Текст книги "Энциклопедия «Техника» (с иллюстрациями)"
Автор книги: Александр Горкин
Жанр: Энциклопедии, Справочники
сообщить о неприемлемом содержимом
Текущая страница: 13 (всего у книги 67 страниц) [доступный отрывок для чтения: 22 страниц]
У.Гейтс
ГЕЛИКÓПТЕР, принятое за рубежом название вертолёта.
ГЕЛИОКОНЦЕНТРÁТОР, устройство для повышения плотности (концентрации) принимаемой лучистой энергии Солнца. Состоит из системы отражателей: плоских или параболоидных (параболоцилиндрических) зеркал различных форм и размеров; реже используются прозрачные оптические фокусирующие линзы. Отражатели укрепляются на жёстком каркасе; сооружают также полужёсткие и надувные гелиоконцентраторы с покрытием из металлизированных плёнок. Гелиоконцентратор входит в состав различных гелиоустановок, в которых солнечная энергия преобразуется и используется в виде тепла или электроэнергии в солнечных печах, при гелиосварке, стерилизации, в ряде других технологических процессов, в сочетании с солнечным термоэлектрогенератором и т. п. Гелиоконцентратор может повышать плотность энергии солнечной радиации в несколько тысяч раз, доводя её до 35·103 кВт/мІ, что только в два раза меньше плотности лучистой энергии на поверхности Солнца (74·103 кВт/мІ). Для такой концентрации энергии строят гелиоустановки, зеркальная система которых (параболоидного и других типов) может иметь диаметр до 10 м.
ГЕЛИОУСТАНÓВКА, устройство, служащее для улавливания лучистой энергии Солнца и преобразования её в тепловую или электрическую, что позволяет использовать солнечную энергию в практических целях. Простейшей низкотемпературной гелиоустановкой является т. н. «горячий ящик», работающий при естественной плотности солнечной радиации, без её концентрации, который может выполнять функции сушилки, водо – и воздухонагревателя, простейшего опреснителя солёной воды и т. д. Более сложные установки имеют гелиоконцентраторы, они применяются обычно для получения высоких температур при гелиосварке, а также в различных производственных процессах: приготовления продуктов питания (солнечная кухня), стерилизации, нагрева воды и воздуха, опреснения морской воды в промышленных масштабах и т. п.
Гелиоустановка с параболоидным гелиоконцентратором
ГЕЛИОЭЛЕКТРИ́ЧЕСКАЯ СТÁНЦИЯ, см. Солнечная электростанция.
ГЕЛИОЭНЕРГÉТИКА, отрасль энергетики, в которой для получения электрической и тепловой энергии используется лучистая энергия Солнца. Энергия солнечного излучения относится к возобновляемым природным видам энергии наряду с гидравлической и геотермальной; её общее количество, получаемое поверхностью Земли за год, составляет ок. 1018 кВт·ч, что более чем в 20 000 раз превышает современный уровень мирового энергопотребления. Наиболее целесообразно и перспективно использование энергии Солнца для энергоснабжения потребителей, находящихся в южных труднодоступных, удалённых районах, не нуждающихся в больших мощностях (для водоснабжения пресной водой, получения бытового тепла и т. п.), а также в космосе. Лучистая энергия Солнца используется человечеством с древних времён (напр., сушка пищевых продуктов). Со временем был разработан ряд устройств для нагрева воды, обогрева теплиц и т. п. Затем появились различные установки для отопления и охлаждения зданий, опреснения солёной воды, энергообеспечения устройств систем связи, ирригации, космических аппаратов и т. д. К 2000 г. доля используемой солнечной энергии в общем объёме энергопотребления составила 2–3 %. Исследования в области использования солнечной энергии ведутся во многих странах мира, особенно в регионах с интенсивным солнечным излучением – в странах Средиземноморья, юга Европы, на Ближнем Востоке, в Африке, странах Средней Азии и др. Разработки проводятся на уровне национальных программ, что связано во многом с постепенным истощением традиционных источников энергии и повышением цен на органическое топливо. Строительство гелиоустановок обычно рассматривается как дополнение к традиционным источникам энергии. Недостатком всех гелиоустановок является зависимость их работы от состояния атмосферы, а также от сезонных и суточных колебаний солнечной радиации, что требует включения в их состав аккумулирующих устройств.
