Автор книги: Александр Горкин
Жанр: Энциклопедии, Справочники
сообщить о неприемлемом содержимом
Текущая страница: 18 (всего у книги 41 страниц)
Спутниковый приёмник для определения координат точки стояния
Для топографической съёмки местности применяют мензулу (чертёжный планшет, укреплённый на треноге) и кипрегель – прибор для прочерчивания направлений и измерения расстояний и превышений. С их помощью прямо в поле определяют положение и высоту характерных точек местности, наносят их на планшет и сразу вычерчивают топографическую карту в принятых условных знаках.
Для геометрического нивелирования (определения разности высот) используют нивелиры (оптические приборы с горизонтальной визирной осью) и специальные нивелирные рейки. С их помощью передают высоты от начальной точки трассы нивелирования на следующую точку (пикет) – и так далее, с пикета на пикет, вдоль всей трассы.
Современная тенденция развития геодезического приборостроения – переход на электронные системы, обеспечивающие высокоточные измерения и фиксацию результатов в цифровой форме прямо в ходе полевой съёмки. Это удобно для компьютерной обработки данных и автоматического построения топографических карт, планов, профилей и т. п.
Подлинная революция в геодезии связана с появлением глобальных систем позиционирования (ГСП), опирающихся на спутниковые измерения. ГСП позволяют определять координаты и высоты пунктов посредством системы искусственных спутников, постоянно находящихся над Землёй. ГСП, расположенная в какой-либо точке, одновременно измеряет расстояния до четырёх или более искусственных спутников Земли. Делается это с помощью электронных приёмников, получающих специальные радиосигналы от спутников; тем самым ГСП как бы засекает своё положение на местности. Т. обр., координаты и высоты любого пункта не надо передавать от других пунктов геодезической сети, их можно определить автономно. Полученные данные быстро обрабатывают на портативных компьютерах. Это обеспечивает высокую оперативность и экономичность геодезических работ даже в труднодоступной местности, построение геодезических сетей, картографирование всех видов, привязку аэро– и космических снимков, ведение инженерно-строительных работ, навигацию и т. п.
ГЕОДÉЗИЯ, наука, изучающая форму, размеры и гравитационное поле Земли, а также технические средства и методы измерений на местности.
Геодезия зародилась в странах Древнего Востока и в Египте, где задолго до н. э. были известны методы измерения земельных участков и проектирования крупных инженерных и архитектурных сооружений – плотин, храмов, пирамид. В античной Греции, напр., использовали методы определения размеров Земли. Расцвет геодезии в Европе связан с применением магнитного компаса, изобретением в кон. 16 в. инструментов со зрительными трубами. В России научные геодезические работы начались в 17–18 вв. и были связаны с освоением новых территорий, строительством промышленных и горнодобывающих предприятий, развитием мореплавания и военного дела. Особенно быстро съёмочные работы стали развиваться в cep. 19 в. в связи с деятельностью Корпуса военных топографов и проведением межевания земель на огромных пространствах европейской части страны. Немалая заслуга в научном обосновании геодезических работ принадлежит знаменитому русскому астроному и геодезисту, основателю и первому директору Пулковской обсерватории В. Я. Струве.
Геодезическая съёмка местности с помощью кипрегеля и мензулы
В ceр. 20 в. исследования по определению фигуры и размеров Земли выполнили Ф. Н. Красовский и А. А. Изотов, вычислившие уточнённые параметры земного эллипсоида, который официально принят в нашей стране с 1942 г. и назван эллипсоидом Красовского. На тер. всей страны развита геодезическая сеть и выполнены сплошные топографические съёмки. Единый блок топографических карт масштаба 1: 25 000, охватывающих пространства России, самый крупный в мире. Всемирно известны изобретатели геодезических приборов – Ф. В. Дробышев, М. Д. Коншин, М. М. Русинов и др.
Современная геодезия тесно связана с астрономией, математикой, геофизикой, картографией и прочими науками о Земле и других планетах, а также с космонавтикой и аэрокосмическим зондированием. Осн. разделы: высшая геодезия (изучает форму и гравитационное поле Земли, методы создания геодезических сетей), космическая, или спутниковая, геодезия (использование искусственных спутников Земли для решения научных и прикладных задач), инженерная геодезия (геодезические измерения при проектировании и строительстве инженерных сооружений), топография (топографические съёмки и картографирование), маркшейдерская съёмка (подземные геодезические съёмки при горных разработках, в шахтах).
