Текст книги "Энциклопедия «Техника» (с иллюстрациями)"
Автор книги: Александр Горкин
Жанр: Энциклопедии, Справочники
сообщить о неприемлемом содержимом
Текущая страница: 14 (всего у книги 67 страниц)
ГИДРОЛОКÁТОР, гидроакустический прибор для обнаружения объектов в водной среде (подводных аппаратов, рыбных скоплений, затонувших судов) и определения их координат, для записи рельефа морского дна, дистанционного исследования состава донных слоёв грунта и т. д.
Первый гидролокатор был построен во Франции в 1918 г. Главными элементами гидролокатора являются гидроакустический излучатель, генерирующий звуковой импульс, и гидроакустический приёмник – гидрофон, принимающий отражённый эхосигнал. Принцип работы гидролокатора основан на измерении времени, в течение которого звуковой импульс проходит от излучателя до исследуемого объекта, а его отражённый эхосигнал возвращается после встречи импульса с исследуемым объектом. По известному времени прохождения акустического импульса от излучателя до объекта и эхосигнала от объекта до приёмника – гидрофона и скорости распространения звука в воде можно определить расстояние до объекта. Метод определения расстояния между объектами в воде по времени прохождения звукового импульса применяется в разнообразных акустических приборах, в частности в эхолотах – приборах для определения глубин.
В зависимости от назначения гидролокаторы имеют разнообразные конструктивные исполнения. Напр., для дистанционного зондирования состава верхнего слоя грунта применяются системы, главными элементами которых являются гидроакустические антенны, импульсный генератор и самописец для построения графика изменения размеров зёрен грунта. Для сейсмического зондирования применяются излучающая антенна, состоящая из «воздушных пушек» и буксируемая в толще воды, и принимающая антенна в виде шланга большой длины (до 10 км) с размещёнными в нём акустическими приёмниками. Гидролокатор обзора дна представляет собой буксируемые со скоростью до 8 узлов (14.8 км/ч) системы с регистрацией данных о рельефе дна на самописце. Гидролокатор бокового обзора морского дна обеспечивает измерение характеристик придонного слоя на глубинах до 30 м. Гидроакустические навигационные системы для определения координат судна содержат цифровой гидролокатор и маяк-ответчик и обеспечивают навигационную безопасность судов, определяют характеристики морского дна, измеряют координаты подводного оборудования, обеспечивают ориентацию водолазов и т. д.
Принцип работы гидролокатора:
1 – излучатель; 2 – приёмник; 3 – объект
Гидролокаторы для поиска и определения координат рыбных скоплений (рыболокаторы), устанавливаемые на добывающих судах, а также используемые при любительской ловле, представляют собой компактные приборы с видео – и цифровой информацией о местах расположения и размерах рыбных скоплений.
Рыболокатор
ГИДРОМЕТАЛЛУ́РГИ́Я, область металлургии, в которой извлечение металлов из руд, концентратов, техногенного сырья проводят при помощи водных растворов химических реагентов при температуре ниже 300 °C.
К гидрометаллургическим процессам относят выщелачивание, экстракцию, сорбцию, электролиз водных растворов. Выщелачивание – перевод металла или его соединения из сырья в водный раствор. Различают простое выщелачивание (растворение) или выщелачивание с химической реакцией, при котором происходит изменение химического состояния исходного вещества. При температуре выше 100 °C для выщелачивания используют автоклавы – герметичные аппараты, работающие при повышенных температурах и давлениях. Напр., автоклавное выщелачивание применяют при переработке урановых, алюминиевых, вольфрамовых руд и концентратов.