ГЕНЕРÁТОР ЭЛЕКТРИ́ЧЕСКИЙ, устройство, преобразующее механическую, тепловую, электромагнитную, световую и другие виды энергии в электрическую. К таким устройствам относятся турбо – и гидрогенераторы, термогенераторы, магнитогидродинамические генераторы, термоэмиссионные преобразователи, солнечные батареи, атомные и изотопные батареи. Все эти устройства считаются физическими источниками тока, в отличие от химических источников, вырабатывающих электрическую энергию в результате окислительно-восстановительных реакций (гальванические элементы, электрические аккумуляторы, топливные элементы).
ГЕНЕРÁТОР ЭЛЕКТРИ́ЧЕСКИХ КОЛЕБÁНИЙ, устройство для преобразования различных видов электрической энергии в энергию электрических (электромагнитных) колебаний. По форме электрических колебаний различают: генераторы синусоидальных (гармонических) колебаний, импульсные генераторы, генераторы колебаний специальной формы. Генерирование электрических колебаний осуществляется обычно путём преобразования энергии источников постоянного тока с помощью электронных приборов. В зависимости от типа применяемых приборов различают генераторы на электронных лампах, полупроводниковых приборах (транзисторные, диодные генераторы), магнетронных приборах (магнетроны, стабилитроны), газоразрядных приборах (тиратронные генераторы), а также квантовые генераторы (мазеры, лазеры).
Необходимыми элементами генераторов электрических колебаний являются: источник энергии, пассивные цепи, в которых возбуждаются и поддерживаются колебания, и активный элемент, в котором энергия источника питания преобразуется в энергию генерируемых колебаний. В качестве активных элементов часто используются электронные приборы в сочетании с цепями обратной связи.
Если подводимая в пассивные цепи энергия превосходит потери энергии в них, то любой возникший в них колебательный процесс будет нарастать. Если потери энергии превышают её поступление, то колебания затухают. Энергетическое равновесие, соответствующее стационарному режиму генераторов электрических колебаний, возможно лишь при наличии у элементов системы нелинейных свойств. Если цепи, в которых возбуждаются и поддерживаются электрические колебания, сами по себе обладают колебательными свойствами (такие, как колебательный контур или объёмный резонатор), то частота и форма генерируемых колебаний определяются частотой и формой собственных колебаний этих цепей. В зависимости от диапазона частот генерируемых колебаний различают генераторы очень низкой частоты (3—30 кГц), низкой частоты (30—300 кГц), высокой частоты (300 кГц —300 МГц) и т. д.
Применяются генераторы электрических колебаний в измерительной аппаратуре, передающих и приёмных радиовещательных, телевизионных, радиолокационных и других устройствах, промышленных установках индукционного нагрева, бытовых приборах и т. п.
ГЕОСТАЦИОНÁРНЫЙ ИСКУ́ССТВЕННЫЙ СПУ́ТНИК ЗЕМЛИ́, искусственный спутник Земли, постоянно находящийся над определённой точкой земного экватора. Имеет круговую орбиту, удалённую от поверхности Земли примерно на 36 000 км, и период обращения, равный звёздным суткам (23 ч 56 мин 4 с); движется в восточном направлении. При этих условиях спутник занимает постоянное положение относительно земной поверхности. С геостационарного спутника Земля видна под углом 17°, что позволяет видеть со спутника примерно 1/3 площади земной поверхности. Геостационарные спутники широко используются для ретрансляции радио – и телевизионных передач и радиосвязи между наземными станциями, расположенными за пределами прямой видимости друг друга. Они обеспечивают возможность ретрансляции сразу нескольких телевизионных программ и связи по нескольким тысячам телефонных каналов. Для связи через искусственный спутник используются диапазоны дециметровых и сантиметровых волн. Для энергоснабжения бортовой аппаратуры на спутнике установлены солнечные батареи (мощностью до 10 кВт). Первый геостационарный искусственный спутник земли «Синком-3» (США) выведен на орбиту в 1964 г.