ГЕОИЗОБРАЖÉНИЕ, любая пространственно-временнáя, масштабная, генерализованная модель земных (планетных) объектов или процессов, представленная в иконической (образной) форме. Понятие «геоизображение» охватывает традиционные полиграфические и электронные карты, анаморфозы, аэро– и космические снимки, фотокарты, блок-диаграммы, рельефные карты и стереомодели, картографические анимации, кинокарты, виртуальные изображения и др. Соответственно различают плоские (двумерные), объёмные (трёхмерные) и динамические (трёх– и четырёхмерные) геоизображения. Разработкой геоизображений занимается геоиконика.
ГЕОИКÓНИКА, научная дисциплина, разрабатывающая общую теорию геоизображений, методы их анализа, преобразования и использования в научной и практической деятельности. Геоиконика интегрирует достижения картографии, дистанционного зондирования и геоинформатики в области изучения изображений. Она связана с иконикой, машинной графикой, психологией восприятия, теорией распознавания образов и другими отраслями знаний, занимающимися общими проблемами графических изображений.
ГЕОИНФОРМАЦИÓННОЕ КАРТОГРАФИ́РОВАНИЕ, особое направление на стыке картографии и геоинформатики, суть которого составляет автоматизированное создание и использование карт на основе географической информационной системы, баз данных и баз знаний (географических, экологических и др.). Геоинформационное картографирование имеет важное значение при оперативном создании карт, анимационном, виртуальном, мультимедийном моделировании, а в ряде случаев полностью заменяет традиционные методы проектирования, составления, издания и использования карт.
ГЕОКРИОЛÓГИЯ (мерзлотоведение), наука о мёрзлых грунтах и горных породах, процессах их образования, истории развития и условиях существования, а также явлениях, связанных с процессами промерзания, оттаивания и преобразования мёрзлых толщ. Изучает многолетнемёрзлые и сезонномёрзлые горные породы, особенности их состава, строения, сложения, физико-механические свойства, взаимоотношение грунтов с подземными льдами, хотя сами льды являются объектом гляциологии. Геокриология исследует также геологические, геоморфологические и гидрологические явления, связанные с промерзанием и протаиванием верхней части земной коры, разрабатывает теоретические основы и приёмы управления этими процессами в связи со строительством и эксплуатацией сооружений, проведением горных работ, с.-х. освоением территорий, транспортным строительством и др.
Как самостоятельная отрасль знаний мерзлотоведение возникло в нашей стране в кон. 1920-х гг. Задачи науки были сформулированы в трудах М. И. Сумгина, дальнейшее развитие отечественной геокриологии связано с именами П. А. Шумского, А. И. Попова, П. И. Мельникова, М. Н. Кудрявцева и др. Значительное развитие геокриология получила в Канаде, США, Китае, Норвегии и Швеции. Наряду с гляциологией является частью криологии Земли.
ГЕОЛОГИ́ЧЕСКАЯ КÁРТА, карта недр Земли, отражающая строение и состав земной коры, историю её развития и происходящие в ней процессы. Различают карты тектонические и неотектонические, литолого-фациальные, палеогеографические, стратиграфические, коренных пород, четвертичных отложений, гидрогеологические, полезных ископаемых, инженерно-геологические, геоэкологические и др. Геологические карты составляют в ходе полевых съёмок и камеральными методами с широким привлечением данных бурения, геофизических материалов, результатов аэрокосмического зондирования. Используют гл. обр. для прогноза и разведки полезных ископаемых, оценки условий освоения тер., строительства, охраны недр.