В результате выщелачивания образуется пульпа, продукты фильтрации которой – раствор и кек (твёрдый остаток). Экстракция, сорбция, электролиз – эти процессы используются для извлечения металлов из водных растворов, разделения компонентов растворов, концентрирования, очистки от примесей. Экстракция – перевод вещества из водного раствора в органическую фазу, не смешивающуюся с водной фазой (раствором). Сорбция – процесс извлечения веществ из раствора при помощи твёрдых ионообменных смол – ионитов. Электролиз – процесс осаждения металла из водного раствора на катоде под действием электрического тока (напр., так получают медь, никель, кобальт). Для ряда металлов электролиз проводят в расплаве солей (пирометаллургический процесс). Гидрометаллургия широко применяется в производстве более 70 цветных металлов, однако при этом пиро – и гидрометаллургические процессы совмещаются (производство алюминия, вольфрама, золота, урана, бериллия, редкоземельных и других металлов).
ГИДРОМОНИТÓР, устройство для создания мощных направленных водяных струй с целью разрушения и смыва горных пород и т. п. Используется при разработке россыпей, месторождений угля, песка, гравия и т. п., для намывки грунта при сооружении дамб, плотин. Энергию воды используют также для прокладки каналов, траншей, при создании оросительных систем, для очистки поверхностей зданий и т. п. Основной рабочий орган гидромонитора – насадка на водоподающем стволе, формирующая струю воды. Ствол может поворачиваться, изменяя направление полёта струи, управление стволом осуществляется вручную либо с пульта дистанционно. Вода в гидромонитор подаётся по трубопроводу от насосной станции, давление струи на выходе из насадки 1—35 МПа. Использование энергии водной направленной струи для разработки золотоносных и оловянных россыпей известно со 2-го тысячелетия. В России гидродобычу золота из золотосодержащих песков впервые осуществили на Урале в 1830 г.
Гидромонитор с дистанционным управлением
ГИДРОПРИ́ВОД МАШИ́Н (гидропривод, объёмный гидропривод), совокупность источника энергии и устройств с одним или несколькими объёмными гидравлическими двигателями для приведения в движение механизмов и машин с помощью жидкости под давлением.
В качестве источника энергии могут использоваться электрический или тепловой двигатель, жидкость под давлением и др. В зависимости от вида гидропередачи, т. е. устройства, транспортирующего и преобразующего энергию, различают гидростатический (объёмный) и гидродинамический приводы.
Объёмный гидропривод позволяет с высокой точностью поддерживать или изменять скорость машины при произвольной нагрузке, осуществлять слежение – точно воспроизводить заданные режимы вращательного или возвратно-поступательного движения, усиливая одновременно управляющее воздействие. Наиболее широко объёмный гидропривод применяется в металлорежущих станках, прессах, в системах управления летательных аппаратов, судов, тяжёлых автомобилей, в системах автоматического управления и регулирования тепловых двигателей, гидротурбин. Объёмный гидропривод используется иногда в качестве главных приводов транспортных установок на автомобилях, кранах. Наиболее часто в качестве гидравлического двигателя в объёмном гидроприводе применяются гидроцилиндры со штоком, обеспечивающим возвратно-поступательное прямолинейное движение.
Динамический гидропривод позволяет осуществлять только вращательное движение. В приводах этого вида частота вращения ведущего вала автоматически меняется с изменением нагрузки, что делает их особо пригодными для транспортных средств: скорость экипажа автоматически меняется в зависимости от сопротивления движению. На судах динамический гидропривод используют для привода винтов. Находят применение динамические гидроприводы и в стационарных установках: для привода питательных насосов ТЭЦ, шахтных подъёмных машин, вентиляторов и т. д.
Гидропривод – один из основных современных видов привода (наряду с электрическим и пневматическим), обеспечивающий работу самых различных машин. Гидравлический привод, в котором рабочим телом служит несжимаемая жидкость – минеральное масло, обеспечивает высокую плавность и равномерность хода, точность остановки выходного звена (напр., штока гидроцилиндра), большие рабочие усилия (до сотен тонн). В этих случаях рационально его применение. Однако гидропривод имеет целый ряд недостатков: трудность снабжения рабочим телом – минеральным маслом, опасность его утечки через уплотнения и т. д. Поэтому во многих случаях (напр., для обеспечения небольших усилий) рационально применять более простой в эксплуатации пневмопривод, рабочим телом для которого служит воздух из атмосферы, сжатый в компрессоре.