ГЕОТЕРМÁЛЬНАЯ ЭЛЕКТРОСТÁНЦИЯ, тепловая электростанция, использующая внутреннее тепло Земли для выработки электроэнергии и теплоснабжения. Практически единственными источниками геотермальной энергии являются парогидротермы (месторождения самоизливающейся паровоздушной смеси или пара) и гидротермы (месторождения самоизливающейся горячей воды), которые используются для получения как электрической энергии (при температуре пара или паровоздушной смеси более 150 °C), так и тепловой (при температуре 30—150 °C). Однако такие парогидротермальные месторождения расположены лишь в районах активной вулканической деятельности. На геотермальных электростанциях паровоздушная смесь из природного источника, выведенная на поверхность, как правило, по специально пробуренным скважинам, направляется в сепараторационные устройства, где пар отделяется от воды. Затем отсепарированный пар поступает в паровую турбину, а горячая вода (при температуре примерно 120 °C) используется для теплоснабжения и других целей. В некоторых случаях перед турбиной устанавливаются устройства, предварительно очищающие пар от агрессивных (сильно корродирующих) газов. В отличие от других тепловых электростанций, на геотермальных электростанциях нет котельного цеха, золоулавливателей и многих других устройств; практически геотермальная электростанция состоит лишь из машинного зала и помещения для электротехнических устройств. Себестоимость электроэнергии на таких электростанциях значительно ниже, чем на тепловых электростанциях.
Схематическое устройство геотермальной электростанции:
1 – вода; 2 – пар; 3 – насос; 4 – паровая турбина; 5 – электроэнергия; 6 – генератор
В России первая геотермальная электростанция (Паужетская, на юге Камчатки) мощностью 5 МВт введена в эксплуатацию в 1966 г. В последующие годы её мощность была увеличена до 11 МВт. За рубежом геотермальные электростанции построены (или сооружаются) в Италии (Тоскана, район Лардерелло), Новой Зеландии (зона Таупо), США (Калифорния – Долина Больших Гейзеров) и Японии.
В районе Рейкьявика (Исландия) геотермальные воды используются для теплофикации. Суммарная установленная мощность всех геотермальных электростанций мира в 1980 г. составляла 2.5 тыс. МВт, в 2000 г. – ок. 17 тыс. МВт. Геотермальные ресурсы планеты практически безграничны. Однако на современном этапе развития науки и техники их практическое использование проблематично.
ГЕРÓН АЛЕКСАНДРИ́ЙСКИЙ (ок. 1 в.), древнегреческий учёный, жил и работал в Александрии. Изобрёл ряд приборов и автоматических устройств, в частности прибор для измерения протяжённости дорог, действовавший по принципу современного таксометра, а также автомат для продажи «священной» воды, водяные часы и др.
ГЕТЕРОПЕРЕХÓДНЫЙ ПОЛУПРОВОДНИКÓВЫЙ ПРИБÓР, полупроводниковый прибор, содержащий один или несколько гетеропереходов – контактов между двумя разными по химическому составу или фазовому состоянию полупроводниками. Гетеропереходный полупроводниковый прибор может быть аналогом обычного полупроводникового прибора (напр., диода, транзистора) либо представлять собой оригинальное устройство (напр., гетеропереходный преобразователь инфракрасного излучения в видимое). Создана целая группа таких гетеропереходных приборов: инжекционные лазеры, различные виды диодов, источники света, фотоприёмники, фотоэлементы, датчики механических напряжений на основе пьезо – и сегнетоэлектриков, приборы с зарядовой связью.