Фрагмент геологической карты
ГЕОЛОГИ́ЧЕСКИЕ ОСÁДКИ, продукты геологических процессов, отлагающиеся на поверхности Земли – в континентальных условиях или на дне водных бассейнов. Формируются в результате осаждения обломочного материала, выпадения из растворов различных веществ, накопления продуктов жизнедеятельности организмов, животных и растительных остатков. Обломочные осадки сложены обломками минералов и горных пород, образовавшимися при разрушении (выветривании) более древних горных пород и перенесёнными на место отложения ветром, водой и льдом. В их составе могут быть и новые минералы, возникшие в зоне гипергенеза. Особую группу обломочных осадков образуют продукты вулканических взрывов – пирокластические материалы, переносимые к месту осаждения силой взрыва или др. гипергенными агентами. Продукты химического осаждения из растворов – хемогенные отложения – весьма разнообразны по составу и бывают сложены карбонатными, силикатными и др. образованиями, в т. ч. и рудными минералами. Хемогенным путём, нередко с участием биологических процессов, накапливаются рудные массы, преобразующиеся затем в рудные тела месторождений осадочного генезиса. Органогенные осадки представлены скоплениями животных и растительных остатков. Обычно накапливающиеся массы осадков состоят из продуктов разнообразных процессов (механического, химического и биологического осаждения). Состав осадка и относительные количества составляющих его компонентов зависят от конкретных условий осадконакопления. Последующие процессы литификации превращают осадки в горные породы.
ГЕОЛОГИ́ЧЕСКИЙ ВÓЗРАСТгорных пород бывает абсолютный и относительный. Абсолютный геологический возраст (время, прошедшее с момента образования горной породы) определяют на основании изучения распада радиоактивных элементов (уран, торий, калий, рубидий и др.), содержащихся в минералах; исчисляется обычно в миллионах лет. Как правило, полученные датировки даются в первом приближении, т. е. в некотором возрастном диапазоне, с миним. ошибкой ±5 %. Относительный геологический возраст (без оценки абс. возраста) устанавливают на основании взаимного положения слоёв в разрезе методами относительной геохронологии.
ГЕОЛÓГИЯ, система наук об истории развития Земли и о её внутреннем строении. Осн. внимание уделяется земной коре: её составу, строению, движению и размещению в ней полезных ископаемых, особенно в верхней части, доступной непосредственному наблюдению. Современная геология подразделяется на ряд наук, направлений и дисциплин; некоторые из них (напр., геофизика, исследующая физические поля планеты) граничат с другими естественными науками.
Историческая геология изучает процесс формирования Земли – как планеты в целом, так и её оболочек. В свою очередь, включает: стратиграфию, которая устанавливает последовательность образования горных пород, в результате чего строится геохронологическая шкала;палеогеографию (часто её относят к системе географических наук), которая восстанавливает ландшафты прошлых геологических эпох; обособляется также четвертичная геология, подробно рассматривающая историю четвертичного периода. Пограничной с биологией является палеонтология, восстанавливающая ход эволюции жизни на Земле по остаткам ископаемых организмов и следам их жизнедеятельности.
Вещественный состав земной коры изучают следующие науки: минералогия – наука о происхождении и свойствах минералов; петрография – наука о происхождении и свойствах преимущественно магматических и метаморфических горных пород; литология, посвящённая изучению осадочных горных пород. Пограничной с химией является геохимия – наука о распространении и перемещении химических элементов в земной коре и других оболочках Земли.
Геотектоника занимается общими закономерностями строения земной коры и верхней мантии (литосферы), происхождением и развитием слагающих их частей (тектонических структур), а также движением последних, что является прерогативой особого направления науки – геодинамики.
Ряд дисциплин наряду с теоретическими углублённо разрабатывают и практические аспекты геологии, направленные на решение народно-хоз. и экологических задач. К таковым можно отнести: гидрогеологию, изучающую подземные воды; геологию полезных ископаемых, изучающую происхождение и распространение месторождений; инженерную геологию, в чьём ведении находятся свойства грунтов и горных пород, знание которых необходимо при строительстве и иных видах хоз. деятельности. Синтезом геологических знаний по конкретной территории занимается региональная геология. Она широко привлекает данные пограничной с географией науки о рельефе Земли – геоморфологии.
Традиционно геологические исследования опираются на прямые полевые наблюдения, которые затем подвергаются камеральной и лабораторной обработке. Уникальный материал дают буровые работы, особенно на сверхглубоких (более 7 км) скважинах. Начиная с 1950-х гг. широко используются дистанционные методы, в т. ч. материалы космической съёмки (см. Дистанционное зондирование). Результаты специализированных и комплексных геологических исследований излагаются в виде карт, схем, профилей и текстовых отчётных материалов. В последние десятилетия широко применяются компьютерные методы обработки и хранения информации.
Истоки геологии уходят в глубокую древность и связаны с наблюдениями античными учёными (Страбон, Плиний и др.) землетрясений, извержений вулканов и др. природных явлений. В Средние века появляются первые описания и классификации минералов, суждения об истинной природе ископаемых раковин как остатках вымерших организмов и о большой по сравнению с библейскими представлениями длительности истории Земли (Леонардо да Винчи). Как самостоятельная ветвь естествознания геология начала складываться во 2-й пол. 18 в. и окончательно оформилась в нач. 19 в., что связано с именами А. Вернера, Ч. Геттона, М. В. Ломоносова, У. Смита и других выдающихся учёных. Труды Ч. Лайеля положили начало разработке метода актуализма, позволившего расшифровать события геологического прошлого. В кон. 19 – нач. 20 в. в ведущих странах мира возникают геологические службы, начинаются систематические геолого-съёмочные работы. В России они связаны с именами А. П. Карпинского, Ф. Н. Чернышёва, К. И. Богдановича и др. В это же время теоретические вопросы геологии продолжают разрабатывать Дж. Холл, Дж. Дана, Э. Ог, Э. Зюсс и др. В настоящее время геология превратилась в одно из ведущих естественно-научных направлений, активно развиваемых в большинстве стран мира.
ГЕОМОРФОЛОГИ́ЧЕСКАЯ КÁРТА, характеризует рельеф земной поверхности (суши и дна океанов) с точки зрения его внешнего облика (морфологии и морфометрии), генезиса, возраста, истории развития и современных рельефообразующих процессов. При создании геоморфологической карты используют разные подходы: генетический, морфологический, морфоструктурный и др. Общие геоморфологические карты отражают совокупность осн. показателей рельефа, частные – отдельные его параметры (напр., густоту, глуб. расчленения, оползневые процессы). На палеогеоморфологических картах показывают прошлые этапы развития рельефа.
ГЕОМОРФОЛÓГИЯ, наука о рельефе земной поверхности (суши, дна океанов и морей). Изучает его морфологию, происхождение, историю развития, современную динамику. Объединяет геологические и географические знания. Осн. идеи геоморфологии, касающиеся процесса рельефообразования, заключаются в том, что земная поверхность, с одной стороны, представляет собой верхнюю поверхность земной коры, а с другой – является поверхностью взаимодействия внутренних структур и процессов, происходящих во внешних оболочках – атмосфере, гидросфере, криосфере и биосфере. Рельеф создаётся и развивается в результате взаимодействия внутренних (эндогенных) и внешних (экзогенных) сил и процессов. Внутриземные массы в процессе тектонических движений в земной коре и вулканизма подаются снизу к поверхности планеты, формируя её первичные неровности. Попадая в сферу воздействия внешних процессов (температурные изменения, течения и волнения воды, ветер, влияние растений, животных, человека), поданные снизу породы разрушаются (см. Выветривание) и подвергаются сносу, переносу и отложению (см. Аккумуляция). Отложенные наносы со временем погружаются в недра земной коры и в более глубинные сферы планеты, где перерабатываются и снова поднимаются к поверхности, с тем чтобы начать новый виток вечного круговорота веществ, в результате чего изменяется рельеф поверхности планеты.
Как самостоятельная дисциплина геоморфология оформилась в кон. 19 – нач. 20 в. Имеет множество научных направлений. Это структурная геоморфология, изучающая связи рельефа с геологическим строением и движениями земной коры; историческая (эволюционная) геоморфология и палеогеоморфология, объектом которых является история развития рельефа; климатическая геоморфология, исследующая связи рельефа с климатом и природными ландшафтами; экологическая геоморфология, изучающая взаимные связи между рельефом и средой жизни организмов, в т. ч. человека; эстетическая геоморфология, оценивающая красоту и привлекательность геоморфологических объектов и ландшафтов; поисковая геоморфология, разрабатывающая геоморфологические методы поисков полезных ископаемых; инженерная геоморфология, изучающая взаимодействие инженерной деятельности человека с рельефом и процессами его образования; агрогеоморфология, выявляющая геоморфологические последствия с.-х. освоения территорий и разрабатывающая меры к устранению нежелательных последствий (напр., приёмы борьбы с эрозией почв). Кроме того, в особые направления выделяются планетарная геоморфология, изучающая глобальные закономерности строения и развития рельефа Земли и других планет; региональная геоморфология, исследующая геоморфологические особенности отдельных регионов; геоморфология дна океанов и морей; геоморфология берегов. Как пограничная наука между геологией и географией геоморфология, опираясь на достижения и методы этих наук, разрабатывает собственные методы: анализ морфологической структуры рельефа (морфометрия), геоморфологическое картографирование, в т. ч. с помощью фотосъёмки с самолётов и из космоса. Современная геоморфология – одна из интенсивно развивающихся наук о Земле. Её данные используются при поисках полезных ископаемых, проектировании дорог и сооружений.
ГЕОПОЛИ́ТИКА, научная область, изучающая в единстве географические, исторические, политические и другие взаимодействующие факторы, оказывающие влияние на стратегический потенциал государства, а также на геополитическое районирование как размежевание силовых полей между странами и их коалициями.
Многие географы и политологи, особенно в Германии, в течение долгих лет пытались отмежеваться от геополитики, считая, что сам этот термин навсегда скомпрометирован нацистской геополитикой, составлявшей при Гитлере неотъемлемый элемент официальной гос. доктрины и служившей обоснованию аннексий, агрессии и территориальной экспансии. Другие считали политическую географию и геополитику одной дисциплиной. Действительно, после 2-й мировой войны политическая география и геополитика продолжительное время развивались автономно: первая занималась в осн. проблемами на уровне государства, вторая – внешнеполитическими приложениями географических знаний. Объективные процессы глобализации и прогресс теории к настоящему времени почти стёрли эту грань.
Различают «высокую» и «низкую» геополитику. К первой относят официальные внешнеполитические документы и труды всевозможных экспертов. Задача «высокой» геополитики – определить гос. интересы в конкретных исторических условиях и возможные внешние угрозы национальной безопасности, сформулировать принципы политики, направленной на их предотвращение. «Низкая» геополитика включает набор представлений, символов и образов, характеризующих место страны в мире, её внешнеполитическую ориентацию, потенциальных союзников и гл. соперников, содержащихся в сообщениях средств массовой информации, рекламе, мультфильмах, карикатурах. «Низкая» геополитика – необходимый элемент национального (этнического) и политического (государственного) самосознания – сводит многообразие мира к упрощённым схемам, легко объяснимым и понятным конфликтам. В демократическом обществе «высокая» и «низкая» геополитика не могут существовать друг без друга, хотя характер их взаимодействия различен в разных странах и меняется со временем.
ГЕОСИНКЛИНÁЛЬ, один из главных (наряду с платформой) тектонических элементов земной коры. На ранних стадиях – узкая, глубоко прогибающаяся подвижная впадина длиной в несколько десятков и даже сотен километров, возникающая на дне морского бас. и постепенно заполняющаяся толщами преимущественно обломочных и эффузивных пород. По мере развития активизируется интрузивная деятельность (внедрение магмы в толщу земной коры), на отдельных участках начинается формирование складок, происходит поднятие, сменяющееся новым погружением, возникают перерывы в осадконакоплении. Со временем процессы складкообразования усиливаются, происходит интенсивное поднятие всей геосинклинальной области и создаётся горный рельеф – геосинклиналь трансформируется в крупную складчатую систему. Обычно она образуется в зоне перехода от океана к континенту или между континентами.
Теоретические представления о формировании геосинклиналей базируются на учении о тектонических процессах земной коры, основы которого были заложены М. В. Ломоносовым. Понятие о геосинклинали в её изначальном смысле (прогибающаяся подвижная впадина с компенсированным заполнением осадками) было сформулировано в 1859 г. американским геологом и палеонтологом Дж. Холлом, а термин «геосинклиналь» введён в 1873 г.
ГЕОСФÉРЫ, концентрические слои (внутренние и внешние оболочки), на которые разделяется вещество Земли. Центральное положение занимает сферическое ядро Земли радиусом ок. 3470 км, оно находится на глуб. 2900 км. Выше располагается мантия Земли, которая на уровне глубин 5–75 км отделяется разделом Мохоровичича от земной коры. Вместе с верхней частью мантии (до глуб. 50–250 км) земная кора объединяется в твёрдую оболочку Земли – литосферу. Внешними являются водная оболочка планеты, или гидросфера, имеющая прерывистое распространение и переменную толщину (до 11 км в океанах), и газовая (воздушная) оболочка – атмосфера, прослеживаемая до выс. ок. 2000 км и постепенно переходящая в космическое пространство. Каждая из этих оболочек имеет сложное строение и делится, в свою очередь, на составные части. Некоторые из них получили собственные названия. Так, слой многолетнемёрзлых пород в земной коре – криосфера, а верхний тонкий плодородный слой на суше – почвенный покров, или педосфера.
В качестве оболочек также выделяются области земного (иногда и околоземного) пространства, обладающие особыми свойствами. Магнитосфера, или магнитное поле Земли, объединяет все её оболочки и распространяется на околопланетное пространство, подверженное действию земного магнетизма. Географическая оболочка объединяет верхнюю часть земной коры, гидросферу и нижние слои атмосферы, именно здесь идёт интенсивный энергомассообмен, обеспечивающий развитие ландшафтов Земли и создающий условия для жизни на ней. Близка по объёму и содержанию биосфера — пространство, в котором возможно существование и развитие живых организмов. Ноосфера, или сфера разумной жизни, распространяется, помимо биосферы, на верхние слои атмосферы и ближний космос.
ГЕОТЕКТÓНИКА (тектоника), отрасль геологии, изучающая структуру, движение и развитие твёрдой оболочки Земли – литосферы, состоящей из земной коры и верхней мантии. В основе этого направления лежит структурная геология, устанавливающая формы геологических тел как в ненарушенном (первичном) их залегании, так и возникшие в результате различных деформаций. На основе этих работ составляются тектонические карты разного масштаба – от мировых до региональных. Описанием внутреннего строения отдельных областей земного шара и истории их тектонического развития занимается региональная геотектоника. Другое направление – изучение движений литосферы, создавших современную структуру земной коры, или тектонических движений. По времени завершения крупных этапов формирования геологических структур выделяются гл. эпохи складчатости: древнейшие архейские и протерозойские, байкальская, каледонская, герцинская (варисская), мезозойская и альпийская (кайнозойская). Повышенное внимание уделяется движениям, происходившим в течение последней, кайнозойской эры, которые ещё называют неотектоническими. Их рассмотрением занимается наука неотектоника. Крайне важное, в т. ч. и практическое значение имеет изучение тектонических движений в пределах последнего, четвертичного периода развития Земли, и особенно осуществлявшихся в историческую эпоху, – т. н. современные движения земной коры. Для этих целей, помимо традиционных геологических, широко применяются геоморфологические и геодезические методы исследования, а также данные истории и археологии. Геодинамика устанавливает причины тектонических движений и их связь с вулканической деятельностью, магматизмом, сейсмическими и иными явлениями в литосфере и более глубоких сферах Земли.
Несмотря на длительный путь развития, накопленный обширный фактический материал и очевидные достижения, геотектоника как наука ещё находится в стадии становления. Ей свойственны дискуссии и полемика по многим вопросам, в её рамках существуют различные гипотезы и концепции, в т. ч. и взаимоисключающие. К их числу принадлежат концепции фиксизма и мобилизма, по-разному трактующие осн. положения истории геологического развития и механизм формирования тектонических структур.
ГЕОТЕРМÁЛЬНАЯ ЭЛЕКТРОСТÁНЦИЯ, тепловаяэлектростанция, использующая тепловую энергию термальных вод Земли для выработки электроэнергии и теплоснабжения. В комплекс сооружений входят: буровые скважины, выводящие на поверхность пароводяную смесь или пар; устройства газовой и химической очистки; электроэнергетическое оборудование; система технического водоснабжения и др. Такого вида электростанции относительно просты в эксплуатации, но малоэкономичны. Геотермальная электростанция мощностью 1000 МВт выпускает в атмосферу 10⁴ –10⁵ т газов в год, загрязняет 10⁵ –10⁸ м³ воды и требует значительной площади (до 20 км² на одну станцию). Сооружение геотермальных электростанций оправдано там, где термальные воды наиболее близко подходят к поверхности Земли (напр., в р-нах вулканической деятельности, где есть гейзеры). Несколько таких станций было сооружено в США, в Долине Больших Гейзеров (штат Калифорния), в Новой Зеландии, Италии, Японии и др. В Исландии (в р-не Рейкьявика) геотермальные воды используются для теплофикации. В России геотермальные электростанции построены на п-ове Камчатка (Паужетская и Мутновские).
Схематическое устройство геотермальной электростанции:
1 – вода; 2 – пар; 3 – насос; 4 – паровая турбина; 5 – электроэнергия; 6 – генератор
ГЕОФИ́ЗИКА (физика Земли), комплекс наук, изучающих физические свойства Земли в целом и физические процессы, происходящие в её оболочках. Соответственно различаются: физика твёрдой Земли, охватывающая направления исследования внутренних оболочек планеты; гидрофизика и физика атмосферы. Они тесно смыкаются с науками, относящимися к геологии и географии.
В рамках первой группы выделяются: сейсмология, которая изучает акустическое поле Земли, землетрясения и связанные с ними явления; геомагнетизм, рассматривающий магнитное и электрическое поля Земли, их неоднородность в пространстве и изменение во времени; гравиметрия – изучает гравитационное поле Земли и его распределение в пространстве; геотермия, посвящённая тепловому полю планеты, гл. обр. тепловому режиму земной коры; ядерная геофизика, исследующая естественное радиоактивное излучение; разведочная геофизика, которая использует широкий спектр физических методов при поиске и разведке полезных ископаемых, при решении других народно-хоз. задач.
Гидрофизика – составная часть океанологии и гидрологии. Физика атмосферы фактически смыкается с метеорологией и синоптикой и имеет большое значение для прогнозирования погодных явлений.
Первые трактаты и сводки по физическим явлениям на Земле были известны со времён Средневековья, но на научную основу геофизические исследования были поставлены уже в 19 в. Они связаны с именами И. Ньютона, К. Ф. Гаусса, А. Гумбольдта и др. выдающихся учёных. Последнее столетие характеризуется бурным развитием геофизических методов исследования земной коры. Появилась разветвлённая сеть станций и пунктов наблюдения за физическими полями Земли, накоплен обширный фактический материал и сделаны принципиально важные теоретические обобщения. Они позволили установить внутреннее строение Земли, открыть ряд месторождений полезных ископаемых, поставить на научную основу прогноз многих опасных природных явлений.
ГЕОФИЗИ́ЧЕСКИЕ МÉТОДЫ исследования земной коры, используются в геофизике. Основаны на изучении физических полей: гравитационного, магнитного, электрического, упругих колебаний (сейсмического, или акустического), термического (теплового), ядерных излучений (радиационного). Измерения параметров этих полей ведут на суше и на море, в воздухе и под землёй. Получаемая информация позволяет определять местонахождение геологических структур, рудных тел, водоносных горизонтов и т. п., прогнозировать неблагоприятные явления (землетрясения, вулканические извержения, цунами и т. п.), оценивать состояние природной среды и др. Используются как естественные, так и искусственно создаваемые физические поля.
Различают: гравиметрическую разведку, основанную на изучении поля силы тяжести Земли; магнитную разведку, изучающую естественное магнитное поле Земли; электрическую разведку, использующую искусственные электромагнитные поля, реже – измерение естественных земных полей; сейсморазведку, изучающую распространяющиеся в земной коре упругие колебания, вызываемые искусственно (после взрыва или удара) или имеющие естественное происхождение (сейсмические волны, возникающие в результате землетрясений или извержений вулканов); геотермическую разведку, основанную на измерении тем-ры горных пород в скважинах; радиометрическую разведку, исследующую естественное радиоактивное излучение.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.