т. е. уменьшился почти в 100 000 раз. Если ее масса Мпри этом не изменилась, то из закона сохранения момента количества движения


MVR = const


следует, что экваториальная скорость увеличится в 100 000 раз и составит почти половину скорости света! Период же вращения уменьшится почти в 10 млрд раз и будет меньше, чем тысячная доля секунды.

На самом деле, так как часть момента количества движения уносится выброшенным во время вспышки сверхновой веществом, экваториальная скорость вращения образовавшейся при этой катастрофе нейтронной звезды будет немного меньше, а период вращения длинней, но суть дела от этого не меняется: только что образовавшаяся нейтронная звезда должна вращаться с огромной скоростью.

Теперь обратим наше внимание на другое обстоятельство. Как уже упоминалось в гл. 2, на звездах имеются магнитные поля. Допустим, что на поверхности звезды, которая должна вспыхнуть как сверхновая, магнитное поле невелико, скажем ~ 100 Э (это все же больше, чем на поверхности нашего Солнца). При катастрофическом сжатии звезды должен остаться неизменным поток магнитных силовых линий через ее поверхность, т. е.


HR2 = const,


и если радиус R уменьшается в 100 000 раз, то магнитное поле Н обязано увеличиться в 10 млрд раз, достигнув чудовищного значения 1012 Э! Чтобы почувствовать силу этого магнитного поля, приведем такой пример. Плотность магнитной энергии Wм связана с величиной магнитного поля формулой


Wм = Н2/ 8π.


При Н = 1012 Э Wм будет равно 4-1022 эрг/см3. Величина рм = Wм/c2, согласно принципу эквивалентности массы и энергии, есть плотность вещества, соответствующего плотности энергии Wм. Оказывается, что рм ≈ 50 г/ см3, что плотнее всех известных на Земле веществ. Плотность же «обычного» вещества в атмосфере нейтронной звезды на много порядков меньше. Такая ситуация нигде в космосе не встречается.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 | Следующая
  • 4 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации