Электронная библиотека » Кип Торн » » онлайн чтение - страница 7


  • Текст добавлен: 27 августа 2015, 14:00


Автор книги: Кип Торн


Жанр: Физика, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 20 страниц) [доступный отрывок для чтения: 7 страниц]

Шрифт:
- 100% +
Черные дыры и аккреционные диски

Но как из столь маленькой области может исходить так много энергии? Если взять фундаментальные силы природы, то вариантов три: химическая энергия, ядерная энергия или гравитационная энергия.

Химическая энергия – это энергия, которая высвобождается, когда молекулы соединяются, образуя молекулы другого вида. Пример – горение бензина, в процессе которого молекулы бензина соединяются с молекулами атмосферного кислорода, результатом чего является вода, диоксид углерода и много тепла. Однако энергии, которая при этом выделяется, для нашего случая очень-очень мало.

Ядерная энергия высвобождается, когда ядра атомов соединяются, образуя новые ядра. Примеры – атомная бомба, водородная бомба, а также горение ядерного топлива внутри звезды. Хотя энергии при этом может выделяться гораздо больше, чем при химических реакциях (представьте себе разницу между канистрой бензина и ядерной бомбой), астрофизики не видят возможностей, позволяющих квазарам подпитываться ядерной энергией, и этот вариант тоже отпадает. Остается только гравитационная энергия, та самая, которая помогала «Эндюранс» совершать маневры вблизи Гаргантюа. В случае «Эндюранс» эта энергия использовалась во время гравитационной пращи вокруг черной дыры средней массы (см. главу 7). Ключевой момент здесь – сильная гравитация черной дыры. Соответственно, мощность квазара тоже должна обеспечиваться черной дырой.

В течение нескольких лет астрофизики пытались разобраться, как это возможно. Ответ был найден в 1969 году Дональдом Линден-Беллом из Гринвичской королевской обсерватории в Англии. Квазар, как предположил Линден-Белл, – это гигантская черная дыра, окруженная диском раскаленного газа (аккреционным диском), который пронизан магнитным полем (рис. 9.2).


Рис. 9.2. Художественное изображение аккреционного диска черной дыры, а также джетов, образующихся около ее полюсов (Работа Мэтта Зимета по моему наброску; из [Торн 2009].)


Горячий газ во Вселенной практически всегда пронизан магнитными полями (см. главу 2). Эти поля «привязаны» к газу: газ и магнитные поля перемещаются вместе, одновременно.

Когда в аккреционном диске действует магнитное поле, оно выступает катализатором преобразования гравитационной энергии в тепло и затем в свет. Поле порождает сверхвысокое трение[42]42
  Трение возникает в результате сложного процесса, когда движущийся газ возбуждает поле, усиливая его и, таким образом, преобразуя энергию движения в магнитную энергию; затем магнитное поле, которое в соседних областях пространства направлено в противоположную сторону, пересоединяется, переводя при этом магнитную энергию в тепло. Преобразование движения в тепло и есть сущность трения. Прим. автора.


[Закрыть]
, которое замедляет круговое движение газа, что уменьшает центробежную силу, противостоящую гравитационному притяжению, – вследствие чего газ перемещается внутрь, к черной дыре. По мере этого перемещения гравитация дыры ускоряет орбитальное движение газа в большей степени, чем его замедляет трение. Иначе говоря, гравитационная энергия переходит в кинетическую энергию (энергию движения). Затем магнитное трение преобразует половину этой новой энергии в тепло и свет, и все идет по новой.

Итак, энергия (посредством магнитного трения и газа аккреционного диска) порождается гравитацией черной дыры.

Собственно, как заключил Линден-Белл, от раскаленного газа аккреционного диска и исходит наблюдаемое астрономами яркое свечение квазаров. Более того, магнитное поле ускоряет часть электронов в газе до высокой энергии, и эти электроны движутся по спиральным траекториям вокруг линий магнитного поля, излучая наблюдаемые радиоволны квазара.