ГИДРОСАМОЛЁТ, самолёт, способный взлетать с воды и садиться на воду, а также маневрировать на воде. Конструкция и основные аэродинамические характеристики у гидросамолёта такие же, как и у сухопутных самолётов. Но, кроме того, он должен обладать плавучестью, непотопляемостью, остойчивостью на воде, т. е. качествами, характерными для судов. Гидросамолёты обычно имеют верхнее расположение крыла. Двигатели, как правило, устанавливают над крылом, чтобы их не заливало водой при взлёте и посадке. У большинства гидросамолётов фюзеляж своими обводами напоминает лодку. Такие самолёты и называются летающими лодками. Взлетая, они, как лодки, скользят по воде, пока не наберут необходимую для взлёта скорость. Чтобы летающая лодка на плаву не касалась крылом воды, устанавливают подкрыльные поддерживающие поплавки либо прикрепляют по бокам фюзеляжа обтекаемые герметичные баки, т. н. жабры. Другой распространённый тип гидросамолёта – поплавковый. Он практически ничем не отличается от сухопутных самолётов, только вместо колёсных шасси у него под фюзеляжем установлены поплавки.
Гидросамолёт Бе-12П-200
В России первый гидросамолёт (поплавкового типа) был создан в 1911 г. инженером Я. М. Гаккелем. В 1913—15 гг. под руководством авиаконструктора Д. П. Григоровича построены первые летающие лодки (М-1, М-4, М-9). Позднее над созданием гидросамолётов работали авиаконструкторы А. Н. Туполев, Г. М. Бериев, И. В. Четвериков и др. За рубежом гидросамолёты строят во Франции, США, Великобритании, Германии, Италии, Японии. Гидросамолёты широко используются для перевозки пассажиров и грузов в районах, изобилующих акваториями, для разведки рыбы, спасательных работ на море, тушения лесных пожаров и в других целях.
ГИДРОТÉХНИКА, отрасль науки и техники, занимающаяся изучением водных ресурсов, их использованием для различных хозяйственных целей и борьбой с вредным действием вод при помощи инженерных гидротехнических сооружений. Гидротехника имеет следующие основные направления (в зависимости от обслуживаемой отрасли водного хозяйства): использование водной энергии (гидроэнергетика); обеспечение судоходства и лесосплава по водным путям; орошение, обводнение и осушение сельскохозяйственных земель; водоснабжение населения, транспортных и промышленных предприятий; отведение с благоустроенных территорий избыточных, сточных и загрязнённых вод; обеспечение необходимых условий для рыбного хозяйства (пропуск рыбы через гидротехнические сооружения, создание водоёмов для нереста рыбы, её искусственного разведения и др.); защита населённых пунктов, промышленных объектов, линий транспорта, связи, различных сооружений от вредного действия водной стихии.
Гидротехника – одна из древнейших отраслей науки и техники. Ещё в Древнем Египте строились каналы для орошения земель в долине реки Нил; в Вавилоне существовали города с водопроводами и артезианскими колодцами; известны гидротехнические сооружения Древнего Хорезма (7–6 вв. до н. э.). В период расцвета Древней Греции и Рима гидротехника получила большое развитие: построен водопровод Аппия, осуществлена канализация в Риме, были попытки осушения Понтийских болот. В Средние века в западноевропейских странах строились малые гидротехнические сооружения – водяные мельницы, системы водоснабжения городов, замков и т. п. В 18 – нач. 19 в. были построены судоходные каналы во Франции, Англии и в других странах, развивалось портовое строительство (лондонские и ливерпульские доки, волноломы в Шербуре и Генуе и др.). В России в 17–18 вв. было создано более 200 заводских плотин и гидроустановок на Урале, Алтае и в других местах. В нач. 19 в. изобретение паровой машины и появление железных дорог в западноевропейских странах ослабили интерес к гидравлическим установкам и водному транспорту. Однако во 2-й пол. 19 в. в связи с ростом промышленности, сельского хозяйства и развитием крупных городов, нуждавшихся в водоснабжении, наблюдается новый подъём гидротехнического строительства: реконструируются старые и строятся новые водные пути, осуществляются в больших масштабах ирригационные и осушительные работы, появляются гидроэлектрические установки современного типа. Огромное развитие гидротехника в России получила с 20—30-х гг. 20 в. Крупное гидротехническое строительство потребовало разработки новых, не применявшихся ранее в России типов гидротехнических сооружений, а также решения проблем, вытекавших из особенностей природных условий страны. Степень использования водных ресурсов в России непрерывно возрастает, что приводит к расширению областей применения гидротехники.
ГИДРОТЕХНИ́ЧЕСКИЙ ЗАТВÓР, подвижная конструкция для полного или частичного закрывания водопропускного отверстия гидротехнического сооружения (водосливной плотины, шлюза, трубопровода, рыбохода, гидротехнического тоннеля и т. п.). Служит для регулирования уровня и расхода воды, пропуска плавающих тел (судов, леса, льда, наносов и пр.) в различных условиях работы гидротехнического сооружения. В состав гидравлического затвора входят: подвижная конструкция, опорные части (неподвижные конструкции, заделанные в тело сооружения) и уплотнения, обеспечивающие водонепроницаемость по контакту между подвижной конструкцией и кладкой сооружения. Затворы открываются и закрываются стационарными или подвижными механизмами (лебёдки, краны, гидравлические подъёмники и т. п.), под воздействием давления воды (вододействующие гидравлические затворы); при малых водопропускных отверстиях – вручную. Часто для открывания и закрывания гидравлических затворов применяют дистанционное и автоматическое управление. Гидротехнические затворы различают: по расположению в сооружении – поверхностные (на гребне водослива) и глубинные (ниже уровня верхнего бьефа); по назначению – основные (рабочие), ремонтные, аварийные, строительные, запасные; по материалам – металлические (стальные), деревянные, железобетонные, пластмассовые, комбинированные.
ГИДРОТЕХНИ́ЧЕСКИЙ ТОННÉЛЬ, подземный водовод замкнутого поперечного сечения с напорным или безнапорным движением воды, устроенный в земной коре без вскрытия лежащей над ним массы грунта. Гидротехнические тоннели сооружаются в случае глубокого заложения водовода, когда открытая выемка грунта экономически нецелесообразна или когда трасса открытого водовода проходит по крутым оползневым склонам или густонаселённой застроенной территории. По основному водохозяйственному назначению различают гидротехнические тоннели: энергетические, ирригационные, судоходные, лесосплавные, водосбросные, водопроводные, строительные (для временного отвода речной воды при строительстве гидроузла) и комбинированные (удовлетворяющие различным водохозяйственным целям).
ГИДРОТУРБИ́НА, см. Гидравлическая турбина.
ГИДРОУ́ЗЕЛ, группа гидротехнических сооружений, объединённых по расположению и условиям их совместной работы. Подразделяются на энергетические, водно-транспортные, водозаборные и др. Чаще всего бывают комплексные, одновременно выполняющие несколько водохозяйственных функций. Гидроузлы делятся на низконапорные, у которых разность уровней воды верхнего и нижнего бьефов (напор) не превышает 10 м, устраиваемые на равнинных реках, преимущественно в пределах их русла, и используемые гл. обр. в транспортных или энергетических целях; средненапорные (с напором 10–40 м) на равнинных или предгорных участках рек, предназначенные гл. обр. для транспортно-энергетических, а также ирригационных целей (создаваемый ими подпор приводит к затоплению поймы реки в верхнем бьефе, образуя водохранилище, используемое для суточного и сезонного регулирования стока реки, осветления воды, борьбы с наводнениями и т. п.); высоконапорные (с напором более 40 м), гл. обр. на реках в горных районах, служащие обычно для комплексных целей – энергетики, транспорта, ирригации и др.
ГИДРОЭЛЕКТРИ́ЧЕСКАЯ СТÁНЦИЯ (гидроэлектростанция, ГЭС), комплекс гидротехнических сооружений и энергетического оборудования, обеспечивающий преобразование энергии водного потока в электрическую энергию. Для этого поперёк русла реки сооружают плотину, чтобы накопить воду в водохранилище и сконцентрировать перепад уровня воды на сравнительно небольшом участке (по ширине плотины). Как правило, непосредственно к плотине примыкает здание ГЭС, в котором располагается основное оборудование – гидроагрегаты (в машинном зале) и устройства автоматического контроля и управления работой ГЭС. Подвод воды к гидравлическим турбинам осуществляется по напорным водоводам. Вращение рабочего колеса гидротурбины под напором падающей воды передаётся на вал гидрогенератора, вырабатывающего электрический ток. На открытой площадке рядом со зданием ГЭС или в отдельном здании обычно сооружают повышающую трансформаторную подстанцию ГЭС с распределительными устройствами.
По способу использования водных ресурсов ГЭС обычно подразделяют на русловые, приплотинные, деривационные (с подводом воды к ГЭС по специальным сооружениям), смешанные, гидроаккумулирующие и приливные. По установленной мощности различают ГЭС мощные (св. 250 МВт), средние и малые (до 5 МВт). Мощность ГЭС зависит от напора (разности уровней воды верхнего и нижнего бьефов), расхода воды через гидротурбины и кпд гидроагрегатов. По максимально используемому напору ГЭС условно делят на высоконапорные (св. 60 м), средненапорные (25–60 м) и низконапорные (3—25 м). Практически на равнинных реках с помощью плотин можно создать напор до 100 м, в горных условиях он может достигать 300 м и более. Поэтому на равнинных реках мощность станции определяется гл. обр. величиной расхода воды, а в горных условиях, где расход воды значительно меньше, величиной напора. Из-за сезонных колебаний уровней воды в водоёмах, необходимости пропуска, напр., паводковых вод, непостоянства нагрузки энергосистемы и других причин напор и расход воды и, как следствие, мощность ГЭС непостоянны. Различают годичный, недельный и суточный циклы работы ГЭС. Кпд ГЭС достигает 90–93 %, по этому показателю они являются самыми экономичными электростанциями (кпд тепловых электростанций не превышает 40 %). Себестоимость вырабатываемой ГЭС электроэнергии, а также эксплуатационные расходы в 5–6 раз ниже, чем на тепловых и атомных электростанциях; гидроэлектростанции не требуют топлива, обладают высокой надёжностью и мобильностью в части изменения мощности и являются исключительно дешёвым и манёвренным источником электроэнергии.
Схема устройства гидроэлектростанции:
1 – водохранилище; 2 – затвор; 3 – трансформаторная подстанция с распределительным устройством; 4 – гидрогенератор; 5 – гидравлическая турбина
Первые гидроэлектрические установки мощностью в несколько сотен ватт были сооружены в 1876—81 гг. в Штангассе и Лауфене (Германия) и в Грейсайде (Англия). Затем были введены в эксплуатацию ГЭС в Швейцарии (1892), Швеции (1893), США (1896 г., на Ниагарском водопаде), Франции (1901) и т. д. В России первая промышленная ГЭС мощностью 300 кВт была построена в 1895—96 гг. в Санкт-Петербурге на р. Охта. В период с 1905 по 1917 г. вступили в строй: крупнейшая для своего времени Гиндукушская ГЭС мощностью 1.35 МВт (1909), Саткинская, Сестрорецкая и другие ГЭС небольшой мощности. В 20—30-х гг. 20 в. в СССР по плану ГОЭЛРО были построены первые крупные ГЭС: Волховская (мощностью 58 МВт) и Земо-Овчальская (36.8 МВт), а также Днепровская, Нижне-Свирская и др. В 50—70-х гг. в России были созданы крупнейшие уникальные ГЭС на Волге (Горьковская – мощностью 1000 МВт, Куйбышевская – 2300 МВт, Саратовская – 1360 МВт, Волгоградская – 2540 МВт и др.), Ангаре (Братская – 4500 МВт, Усть-Илимская – 3840 МВт и др.), Енисее (Красноярская – 6000 МВт, Саяно-Шушенская – 6400 МВт) и др.
ГИДРОЭНЕРГÉТИКА, одна из отраслей энергетики, относящаяся к использованию водных ресурсов, гл. обр. в целях получения электрической энергии. Развитие гидроэнергетики связано со строительством гидроузлов, которые обычно создаются не только для электроэнергетики, но и в интересах водного транспорта, рыбного хозяйства, ирригации, водоснабжения и т. п. Рациональное использование гидроэнергетических ресурсов позволяет решать многие проблемы, связанные с орошением безводных сельскохозяйственных земель, судоходством на реках, обеспечением дешёвой электроэнергией энергоёмких производств, электрификацией железных дорог и т. п. Гидроэнергетика обеспечивает выработку недорогой электроэнергии наиболее экологически чистым способом. К достоинствам гидроэнергетики относятся: постоянная естественная возобновляемость гидроэнергетических ресурсов; низкая себестоимость электроэнергии; экономия трудовых затрат при эксплуатации; высокая манёвренность гидроэнергетического оборудования (обеспечение быстрого изменения режимов работы); комплексное использование водных ресурсов; положительное влияние на индустриальное развитие малоосвоенных регионов и др. Недостатки гидроэнергетики: большая продолжительность строительства гидроэлектростанций; значительные удельные капиталовложения (на 1 кВт установленной мощности); зависимость выработки электроэнергии от водных режимов.
Энергия водного потока привлекала своей доступностью людей с древних времён, история её применения насчитывает более 2 тыс. лет. Для её использования строили водяные колёса, которые приводили в движение, напр., мельничные жернова. До изобретения паровой машины энергия воды вообще была основной движущей силой в приводах станков, молотов, воздуходувок и т. п. Гидроэнергетика сыграла решающую роль в развитии мануфактуры в 17 в.
К нач. 18 в. в России было построено более 3 тыс. промышленных предприятий, на которых работали установки с приводом от водяного колеса (напр., на р. Кораблиха на Алтае, где перемещение гружёных вагонеток осуществлялось с помощью такой установки, сооружённой в 1765 г. мастером К. Д. Фроловым). Самые мощные водяные колёса были установлены на р. Нарова в кон. 18 в.; они имели диаметр 9.5 м, ширину 7.5 м и при напоре 5 м развивали мощность 500 л.с. В 1-й пол. 19 в. была изобретена гидравлическая турбина, открывшая новые возможности использования гидроресурсов. Важнейшим направлением гидроэнергетики стало строительство гидроэлектрических станций для преобразования гидроэнергии в электрическую.
На территории России протяжённость рек составляет примерно 3.5 млн. км; их технически пригодная к использованию энергия (экономический потенциал) приблизительно равна 600 млрд. кВт·ч. Установленная мощность всех гидроэлектростанций России к нач. 21 в. достигла 44 000 МВт; вырабатываемая ими электроэнергия 160 млрд. кВт·ч. Таким образом, экономический потенциал гидроресурсов России используется на 26 %, что лишь немногим меньше мирового уровня (33 %).
ГИПСОКАРТÓН (сухая штукатурка), листовой отделочный материал, изготовленный из водного раствора гипса, армированный растительным волокном и облицованный с обеих сторон картоном. Листы гипсокартона применяются для внутренней облицовки стен, потолков, устройства лёгких внутренних перегородок (в помещениях с нормальной влажностью воздуха, т. к. гипсокартон разрушается под воздействием влаги), в декоративных и звукопоглощающих изделиях. Листы сухой штукатурки не горят, легко режутся и пробиваются гвоздями. К кирпичным, бетонным и каменным поверхностям их приклеивают с помощью специальных мастик.
ГИРÓБУС (жиробус), транспортное средство на колёсном ходу, движущееся за счёт кинетической энергии вращающегося с большой скоростью маховика (см. Инерционный двигатель). Маховик раскручивается до максимальной частоты вращения (на зарядной станции), после чего его подключают к электрогенератору, и запасённая механическая энергия преобразуется в электрическую для питания тяговых электродвигателей. Кинетической энергии маховика хватает для преодоления 5—10 км. Опытные пассажирские электрогиробусы применялись на некоторых линиях Бельгии и Швейцарии в 1950-х гг. Гиробус используется в основном как транспорт, пригодный для обслуживания пожаро – и взрывоопасных объектов.
ГИРОКÓМПАС, 1) навигационный гироскопический прибор для определения курса летательного аппарата, судна, иных движущихся объектов, а также нахождения азимута (пеленга) ориентируемого направления. Принцип действия гирокомпаса основан на использовании свойства гироскопа и суточного вращения Земли; его идея была предложена французским учёным Ж. Фуко. Гирокомпас, в отличие от обычного магнитного компаса, показывает направление географического (а не магнитного) меридиана, и на его показания существенно меньше влияют перемещающиеся металлические массы (железо, сталь) и электромагнитные поля, а точность в условиях маневрирования и колебаний движущегося объекта значительно выше.
2) Гирокомпас маркшейдерский – гироскопический прибор для определения дирекционных углов при ориентировании подземных маркшейдерских сетей и съёмок при маркшейдерско-геофизических работах на поверхности.
ГИРОСКÓП, быстровращающееся симметричное твёрдое тело (ротор), ось вращения (ось симметрии) которого может изменять своё направление в пространстве. Ротор устанавливают в рамках (кольцах) карданова подвеса (см. рис.), позволяющего оси ротора занимать любое положение в пространстве. Такой гироскоп имеет три степени свободы: он может совершать независимые повороты вокруг осей АВ, DЕ и GK, пересекающихся в центре подвеса О. Если центр тяжести гироскопа совпадает с центром О, то гироскоп называется уравновешенным. Такой гироскоп обладает двумя основными свойствами. Первое свойство гироскопа состоит в том, что его ось стремится устойчиво сохранять в пространстве приданное ей первоначальное направление. Если, напр., эта ось вначале направлена на какую-либо звезду, то при любых перемещениях основания прибора и случайных толчках она будет продолжать указывать на эту звезду, меняя свою ориентацию относительно земных осей. Впервые это свойство гироскопа использовал французский физик Ж. Фуко для экспериментального доказательства вращения Земли вокруг её оси (1852).
Гироскоп в кардановом подвесе
Второе свойство гироскопа: если на ось (или рамку) гироскопа начинает действовать сила, стремящаяся привести ось во вращение, то возникает прецессия (движение) гироскопа с постоянной угловой скоростью в направлении, перпендикулярном этой силе. В момент прекращения действия силы мгновенно прекращается прецессия гироскопа.
На основе гироскопа создаются приборы для автоматического управления движением самолётов, ракет, морских судов и т. д., прибор, определяющий направление географического меридиана (гирокомпас), прибор для определения направления истинной вертикали (гировертикаль) и др.
ГЛИССÁДА, прямолинейная траектория движения самолёта, планёра при заходе на посадку. Снижение по глиссаде под углом 0.046—0.087 рад (2.64—5.0 град.) к горизонтальной плоскости обеспечивает самолёту плавное, скользящее приземление и существенно уменьшает динамическую нагрузку на шасси в момент касания взлётной полосы. Это особенно важно для больших пассажирских авиалайнеров и тяжёлых транспортных самолётов. На аэродромах глиссада задаётся при помощи двух радиомаяков – глиссадного и курсового, которые посылают в направлении заходящего на посадку самолёта радиолучи, обозначающие границы глиссады в наклонно-горизонтальной и вертикальной плоскостях. Самолёт начинает снижаться по глиссаде с высоты 200–400 м, высота глиссады над торцом взлётно-посадочной полосы 15 м. При отклонении траектории снижения самолёта от глиссады больше допустимого пилот обязан прекратить снижение и набрать высоту для повторного захода на посадку.
ГЛУБÓКАЯ ПЕЧÁТЬ, способ получения полиграфического изображения на бумаге (или ином материале) с использованием печатных форм, на которых печатающие элементы углублены по отношению к пробельным (непечатающим) элементам. Глубина печатающих элементов на форме различается соответственно насыщенности оттенков воспроизводимого изображения. На бумаге такая форма оставляет оттиск, на котором слои краски имеют разную толщину, что создаёт тончайшие градации и переходы тонов. Формы для глубокой печати изготовляют фотомеханическим способом. В результате получают форму с выпуклым рельефом изображения, полностью воспроизводящим градацию тонов. На поверхность формы в печатной машине наносится жидкая краска, которая заполняет углубления; излишки краски с пробельных участков удаляются специальным устройством – ракелем. Глубокая печать применяется обычно для печатания иллюстрированных журналов, фотоальбомов, портретов и т. п.
Схема формы и оттиска глубокой печати:
1 – форма (а – непечатающие участки, б – углублённые печатающие участки формы); 2 – форма с краской; 3 – форма с очищенными пробельными участками, краска осталась в углублённых участках (в); 4 – бумага с оттиском краски
ГЛУБÓКОЕ ОХЛАЖДÉНИЕ в технике, охлаждение вещества для получения и практического применения температур, лежащих ниже 170 К (–103 °C). Основное назначение глубокого охлаждения – сжижение газов и разделение газовых смесей. Разделение газовых смесей на составляющие основано на разнице их температур кипения. Напр., при охлаждении воздуха кислород переходит в жидкую фазу (сжижается) при 90 К (–183 °C – его температура кипения), а азот – при 77 К (–196 °C). Одним из основных способов достижения температур, при которых газ переходит в жидкую фазу, является дросселирование, т. е. пропускание сжатого газа через дроссель – сужение трубопровода, кран, вентиль или иное препятствие на пути газового потока. При дросселировании давление и температура газа изменяются (эффект Джоуля – Томсона); напр., для углекислого газа при перепаде давления на дросселе на 1 атм. температура газа падает на 1.25 °C.
Жидкие газы находят широкое применение в технике, науке, медицине. Напр., жидкие кислород и водород используются в качестве окислителя и топлива в ракетной технике; жидкие гелий, водород, неон, азот используются для охлаждения лазеров, чувствительных полупроводниковых приборов, антенн радиотелескопов, сверхпроводящих линий связи и электропередачи; жидкий азот широко применяют для консервации и длительного хранения крови, костного мозга, кровеносных сосудов и пр. Охлаждение обмоток электрических машин, трансформаторов, магнитов позволяет в 5–6 раз уменьшить массу и габаритные размеры этих устройств. Использование соленоидов, сделанных из материалов, сопротивление которых при криогенных температурах падает до нуля (сверхпроводников), позволяет создавать сверхсильные магнитные поля, необходимые для многих физических экспериментов.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.