Первый в мире гетероинжекционный лазер был создан коллективом учёных под руководством Ж. И. Алфёрова в 1968 г. В 1970 г. этот коллектив создал первый диод на гетеропереходе, а в 1971 г. – первый транзистор. Алфёров и Г. Крёмер (США) открыли и усовершенствовали скоростные опто – и микроэлектронные компоненты на базе многослойных полупроводников – гетероструктур. Созданные на их основе быстродействующие транзисторы широко применяются в мобильных телефонах и системах спутниковой связи. Разработанные по этой же технологии лазерные диоды передают информацию по оптоволоконным телефонным линиям и сетям Интернета. Они используются в проигрывателях компакт-дисков, устройствах для считывания товарных ярлыков со штрих-кодом в магазинах, лазерных указках и множестве других современных электронных приборов. В 2000 г. Ж. И. Алфёрову и Г. Крёмеру за создание гетеропереходных полупроводниковых приборов присуждена Нобелевская премия в области физики.
ГЕТИНÁКС, слоистый пластик на основе бумаги, пропитанной термореактивными синтетическими смолами, гл. обр. фенолоформальдегидными. Основу – бумагу из сульфитной и сульфатной целлюлозы или сульфатно-тряпичную бумагу, а также асбестовую, содержащую небелёную целлюлозу (асбогетинакс), или синтетическую бумагу (органогетинакс) – пропитывают раствором предварительно нагретой смолы, сушат, режут, прессуют при 150 °C и давлении 15 МПа. Выпускается в виде листов или цилиндрических заготовок по технологии изготовления композиционных материалов (напр., штампованием или намоткой). Отличается высокими механическими и электроизоляционными свойствами. Плотность 1200–1800 кг/мі, удельное электрическое сопротивление 1010 —1017 Ом·см; теплостойкость от 150 до 300 °C (для асбогетинакса). С поверхности покрывают медной фольгой, стеклянной, асбестовой или хлопчатобумажной тканью; иногда ткань или металлическую сетку используют в качестве внутреннего слоя, повышающего прочность изделия. Применяют в производстве электроизоляционных деталей для радиотелефонной и телевизионной аппаратуры, печатных схем, втулок, шестерёнок и др.; гетинакс с наружным декоративным слоем используют при облицовке мебели и интерьеров.
ГИ́БКА, получение из заготовок деталей изогнутой формы. Для этого применяют специальные машины. Одни из них предназначены для изготовления цилиндрических или конических открытых с концов барабанов (обечаек), которые затем используют при производстве бочек, вёдер, бункеров и других ёмкостей. Другие, более мощные, служат для гнутья трубных заготовок, получения кольцеобразных и дуговых элементов. Существуют машины для навивки пружин; свёртывания из листового материала труб большого диаметра. Мелкие изделия из проволоки или ленты (шплинты, скрепки и т. п.) изготовляют на гибочных автоматах. Гибку скоб, кронштейнов, гофрированных и других фигурных заготовок осуществляют в специальных прессах, называемых бульдозерами.
Гибочная машина (листогибочный кривошипный пресс)
ГИ́БКИЙ МАГНИ́ТНЫЙ ДИСК (флоппи-диск), носитель данных в виде тонкого, упругого пластмассового диска, покрытого с одной или обеих сторон слоем магнитного вещества; разновидность магнитного диска. Гибкие пластмассовые магнитные диски размещаются по одному в специальных жёстких кассетах; кассета с флоппи-диском называется дискетой. Ёмкость стандартной дискеты – 1.44 Мбайт.
ГИБРИ́ДНАЯ ИНТЕГРÁЛЬНАЯ СХÉМА, см. в ст. Интегральная схема.
ГИДРАВЛИ́ЧЕСКАЯ ТУРБИ́НА (гидротурбина), лопастный гидравлический двигатель, преобразующий механическую энергию потока воды в энергию вращающегося вала. Основным рабочим органом гидротурбины, на котором происходит преобразование энергии, является рабочее колесо.
По принципу действия гидротурбины делят на реактивные (напороструйные) и активные (свободноструйные). Вода к рабочему колесу поступает либо через сопла (в активных гидротурбинах), либо через направляющий аппарат (в реактивных гидротурбинах). Реактивные гидротурбины по направлению потока воды, падающего на лопасти рабочего колеса, подразделяются на осевые и радиально-осевые. Преимущественное применение получили радиально-осевые гидротурбины с изменяющимся углом поворота лопастей (т. н. поворотно-лопастные). Мощность, развиваемую реактивной гидротурбиной, можно регулировать путём изменения угла поворота лопастей рабочего колеса или лопаток направляющего аппарата (гидротурбины одинарного регулирования), либо тем и другим способом одновременно (гидротурбины двойного регулирования). Реактивные радиально-осевые гидротурбины применяют в основном при напорах до 500–600 м. Такие гидротурбины установлены на большинстве ГЭС России.
Схема реактивной гидравлической турбины:
а – рабочее колесо; б – направляющий аппарат
В активных гидротурбинах вода к рабочему колесу может подаваться через одно или несколько сопел либо сразу через все сопла (кольцевой струёй). Соответственно в первом случае работает только одна или несколько лопастей, а во втором – одновременно все лопасти рабочего колеса. Мощность активной гидротурбины регулируют либо за счёт изменения числа открытых сопел, т. е. числа работающих лопастей, либо за счёт изменения площади выходного сечения сопел (всех одновременно).
Схема активной гидравлической турбины:
а – рабочее колесо; б – сопла
Наиболее распространённой разновидностью активной гидротурбины является ковшовая турбина. Вода на лопасти (ковши) рабочего колеса попадает по касательной к окружности, проходящей через центры ковшей, и не непрерывно, а лишь при прохождении ими зоны действия напорной струи. Число ковшей выбирают минимальным (обычно 18–26) из расчёта непрерывности перехода струи с одной лопасти на другую (без проскока струи между ними). Активные гидротурбины применяют при напорах св. 500–600 м. Наибольший используемый ковшовыми гидротурбинами напор – ок. 1800 м на ГЭС Рейсек в Австрии.
Первая реактивная гидротурбина мощностью 6 л. с. была построена в 1827 г. французским инженером Б. Фурнероном. В 1855 г. американский инженер Дж. Френсис изобрёл радиально-осевое рабочее колесо с неповоротными лопастями, а в 1887 г. немецкий инженер Финк предложил направляющий аппарат с поворотными лопатками. Спустя два года американский инженер А. Пелтон получил патент на активную ковшовую гидротурбину. В 1920 г. австрийский инженер В. Каплан получил патент на поворотно-лопастную гидротурбину. К кон. 20 в. в России были созданы и успешно работали гидротурбины единичной мощностью 508 и 650 МВт (Красноярская и Саяно-Шушенская ГЭС) с расчётным напором 93 и 194 м, диаметром рабочего колеса 7.5 и 6.5 м соответственно, а в Японии – гидротурбины мощностью 600 МВт с диаметром рабочего колеса 9.7 м и напором 87 м (установлены на ГЭС Гранд-Кули-III в США).
Ковшовая турбина
ГИДРАВЛИ́ЧЕСКИЙ АККУМУЛЯ́ТОР, устройство для накопления энергии рабочей жидкости или газа, находящихся под давлением, с целью их последующего использования. Служит для выравнивания давления и расхода жидкости (газа) в гидравлических установках. Гидравлические аккумуляторы делятся на грузовые и воздушные, поршневые и беспоршневые. Гидравлические аккумуляторы применяют в системах с резко переменным расходом жидкости (газа). В периоды уменьшения потребления аккумулятор накапливает жидкость, поступающую от насосов, и отдаёт её в моменты наибольших расходов. Поршневой аккумулятор состоит из резервуара, обычно цилиндрической формы, со свободно перемещающимся внутри поршнем. В резервуар подаётся жидкость под давлением, которое удерживается постоянным благодаря внешнему воздействию на поршень груза или сжатого воздуха. В беспоршневых аккумуляторах давление поддерживается постоянным за счёт давления сжатого воздуха в пневмосети, соединённой с резервуаром аккумулятора. При этом давление воздуха равно давлению жидкости.
Гидравлические аккумуляторы:
а – груxзовый; б – баллонный;
1 – резервуар; 2 – поршень; 3 – груз; 4 – баллоны со сжатым воздухом
ГИДРАВЛИ́ЧЕСКИЙ ПРЕСС, пресс, приводимый в действие жидкостью, находящейся под высоким давлением. Гидравлический пресс был изобретён в 1795 г. Впервые применён для пакетирования сена, выдавливания виноградного сока, отжима масла. С сер. 19 в. широко применяется в металлообработке для ковки слитков, листовой штамповки, гибки и правки, объёмной штамповки, выдавливания труб и профилей, пакетирования и брикетирования отходов, прессования порошковых материалов, покрытия кабелей металлической оболочкой и др. Гидравлические прессы используются в производстве пластмассовых и резиновых изделий, древесно-стружечных плит, фанеры, текстолита. Они применяются при синтезе новых материалов (напр., искусственных алмазов). Действие гидравлического пресса основано на законе Паскаля. Усилие возникает на поршне рабочего цилиндра, в который под высоким давлением поступает жидкость (вода или масло). Поршень связан с рабочим инструментом. Гидравлический пресс может иметь привод от насоса или насосно-аккумуляторной станции. Давление рабочей жидкости для большинства гидравлических прессов составляет 20–32 Мн/мІ (200–320 кгс/смІ). Наиболее мощные гидравлические прессы развивают усилие 735 Мн (~ 75000 тс). Гидравлические прессы при работе не создают большого шума и сотрясений, неизбежных при работе молота.
ГИДРАВЛИ́ЧЕСКИЙ ТАРÁН, водоподъёмное устройство, в котором давление создаётся в результате гидравлического удара – резкого повышения давления в трубопроводе с движущейся жидкостью при внезапном уменьшении скорости потока (напр., при быстром перекрытии трубопровода). Высота подъёма воды может превышать 50 м. Применяют в сельском хозяйстве, строительстве и т. д. Гидравлический таран поднимает воду, используя избыточное давление, возникающее в результате периодических гидравлических ударов. Цикл действия гидравлического тарана начинается с т. н. разгона, когда разблокируется клапан 4 и вода из резервуара начинает сбрасываться, поднимая клапан. Затем его быстро закрывают, чем вызывается гидравлический удар. Резкое повышение давления открывает клапан 5, и вода поступает в верхний бак 1, при этом сжатый воздух в напорном колпаке 3 выравнивает подачу воды по трубопроводу. В конце второго периода давление снова уменьшается и клапан 5 закрывается, а клапан 4 открывается, что и обеспечивает повторение цикла в автоматическом режиме.
Гидравлический таран:
1 – верхний бак; 2,6 – трубопроводы; 3 – напорный колпак; 4,5 – клапаны; 7 – резервуар
ГИДРАВЛИ́ЧЕСКИЙ УСИЛИ́ТЕЛЬ, устройство для перемещения управляющих органов гидравлических исполнительных механизмов с одновременным усилением мощности управляющего воздействия. Гидравлический усилитель наряду с механическими, пневматическими и электрическими усилителями является одной из разновидностей усилителей – устройств, в которых осуществляется увеличение энергетических параметров сигнала (воздействия) за счёт использования энергии вспомогательного источника. Используются гидравлические усилители с дроссельным и со струйным управлением. Они состоят из управляющего устройства (напр., сопла с заслонками или золотниковой пары) и исполнительного устройства (напр., поршня исполнительного механизма или управляющего золотника). В гидравлическом усилителе рабочая жидкость из напорной магистрали поступает в систему управления через постоянные дроссели к переменным дросселям и рабочим камерам. Входной электрический сигнал через электромеханический преобразователь управляет положением заслонки. При её смещении изменяются соотношения проходных сечений рабочих окон гидравлического усилителя (зазоров между соплами и заслонкой), изменяются давления в рабочих камерах, что вызывает перемещение золотника. Усиление по мощности может быть достигнуто более чем в 100 000 раз. Гидравлические усилители применяют для управления рулями на самолётах, тяжёлых грузовиках, автобусах, промышленных роботах и др.
Схема гидравлического усилителя:
1 – управляющая заслонка; 2 – сопла; 3 – постоянные гидравлические дроссели; 4 – золотник гидравлического исполнительного механизма; 5 – центрирующие пружины; 6 – рабочие камеры; 7 – электромеханический преобразователь; РН – давление питания
ГИДРОАГРЕГÁТ, агрегат, состоящий из соединённых одним валом гидравлической турбины и электрического генератора (гидрогенератора). Различают горизонтальные осевые и вертикальные гидроагрегаты. К первым относятся прямоточные агрегаты (распространения не получили) и погружённые – капсульные и шахтные гидроагрегаты. У капсульных гидроагрегатов электрический генератор и гидротурбина размещаются внутри металлического кожуха-капсулы. Особое место занимают т. н. обратимые гидроагрегаты, состоящие из обратимой электромашины, которая может работать или как генератор, или как электродвигатель, и обратимой гидромашины (гидротурбины), которая в зависимости от направления вращения может работать как турбина или как насос. Они широко применяются на низконапорных ГЭС (с напором 15–20 м), а также на гидроаккумулирующих и приливных гидростанциях.
Гидроагрегат:
1 – гидравлическая турбина; 2 – гидрогенератор
ГИДРОАККУМУЛИ́РУЮЩАЯ ЭЛЕКТРОСТÁНЦИЯ (ГАЭС), гидроэлектрическая станция, способная накапливать запас воды в верхнем бассейне для дальнейшего его использования (гл. обр. выработки электроэнергии) по мере необходимости. Гидротехнические сооружения ГАЭС состоят, как правило, из двух бассейнов, расположенных в разных уровнях и соединённых трубопроводом. Верхний бассейн ГАЭС может быть искусственным или естественным (напр., озеро), нижним бассейном часто служит водоём, образовавшийся вследствие перекрытия реки плотиной. У нижнего конца трубопровода в здании ГАЭС устанавливают обычно обратимые гидроагрегаты. В режиме накопления они перекачивают воду из нижнего бассейна в верхний; в режиме генерирования электроэнергии они же работают как на обычных ГЭС, преобразуя энергию потока воды, свободно перетекающей из верхнего водоёма в нижний, в электрическую энергию. Время пуска и смены режимов работы гидроагрегатов составляет несколько минут, что предопределяет высокую эксплуатационную манёвренность ГАЭС. Способность ГАЭС потреблять избыточную электроэнергию в ночные часы и отдавать её в энергосистему в часы наибольшего потребления делает их действенным средством для выравнивания электроэнергетического потенциала энергосистемы, основу которой составляют крупные паротурбинные и атомные электростанции. Средний кпд ГАЭС с учётом потерь в электрических сетях составляет 66 %. Наиболее экономичны мощные ГАЭС с напором воды в несколько сотен метров, сооружённые на скальных основаниях вблизи центров потребления электроэнергии. Крупные ГАЭС построены за рубежом: Том-Сок (США) мощностью 350 МВт, напор 253 м (введена в 1963 г.); Вианден (Люксембург) – 900 МВт, напор 280 м (1964); Хоэнварте-II (Германия) – 320 МВт, напор 305 м (1965); Круахан (Великобритания) – 400 МВт, напор 440 м (1966) и др. Первая ГАЭС на территории бывшего СССР мощностью 225 МВт была сооружена под Киевом в 1972 г.; под Москвой построена Загорская ГАЭС мощностью 1600 МВт.
Схема гидроаккумулирующей электростанции:
1 – верхний аккумулирующий бассейн; 2 – здание электростанции; 3 – река; 4 – водовод; 5 – плотина
ГИДРОАЭРОДРÓМ, водный аэродром, часть водной поверхности у берега моря, озера, реки или водохранилища, предназначенная для взлёта и посадки гидросамолётов. На берегу располагаются аэровокзал, ангары, пункт управления полётами, причалы, пирсы, склады и пр. Водные аэродромы, как и обычные наземные, оборудованы радиолокационными станциями и другими радиотехническими устройствами, помогающими пилотам лучше ориентироваться при взлёте и посадке в условиях плохой видимости. Граница акватории гидроаэродрома обозначается специальными буями и бакенами с сигнальными огнями, светящими в ночное время суток и в сумерки. На время между полётами самолёты закрепляют у причалов или у причальных бочек, чтобы ветер не снёс их в открытое море. Характерная особенность гидроаэродрома – отсутствие взлётно-посадочной полосы. Для взлёта и посадки пилот всегда может выбрать оптимальное направление. Пассажиры либо поднимаются в гидросамолёт со специально оборудованного пирса, либо их подвозят на катере или лодке. Первые гидроаэродромы в России были построены в 1912—14 гг. в Севастополе (Украина), Ревеле (ныне Таллин, Эстония), Либаве (ныне Лиепая, Латвия).
ГИДРОГЕНЕРÁТОР, генератор электрического тока, приводимый в действие гидравлической турбиной; ротор генератора соединён непосредственно с валом рабочего колеса турбины. Гидрогенераторы подразделяют: по мощности – малой (до 50 МВт), средней (50—150 МВт) и большой (св. 150 МВт); по частоте вращения – тихоходные (до 100 об/мин) и быстроходные (св. 100 об/мин). Выходное напряжение генераторов отечественного производства от 8.8 до 18 кВ; кпд 96.3—98.8 %; мощность от нескольких десятков до нескольких сотен мегаватт. Тихоходные гидрогенераторы большой мощности обычно изготовляют с вертикальной осью вращения (за исключением капсульных гидроагрегатов), быстроходные – как с горизонтальной, так и с вертикальной осью. В России большинство быстроходных гидрогенераторов устанавливают с вертикальной осью вращения. Мощные гидрогенераторы имеют впечатляющие размеры и массу; напр., ротор гидрогенератора Братской ГЭС (225 МВт) имеет диаметр 10 м и массу 1450 т, а ротор гидрогенератора Красноярской ГЭС (508 МВт) имеет диаметр 16 м и массу 1640 т. Первые отечественные гидрогенераторы мощностью 7.25 МВт были установлены в кон. 1920-х гг. на Волховской ГЭС им. Ленина. В нач. 1930-х гг. на Днепровской ГЭС были смонтированы гидрогенераторы мощностью 65 МВт, в 1960—70-х гг. были созданы уникальные гидрогенераторы мощностью 225.508 и 650 МВт для Братской, Красноярской и Саяно-Шушенской ГЭС.
ГИДРОИЗÓЛ, см. в ст. Битумные материалы.
ГИДРОИЗОЛЯ́ЦИЯ, защита строительных конструкций, зданий и сооружений от проникновения воды (антифильтрационная), а также материалов конструкций от вредного воздействия воды или какой-либо агрессивной жидкости. Для гидроизоляции применяют асфальтовые материалы (битумные и асфальтовые мастики, гидроизол и т. д.), минеральные (цементное покрытие, силикатные краски и т. д.), металлические (листы из латуни, меди, свинца, нержавеющей стали; их используют в наиболее ответственных случаях – в резервуарах, плотинах и т. д.) и пластмассы. Полимерные материалы в качестве гидроизоляционных получают преимущественное применение. Среди них различные лаки и краски, полимеррастворы и полимербетоны, полимерные плёнки для оклеечной гидроизоляции, герметики и стеклопластики. Изоляция элементов строительных конструкций от воды достигается разными способами. Напр., детали сооружений могут быть защищены оклеечной, обмазочной или окрасочной гидроизоляцией в зависимости от их расположения (в сооружении) и материала, из которого они изготовлены. Для изделий из пористых материалов (свай, труб, фундаментных блоков из известняка и туфа) используют гидроизоляцию пропиточную. Бывает и инъекционная гидроизоляция, когда вяжущий материал нагнетают в швы или трещины строительных конструкций.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?