Линден-Белл выяснил и обосновал детали этих процессов, комбинируя ньютоновские, релятивистские и квантовые законы физики. Он объяснил все наблюдаемые астрономами свойства квазаров, за исключением джетов. Его научная статья, излагающая эти умозаключения и расчеты [Lynden-Bell 1969], – один из величайших трудов в истории астрофизики.

Джеты: извлечение энергии из завихрения пространства

В течение нескольких следующих лет наблюдавшие за квазарами астрономы обнаружили еще больше джетов и тщательно их изучили. Вскоре стало ясно, что это потоки горячего намагниченного газа, которые исходят из самого квазара (от черной дыры и ее аккреционного диска), см. рис. 9.2. Причем сила выброса джетов чрезвычайно велика: газ в них движется с околосветовой скоростью. На выходе из квазара, а также когда он сталкивается вдали от квазара с веществом, газ испускает энергию в виде света, радиоволн, рентгеновских лучей и даже гамма-лучей. Порой джеты так же ярки, как сам квазар, – в сотню раз ярче самых ярких галактик.

Почти десятилетие астрофизики бились над вопросом, что питает джеты, делая их такими быстрыми, тонкими и прямыми. Были предложены разные версии; наиболее интересную из них выдвинули в 1977 году Роджер Блэндфорд из Кембриджского университета в Англии и его студент Роман Знаек, которые отталкивались от исследований оксфордского физика Роджера Пенроуза[43]43
  Стоит также упомянуть эффект Пенроуза, состоящий в том, что в эргосфере вращающейся черной дыры частицы могут обладать (формально) отрицательной энергией, что дает принципиальную возможность извлекать энергию из черной дыры, которую может уносить один из продуктов распада частицы в эргосфере, покинувший ее. Эффект дает возможность извлекать энергию из черной дыры, замедляя ее вращение. Прим. науч. ред.


[Закрыть]
, см. рис 9.3.


Рис. 9.3. Механизм образования джетов Блэндфорда – Знаека (Рисунок Мэтта Зимета по моему наброску; из [Торн 2009].)


Их версия такова. Газ из аккреционного диска постепенно по спирали опускается в черную дыру. В момент пересечения горизонта событий каждая частица газа оставляет свою часть магнитного поля у горизонта, и окружающий диск удерживает ее там. Черная дыра, вращаясь, вовлекает пространство в вихревое движение (рис. 5.4 и 5.5), что, в свою очередь, вызывает завихрение магнитного поля (рис. 9.3). Магнитное поле, завихряясь, создает мощное электрическое поле (похожим образом оно генерируется в динамо-машине на гидроэлектростанции). Электрическое поле вместе с завихряющимся магнитным полем выбрасывают плазму (горячий ионизированный газ) вверх и вниз со скоростью, близкой к световой, – так и возникают два джета. Направления выброса джетов стабилизируются (если рассматривать усредненные показатели по годам) вращением черной дыры, которое стабильно благодаря гироскопическому эффекту.

У квазара 3C273 только один джет обладает достаточной яркостью, чтобы быть видимым, но у многих других квазаров видны оба джета.

Блэндфорд и Знаек детально описали все процессы, отталкиваясь от теории относительности Эйнштейна. Они смогли объяснить почти все наблюдаемые свойства джетов.

Согласно другой версии (рис. 9.4), завихряющееся магнитное поле привязано к аккреционному диску, а не к горизонту дыры и движется по кругу, влекомое орбитальным движением диска. В остальном же все повторяется: эффект динамо-машины и выброс плазмы. Эта версия работает даже для невращающейся черной дыры. Однако у нас есть основания считать, что большинство черных дыр вращается, и весьма быстро, поэтому мне кажется, что механизм Блэндфорда – Знаека (рис. 9.3) лучше всего подходит для квазаров. Но, быть может, я предвзят: в восьмидесятых я потратил немало времени, изучая различные аспекты идей Блэндфорда – Знаека и даже выступил соавтором монографии на эту тему.


Рис. 9.4. То же, что на рис. 9.3, но магнитное поле привязано к аккреционному диску (Рисунок Мэтта Зимета по моему наброску; из [Торн 2009].)


Откуда берется диск

В 1969 году Линден-Белл предположил, что квазары расположены в центрах галактик. Мы не видим галактику вокруг квазара, сказал он, потому что ее свет намного слабее, чем свет самого квазара, квазар затмевает для нас галактику. Спустя десятилетия астрономы благодаря новым технологиям обнаружили свечение галактик вокруг множества квазаров, что подтвердило предположение Линден-Белла.

Также в течение последних десятилетий мы узнали, откуда берется большая часть газа, из которого состоит диск. Порой какая-нибудь звезда подходит так близко к черной дыре в центре квазара, что приливные силы этой дыры (см. главу 4) разрывают звезду на части. Немалая доля газа из расколовшейся звезды попадает в плен к черной дыре, образуя аккреционный диск.

Благодаря развитию компьютерных технологий в последние годы астрофизикам удалось смоделировать этот процесс. Рис. 9.5 получен в результате такого моделирования, выполненного Джеймсом Гиллоконом, Энрико Рамирез-Руисом, Дэниелом Кэсеном (из Калифорнийского университета в Санта-Крузе) и Стефаном Россвогом (из Бременского университета)[44]44
  На рис. 9.5 я поменял размер дыры на размеры Гаргантюа, а размер звезды – на размер красного гиганта и скорректировал временные отметки. Прим. автора.


[Закрыть]
. В начальный момент (который на рисунке не показан) звезда двигалась практически прямо к черной дыре, приливная гравитация которой начинала растягивать звезду в направлении дыры и сжимать с боков, как на рис. 6.1. Двенадцать часов спустя звезда уже сильно деформирована и находится в положении, показанном на рис. 9.5 сверху. В течение еще нескольких часов она огибает дыру по синей орбите гравитационной пращи и, как видно на рисунке, деформируется еще больше. Через 24 часа звезда распадается на части, поскольку ее собственная гравитация уже неспособна этому противостоять.


Рис. 9.5. Приливное разрушение звезды (красного гиганта) черной дырой Гаргантюа


Дальнейшая судьба звезды показана на рис. 9.6, результате другого моделирования, выполненного Джеймсом Гиллоконом и Сави Джезари из Университета Джона Хопкинса (Балтимор). См. видеоролик по адресу hubblesite.org/newscenter/archive/releases/2012/18/video/a/.



Рис. 9.6. Приливное разрушение звезды (красного гиганта) черной дырой Гаргантюа


Два верхних изображения соответствуют моментам незадолго до и незадолго после событий на рис. 9.5. Я увеличил эти изображения в 10 раз, чтобы можно было различить дыру и разрушающуюся звезду.

Как видно из раскадровки, в течение нескольких лет большая часть вещества звезды оказывается заключена на орбите вокруг черной дыры, где из него формируется аккреционный диск. Оставшееся же вещество избегает притяжения дыры, покидая ее вдоль струеобразной траектории (джет).

Аккреционный диск Гаргантюа и отсутствие джета

Типичный аккреционный диск и его джет испускают рентгеновское излучение, гамма-лучи, радиоволны и свет; и мощь этого излучения такова, что оно уничтожило бы всех людей, находящихся неподалеку. Чтобы избежать этого, Кристофер Нолан и Пол Франклин снабдили Гаргантюа чрезвычайно слабым диском.

Ну как слабым… Слабым по стандартам типичных квазаров. Вместо температуры в сотню миллионов градусов, как у диска типичного квазара, температура диска Гаргантюа – «всего» несколько тысяч градусов (как на поверхности Солнца). Поэтому диск Гаргантюа испускает много света, но почти не испускает рентгеновских и гамма-лучей. Когда газ настолько «прохладный», тепловое движение атомов слишком медленное, чтобы диск был толстым. В итоге он «тонко размазан» по экваториальной плоскости Гаргантюа.

Такой диск может быть у «проголодавшейся» черной дыры, то есть дыры, которая за последние миллионы или более лет не растерзала ни одной звезды. В этом случае магнитное поле, изначально привязанное к плазме диска, истощится, а джет, который оно подпитывало, – исчезнуть. Таков диск Гаргантюа: тонкий, без джета и относительно безопасный для людей. Относительно.

Диск Гаргантюа заметно отличается от изображений тонких дисков из трудов астрофизиков, поскольку в их иллюстрациях отсутствует одна важная особенность – гравитационное линзирование диска черной дырой. В «Интерстеллар» линзирование есть, поскольку Крис настаивал на зрительной достоверности.

Перед Эжени фон Танзелманн стояла задача прогнать аккреционный диск через компьютерную программу гравитационного линзирования, о которой я писал в главе 8. Первым делом, чтобы оценить результат линзирования, Эжени использовала бесконечно тонкий диск, лежащий точно в экваториальной плоскости Гаргантюа. Для этой книги она предоставила более наглядный вариант такого диска, состоящий из равномерно распределенных цветных участков.

Если бы не гравитационное линзирование, диск выглядел бы так же, как на врезке. Линзирование же кардинально изменило его вид (основная часть рис. 9.7). Вы могли решить, что задняя часть диска окажется скрытой за Гаргантюа. Однако вместо этого гравитационное линзирование породило два изображения диска, одно над дырой и одно под ней, см. рис. 9.8. Лучи света, которые исходят с верхней стороны той области диска, что находится позади Гаргантюа, огибают дыру сверху и, попадая в камеру, формируют изображение диска над тенью Гаргантюа на рис. 9.7. То же самое происходит и для нижней стороны диска, изображение которой огибает тень Гаргантюа снизу.


Рис. 9.7. Бесконечно тонкий диск в экваториальной плоскости Гаргантюа, гравитационно линзированный искривленным пространством и временем дыры. Гаргантюа здесь вращается очень быстро. Врезка: тот же диск без черной дыры (Изображение от команды Эжени фон Танзелманн из студии Double Negative.)


Рис. 9.8. Лучи света (красные линии), формирующие для камеры изображения области аккреционного диска, которая находится позади Гаргантюа: одно изображение – над тенью дыры, другое – под ней


Кроме первичных изображений можно разглядеть тонкие вторичные изображения диска, огибающие тень сверху и снизу у самого ее края. А если бы картинка была гораздо больше, вы бы увидели также изображения третичные и более высоких порядков, располагающиеся все ближе и ближе к тени.

Можете сообразить, почему линзированный диск выглядит именно так? Почему огибающее тень снизу первичное изображение смыкается с тонким вторичным изображением, которое огибает тень сверху? Почему цветные участки сверху и снизу от тени растянуты, а слева и справа – сжаты?

Пространственный вихрь Гаргантюа (с левой стороны рисунка пространство движется по направлению к нам, а справа – от нас) искажает изображения диска. Он отдаляет диск от тени с левой стороны и приближает с правой, из-за чего диск выглядит слегка перекошенным. (Можете объяснить почему?)

На следующем этапе Эжени фон Танзелманн и ее команда заменили диск с цветными областями (рис. 9.7) более реалистичным тонким аккреционным диском, см. рис. 9.9. Этот диск выглядел куда привлекательнее, однако возникли проблемы: Крис не хотел смущать массового зрителя несимметричностью диска и тени черной дыры, а также плоским левым краем тени и замысловатым узором звездного поля возле этого края (об этом шла речь в главе 8). Поэтому Крис и Пол решили замедлить Гаргантюа до скорости в 0,6 от предельной, что сделало все эти странности менее заметными. (От эффекта Доплера, вызванного движением диска по направлению к нам слева и от нас справа, Эжени уже отказалась. Иначе диск стал бы еще более асимметричным: ярко-синим слева и тускло-красным справа, что окончательно запутало бы зрителей!)


Рис. 9.9. Гаргантюа с более реалистичным бесконечно тонким аккреционным диском вместо цветного диска с рис. 9.7 (Изображение от команды Эжени фон Танзелманн из студии Double Negative.)


Затем художники студии Double Negative снабдили диск текстурой и рельефом, которые были бы присущи настоящему слабому аккреционному диску, сделав его слегка и неравномерно утолщенным. Они сделали диск более горячим (более ярким) вблизи Гаргантюа и более холодным (тусклым) вдали от нее. Кроме того, вдали диск утолстили, поскольку к экваториальной плоскости его стягивают силы приливной гравитации, которые тем слабее, чем больше расстояние до черной дыры. И наконец, добавили фон, состоящий из множества слоев (пыль, туманности, звезды), и наложили дымку и блики, имитирующие поведение света в линзах камеры. В результате получились чудесные, просто волшебные кадры для фильма (рис. 9.10 и 9.11).


Рис. 9.10. Гаргантюа и ее аккреционный диск с планетой Миллер над левым краем диска. Из-за большой яркости диска звёзды и туманности позади дыры едва заметны (Кадр из «Интерстеллар», с разрешения «Уорнер Бразерс».)


Рис. 9.11. Часть диска Гаргантюа вблизи и пролетающий над ним космолет «Эндюранс». Темная область с разрозненными отсветами на переднем плане – это окаймленная диском тень Гаргантюа (Кадр из «Интерстеллар», с разрешения «Уорнер Бразерс».)


И, разумеется, Эжени и ее команда заставили газ, из которого состоит диск, вращаться по орбите вокруг Гаргантюа (иначе он устремился бы в дыру). В комбинации с гравитационным линзированием орбитальное движение газа дало выразительные эффекты перетекания, заметные на рис. 9.11.

Какое счастье было увидеть эти кадры! Впервые в истории черная дыра и ее диск показаны в голливудском фильме такими, какими мы увидим их на самом деле, когда освоим межзвездные перелеты. И впервые я, физик со стажем, видел реалистичный, гравитационно линзированный диск, огибающий дыру сверху и снизу, а не прячущийся за ее тенью.

Если диск Гаргантюа, несмотря на свое великолепие, столь слаб да еще и лишен джета, действительно ли окрестности Гаргантюа безопасны? Амелия Брэнд считает, что да…

10. Случай – краеугольный камень эволюции

Когда в фильме выяснилось, что планета Миллер непригодна для жизни, Амелия Брэнд выступила за то, чтобы отправиться к очень далекой от Гаргантюа планете Эдмундс, а не к более близкой планете Манн: «Случай – это краеугольный камень эволюции, – говорит она Куперу. – Но когда ты на орбите черной дыры, мало что может случиться: дыра засасывает и астероиды, и кометы – и все, что иначе могло бы произойти с тобой. Нужно двигаться дальше».

Этот момент – один из немногих в «Интерстеллар», где персонажи понимают науку превратно. Кристофер Нолан знал, что аргумент Амелии ошибочен, и все же решил оставить эту реплику из первоначального сценария Джоны. Ученые тоже могут ошибаться.

Хоть Гаргантюа и рада засосать в себя астероид, комету, планету, звезду или даже черную дыру поменьше, удается ей это нечасто. Почему?

Любой объект, находящийся вдали от Гаргантюа, обладает большим угловым моментом[45]45
  Угловой момент объекта – это произведение его окружной скорости на расстояние до Гаргантюа. Угловой момент важен для нас, поскольку он постоянен по всей длине орбиты объекта, даже если это сложная орбита. Прим. автора.
  Еще один примечательный факт: если тело и вектор его движения в начальный момент движения лежали в экваториальной плоскости, то и в дальнейшем движение будет происходить в этой плоскости. Математически это следует из геодезических уравнений в метрике Керра. Здесь допустима аналогия из классической механики, где при условии сохранения момента импульса движение тела (в трехмерном пространстве) происходит в фиксированной плоскости, которая определяется начальными условиями. Прим. науч. ред.


[Закрыть]
, если только он не летит прямо к Гаргантюа.

Большой угловой момент порождает центробежные силы, которые легко берут верх над гравитационным притяжением Гаргантюа, даже если объект, следуя орбите, подходит близко к черной дыре.

На рис. 10.1 изображен пример типичной орбиты. Объект под воздействием мощной гравитации Гаргантюа движется к дыре. Но, прежде чем он достигает горизонта, центробежные силы возрастают настолько, что отбрасывают объект назад. Так происходит снова и снова, практически бесконечно.


Рис. 10.1. Типичная орбита объекта, движущегося вокруг быстровращающейся черной дыры вроде Гаргантюа (Модель Стива Драско.)


Единственное, что может этому помешать, – случайная встреча с каким-нибудь другим массивным телом (небольшой черной дырой, звездой или планетой). Объект огибает это другое тело по траектории гравитационной пращи (см. главу 7), и его перебрасывает на новую орбиту вокруг Гаргантюа, с изменением углового момента. У новой орбиты, как и у прежней, угловой момент почти всегда велик, и центробежные силы опять спасают объект от падения в Гаргантюа. Но крайне редко происходит так, что новая орбита влечет объект прямо или почти прямо к Гаргантюа с малым угловым моментом. В этом случае центробежные силы оказываются слишком слабы, и тогда объект проходит сквозь горизонт Гаргантюа.

Астрофизики смоделировали одновременное орбитальное движение миллионов звезд вокруг гигантской черной дыры, подобной Гаргантюа. Гравитационные пращи постепенно меняют все орбиты, изменяя таким образом распределение звездной плотности (количество звезд на заданный объем). При этом звездная плотность вблизи Гаргантюа не уменьшается – она растет. Плотность астероидов и комет также будет расти. Случайные бомбардировки астероидами и кометами участятся. Окрестности Гаргантюа станут более опасными для обособленных форм жизни, включая людей, что при условии выживания достаточного количества особей ускорит эволюцию.


Познакомившись с Гаргантюа и ее опасными окрестностями, уделим теперь немного внимания Земле и Солнечной системе, а именно – свалившемуся на землян бедствию и сложнейшей задаче спасения человечества с помощью межзвездного перелета.

III. Земля в беде

11. Болезнь растений

Когда в 2007 году Джонатан (Джона) Нолан приступил к работе над сценарием, он выбрал временем действия эпоху, когда человеческая цивилизация представляет собой бледную тень нынешнего величия и самому существованию человечества угрожает эпифития – распространение среди растений гибельной для них болезни. Кристофер Нолан, брат Джоны, заступив на вахту режиссера, принял и развил эту идею.

Однако мы с Линдой Обст и Джоной немного беспокоились о научном правдоподобии мира Купера, каким его нарисовал Джона: как могло человечество прийти в упадок и все же во многих отношениях оставаться привычным для нас? И какова, с точки зрения науки, вероятность того, что эпифития поставит под угрозу существование всех съедобных растений?

Я мало что знаю о заболеваниях растений, поэтому мы обратились за советом к специалистам. 8 июля 2008 года я организовал в «Афинеуме», университетском клубе Калтеха, обед. Хорошая еда, отличное вино. Джона, Линда, я и четыре биолога из Калтеха, каждый из которых силен в своей области: Эллиот Мееровиц, эксперт по растениям; Джаред Лидбеттер, эксперт по микробам, вызывающим болезни растений; Мэл Саймон, эксперт по клеточному строению растений и воздействию микробов на клеточном уровне; Дэвид Балтимор, нобелевский лауреат с широчайшими познаниями в общей биологии. (Калтех – первостатейное учебное заведение. В течение трех последних лет лондонская «Таймс» называла Калтех лучшим университетом в мире; притом он достаточно компактен (здесь числится всего 300 профессоров, 1000 учащихся и 1200 выпускников), чтобы я был знаком с калтеховскими экспертами в самых разных областях науки. Найти и пригласить нужных нам специалистов было несложно.)

Когда обед начался, я поставил в центре круглого стола микрофон и записал нашу непринужденную беседу, длившуюся два с половиной часа. Эта глава большей частью состоит из фрагментов аудиозаписи, я лишь подправил несколько фраз, а их авторы завизировали мою редакцию.

В итоге мы все пришли к выводу, что мир Купера научно возможен, хоть вероятность такого развития событий и невелика. Крайне маловероятен, но возможен, поэтому я и пометил эту главу значком  – домысел.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5 6 7
  • 4.6 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации