Текст книги "Строение и история развития литосферы"
Автор книги: Коллектив Авторов
Жанр: География, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 18 (всего у книги 58 страниц) [доступный отрывок для чтения: 19 страниц]
Рис. 8. Изотопный состав Nd и Sr базальтов хр. Книповича и о. Шпицберген (Сущевская и др. 2008, 2009). DMM – состав обедненной перидотитовой мантии; РК-состав предполагаемого пироксенитового компонента, образованного реакцией продуктов плавления рециклированной коры и мантийного перидотита.
Рис. 9. Зависимость изотопного состава Nd и Sr базальтов хр. Книповича и о. Шпицберген от пропорции пироксенитового компонента в родоначальных магмах. 1 – осевые базальты хр. Книповича; 2 – четвертичные базальты о. Шпицберген; 3 – неогеновые базальты о. Шпицберген. В правом верхнем углу указаны значения квадрата коэффициента линейной корреляции. Синей и красной звездами показаны оценки изотопного состава перидотитового и пироксенитового компонентов соответственно. Изотопные данные по (Сущевская и др. 2008, 2009). Пропорции пироксенитового компонента в родоначальных магмах рассчитаны по составу оливина независимо по отношениям Mn/Fe и Ni/(Mg/Fe) по методике (Sobolev et al., 2007, 2008).
Таблица 2. Сопоставление оценок доли пироксенитового расплава в родоначальном расплаве по составу среднего оливина (табл. 1) с изотопным составом Sr и Nd пород
Следует специально отметить сильную корреляцию между содержаниями пироксенитового компонента и изотопным составом пород, которая позволяет количественно оценить изотопные составы перидотитового и пироксенитового источников (табл. 2, рис. 9, 10). Судя по этим данным, состав перидотита близок к обедненной океанической мантии. Пироксенитовый компонент по составу приближается к рециклированной океанической коре с возрастом около 1–1.5 млрд. лет, установленной в мантийных источниках магм о. Исландия (Sobolev et al, 2008) и Канарских о-вов (Gurenko et al, 2009). Следует однако отметить, что повышенные содержания U и K в платобазальтах Шпицбергена (рис. 5) свидетельствуют также о возможном участии в составе пироксенитового компонента материала нижней континентальной коры. Это также согласуется с небольшим отклонением изотопного состава пироксенитового источника в сторону обогащенного компонента (рис. 10).
Рис. 10. Корреляции соотношений пироксенитового и перидотитового компонентов источника мантийных магм с изотопным составом неодима. R2-квадрат коэффициента линейной корреляции. Зеленый и синий овалы показывает изотопные составы перидотитового и пироксенитового компонентов Исландских лав соответственно. Прямые линии представляют значимую линейную регрессию между параметрами. Разноцветные параболы представляют линии смешения расплавов Исландской мантийной струи с учетом различного содержания Nd в продуктах плавления перидотита и пироксенита (Sobolev et al, 2008). Синей и красной звездами показаны оценки изотопного состава соответственно перидотитового и пироксенитового компонентов магм хребта Книповича и о. Шпицберген.
4. Заключение: эволюция магматизма хребта Книповича и о. Шпицберген
Впервые получены данные о систематическом изменении во времени состава мантийного источника и продуктов магматизма сопряженных структур Северного Ледовитого океана. Показано, что неогеновый магматизм о. Шпицберген характеризовался повышенным отношением 87Sr/86Sr и пониженным отношением 143Nd/144Nd и, вероятно, возник в результате плавления пироксенита – продукта реакции вещества рециклированной древней океанической и нижней континентальной коры и мантийного перидотита без существенного вклада чисто перидотитового мантийного источника. Поскольку реакционный пироксенит производит значительно больше расплава при данных температуре и давлении чем перидотит, именно присутствием такого вещества в мантии можно объяснить начальную стадию магматической активности данного региона. С омоложением возраста фиксируется повышение доли перидотитового компонента с параллельным закономерным изменением изотопного состава Sr и Nd. Эту тенденцию можно объяснить уменьшением глубины плавления за счет утонения (эрозии) или обрушения континентальной литосферы. К этому этапу относятся щелочные четвертичные лавы о. Шпицберген на континентальной литосфере и толеиты флангов хр. Книпович, на вновь образованной океанической литосфере. Современные проявления магматизма осевой части хр. Книповича по составу ближе к типичным БСОХ, однако, присутствие корового компонента в этих расплавах вполне различимо. Главным источником этих магм являлся перидотит, преобладание которого над пироксенитом, связано, вероятно, с малой глубиной плавления.
Благодарности
Авторы благодарят Д.В. Кузьмина за помощь в проведении электронно-зондового микроанализа оливина. Работа выполнена при финансовой поддержке программы Отделения Наук о Земле, РАН № 14 (2006–2008 гг.) «История формирования бассейна Северного Ледовитого океана и режим современных природных процессов Арктики (по программе Полярного года)» и программы Президиума № 16 РАН (2009 г.) «Окружающая среда в условиях изменяющегося климата: экстремальные природные явления и катастрофы».
Литература
Соболев А.В., Криволуцкая Н.А., Кузмин Д.В. Петрология родоначальных расплавов и мантийных источников магм Сибирской трапповой провинции. // Петрология 2009, т.17, № 3, 1–37.
Сущевская Н.М., Черкашов Г.А., Баранов Б.В., Томаки К., Сато Х., Нгуен Х., Беляцкий Б.В., Цехоня Т.И. Особенности толеитового магматизма в условиях ультрамедленного спрединга на примере хребта Книповича (Северная Атлантика). // Геохимия. 2005. № 3, 254–274.
Сущевская Н.М., Евдокимов А.Н., Беляцкий Б.В. и др. Условия формирования четвертичного магматизма о. Шпицберген. // Геохимия. 2008.№ 1. С. 1–17.
Сущевская Н.М., Кораго Е.А., Беляцкий Б.В., Сироткин А.Н. Геохимические особенности неогенового магматизма острова Шпицберген. // Геохимия. 2009. № 10.С. 1027–1040
Сущевская Н.М., Пейве А.А., Беляцкий Б.В. Условия формирования слабо-обогащенных толеитов в северной части хребта Книпович. 2009 // Геохимия. (в печати)
Сущевская Н.М., Соболев А.В. Оценка характера и степени гетерогенности мантии полярной Атлантики по данным изучения магматизма хребта Книпович и о. Шпицберген // Вестник Отделения Наук о Земле РАН, № 1 (27) 2009, М. ИФЗ РАН, 2009.
Amundsen H.E.F., Griffin W.L., O’Reilly S.Y. The lower crust and upper mantle beneath northwestern Spitsbergen: evidence from xenoliths and geophysics. Tectonophysics. 1987. V.139, 169–185.
Baranov B., Gusev Ye., Suschshevskaya N., Cherkashov G. Oligocene rocks of the Knipovich Ridge (Northern Atlantic) as evidence of ridge jumping and propagation. In: Geology and Geophysics of the Knipovich Ridge. // Abstracts of the K2K post-cruise meeting. St.Petersburg, 2001, 7–8.
Beattie P. (1993) Olivine-Melt and Ortho-Pyroxene-Melt Equilibria. Contributions to Mineralogy and Petrology 115(1), 103–111.
Crane K., Sundvor E., Buck R., Martinez F. Rifting in the Northern Norwegian-Greenland Sea: thermal test of asymmetric spreading. // J.Geophys.Res. 1991. V. 96.P. 14529–14550.
Czuba W., Ritzmann O., Nishimura Y., Grad M., Mjelde R., Guterch A., Jokat W. Crustal structure of the continent-ocean transition zone along two deep seismic transects in north-western Spitsbergen. // Polish Polar Res. 2004. V.25. N3-4, 205–221.
Dick, H.J.B., Lin, J. and Schouten, H., 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965): 405–412.
Gurenko, A.A, Sobolev, A.V., Hoernle, K.A., Folkmar, H, and Schmincke, H-U. (2009). Enriched, HIMU-type peridotite and depleted recycled pyroxenite in the Canary plume: a mixed-up mantle. // Earth and Planetary Science Letters, 277, 514–524.
Hauri E.H., Whitehead J.A., Hart S.R. Fluid dynamic and geochemical aspects of entrainment in mantle plumes. // J. Geophys. Res. 1994. V. 99. P. 24275-24300.
Herzberg C. and O’Hara M. J. (2002) Plume-associated ultramafic magmas of phanerozoic age. Journal of Petrology 43(10), 1857–1883.
Humayun M., Qin L. P., and Norman M. D. (2004) Geochemical evidence for excess iron in the mantle beneath Hawaii. Science 306(5693), 91–94.
Hofmann A.W.,White W.M., Mantle plumes from ancient oceanic crust // Earth and Planetary Science Letters. 1982. V. 57. P. 421–436.
Ionov D.A., Bodinier J-L., Mukasa S.B., Zanetti A. Mechanisms and sources of mantle metasomatism: major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modeling. // Jour. Petrology. 2002. V.43, N12, 2219–2259.
Ionov D.M., Mukasa S.B., Bodinier J.-L. Sr-Nd-Pb isotopic compositions of peridotites xenoliths from Spitsbergen: numerical modeling indicates Sr-Nd– decoupling in the mantle by melt percolation metasomatism. // Jour. Petrology. 2002. V 43, N12, 2261–2278.
Kinzler R. J., Grove T. L., and Recca S. I. (1990) An Experimental-Study on the Effect of Temperature and Melt Composition on the Partitioning of Nickel between Olivine and Silicate Melt. Geochimica Et Cosmochimica Acta 54(5), 1255–1265.
Michael, P.J. et al., 2003. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature, 423(6943): 956-U1.
Pertermann M. and Hirschmann M. M. (2003) Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: Constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. Journal of Geophysical Research-Solid Earth 108(B2).
Prestvik T. Cenozoic plateau lavas of Spisbergen – a geochemical study. Arbok. Norsk Polarinstituitt. 1977. Oslo. 1978, 129–143.
Ritzmann O. and Jokat W. Crustal structure of northwestern Svalbard and the adjacent Yermak Plateau: evidence for Oligocene detachment tectonics and non-volcanic breakup // Geophys. J. Int. 2003. V. 152. P. 139–159.
Scogseid J., Planke S., Faleide J.I., Pedersen T., Eldholm O., and Neverdal F., 2000. NE Atlantic continental rifting and volcanic margin formation. In Dynamics of the Norwegian Margin. pp 295–326, edit.Nottveld. Geol. Soc. Spec. Pub. 167. The Geol. Society London. London.
Sobolev A. V., Hofmann A. W., Kuzmin D. V., Yaxley G. M., Arndt N. T., Chung S. L., Danyushevsky L. V., Elliott T., Frey F. A., Garcia M. O., Gurenko A. A., Kamenetsky V. S., Kerr A. C., Krivolutskaya N. A., Matvienkov V. V., Nikogosian I. K., Rocholl A., Sigurdsson I. A., Sushchevskaya N. M., and Teklay M. (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316(5823), 412–417.
Sobolev A. V., Hofmann A. W., Sobolev S. V., and Nikogosian I. K. (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature 434(7033), 590–597.
Sobolev, A.V., Hofmann, A.W., Brügmann, G., Batanova, V. G., and Kuzmin, D.V. (2008). A quantitative link between recycling and osmium isotopes. Science, 321, (5888), 536
Tamaki K., Cherkashov G.A., and Knipovich Scientific Party. Japan-Russian cooperation at the Knipovich Ridge in the Arctic Sea. // InterRidge News. 2001. V.10. N1, 48–51.
Tuff J., Takahashi E., Gibson S.A. Experimental constraints on the role of garnet pyroxenite in the genesis of high-Fe mantle plume derived melts // Journal of Petrology. 2005. V. 46. P. 2023–2058.
Walter M. J. (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology 39(1), 29–60.
Yaxley G. M. and Green D. H. (1998) Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweiz. Mineral. Petrogr. Mitt. 78, 243–255.
Yaxley G. M. and Sobolev A. V. (2007) High-pressure partial melting of gabbro and its role in the Hawaiian magma source. Contributions to Mineralogy and Petrology 154(4), 371–383.
A.V. Sobolev[100]100
V.I. Vernadsky Institute of Geochemistry and analytical chemistry, Russian Academy of Science, Moscow, Russia
[Закрыть] and N. M. Sushchevskaya[101]101
V.I. Vernadsky Institute of Geochemistry and analytical chemistry, Russian Academy of Science, Moscow, Russia
[Закрыть]. The role of mantle heterogeneity in the origin of Cenozoic magmas of Knipovich Ridge and Spitsbergen Archipelago
Abstract
The first data on the temporal evolution of mantle source composition of magmas from associated structures of Polar Ocean (Spitsbergen island and Knipovich ridge) were obtained for last 20 m.y. on the base of chemical composition and 87Sr/86Sr and 143Nd/144Nd isotope ratios of rocks and major and trace elements concentrations in olivine phenocrysts. It is shown that the major source of Spitsbergen Neogene lavas was olivine free pyroxenite with elevated 87Sr/86Sr and reduced 143Nd/144Nd ratios which has been likely produced by reaction of recycled oceanic and lower continental crust with peridotite. Due to its high melt productivity, such a pyroxenite may act as a source of substantial amount of magma under thick continental lithosphere thus triggering its breakup. With decreasing age (Neogene-modern) the proportion of pyroxenite component of magmas gradually falls down due to increasing proportion of peridotite component with subsequent progression of composition of Sr and Nd isotopes toward depleted end-member. We explain this evolution by delimitation of continental lithosphere and subsequent decompression melting of peridotitic component.
О.В. Петров[102]102
Всероссийский научно-исследовательский геологический институт имени А.П. Карпинского (ФГУП ВСЕГЕИ),г. Санкт-Петербург, Россия
[Закрыть], А.Ф. Морозов[103]103
Федеральное агентство по недропользованию, Москва, Россия
[Закрыть], А.А. Лайба[104]104
Полярная морская геологоразведочная экспедиция (ФГУНПП ПМГРЭ), Ломоносов, Россия
[Закрыть], С.П. Шокальский[105]105
Всероссийский научно-исследовательский геологический институт имени А.П. Карпинского (ФГУП ВСЕГЕИ),г. Санкт-Петербург, Россия
[Закрыть], Е.А. Гусев[106]106
Всероссийский научно-исследовательский институт геологии и минеральных ресурсов Мирового океана им. академика И.С. Грамберга (ВНИИОкеангеология), г. Санкт-Петербург, Россия
[Закрыть], М.И. Розинов[107]107
Всероссийский научно-исследовательский геологический институт имени А.П. Карпинского (ФГУП ВСЕГЕИ),г. Санкт-Петербург, Россия
[Закрыть], С.А. Сергеев[108]108
Всероссийский научно-исследовательский геологический институт имени А.П. Карпинского (ФГУП ВСЕГЕИ),г. Санкт-Петербург, Россия
[Закрыть], Н.Н. Соболев[109]109
Всероссийский научно-исследовательский геологический институт имени А.П. Карпинского (ФГУП ВСЕГЕИ),г. Санкт-Петербург, Россия
[Закрыть], Т.Н. Корень[110]110
Всероссийский научно-исследовательский геологический институт имени А.П. Карпинского (ФГУП ВСЕГЕИ),г. Санкт-Петербург, Россия
[Закрыть], С.Г. Сколотнев[111]111
Геологический институт РАН, Москва, Россия
[Закрыть], В.А. Дымов[112]112
Полярная морская геологоразведочная экспедиция (ФГУНПП ПМГРЭ), Ломоносов, Россия
[Закрыть], И.В. Бильская[113]113
Всероссийский научно-исследовательский геологический институт имени А.П. Карпинского (ФГУП ВСЕГЕИ),г. Санкт-Петербург, Россия
[Закрыть]
Архейские граниты на Северном полюсе
В необычно теплое полярное лето 2007 г. в ходе морского научно-исследовательского рейса НИС «Академик Федоров» (рис. 1), выполнявшегося по программе 3 МПГ «Арктика-2007» (рис. 2), объединенная группа геологов ВНИИОкеангеология и ПМГРЭ (рис. 3) осуществила 2 августа в точке Северного полюса подъем донных осадков (станция № AF-0701 – 89°59’10.9’’ с., 32°19’13.8’’ в) (рис. 4, 5). В поднятых илах, наряду с дресвой и гравием песчаников, алевролитов и жильного кварца было обнаружено 5 небольших обломков гранитных пород архейско-палеопротерозойского возраста.
Рис. 1. НИС «Академик Федоров»
Рис. 2. Маршрут следования НИС «Академик Федоров», расположение морских геологических станций донного опробования
Рис. 3. Участники экспедиции Ю.Г.Леонов (ГИН РАН), А.А.Лайба (ПМГРЭ) на борту НИС «Академик Федоров»
Рис. 4. Станция AF-0701. Спуск бокскорера
Рис. 5. Станция AF-0701. Подъем бокскорера
Морская станция AF-0701 расположена в северной части океанической котловины Амундсена у северо-западного подножья подводного хребта Ломоносова (рис. 2). Донные осадки были подняты с глубины 4170±5 м при помощи бокскорера (коробчатого пробоотборника) объемом 50х50х50 см, сохраняющего в целости первичное напластование пород (рис. 6). Разрез осадков указанной станции представляет собой (сверху вниз):
1. 0–02 см. Наилок желтовато-коричневый, пелитовый, сильно обводненный, с малой примесью тонкозернистого песка.
2. 02–20 см. Алевропелит шоколадно-коричневый, однородный, иногда песчанистый, мягкий и вязкий, до текучего состояния.
3. 20–50 см. Алевропелит того же состава и консистенции, однако представленный чередованием 6–7 шоколадно-коричневых и зеленовато-серых горизонтальных полос с размытыми границами и мощностью по 5–6 см каждый (Гусев и др., 2008а).
Рис. 6. Станция AF-0701. Разрез донных осадков, поднятых с глубины 4170±5 м при помощи бокскорера
По данным С.Г. Сколотнева (Гусев и др., 2008б), осадки имеют однородный химический и минеральный состав. Они сложены кварцем – 30 %, плагиоклазом – 10 %, слюдой – 25 %, каолинитом – 15 %, смектитом – 15 % и хлоритом – 5 %. Микропалеонтологическим анализом установлен голоценовый и позднеплейстоценовый возраст поднятых осадков. По находкам известкового планктона были выделены возрастные уровни потепления – проникновения теплых атлантических вод в Арктический бассейн, соответствующие 1–2, 11,4 и 24–28 тыс. лет. Отмечается примесь углистых частиц, палеозойских и мезозойских палиноформ. Следует отметить, что по составу изученные осадки заметно отличаются от донных илов глубоководных котловин Арктического бассейна, для которого характерны: иллит – около 55 %, хлорит – около 25 %, каолинит – около 15 % и смектит – около 10 % (Левитан и др., 2007).
Вещественное отличие полюсных осадков от обычных донных илов может указывать на дополнительный источник сноса для последних: в частности, на возможность сноса с близлежащего хребта Ломоносова. Известно, что среди пород, поднятых с этого хребта, обнаружены субконтинентальные углистые алевролиты (Grantz et al., 2001), обладающие сходством с полюсными осадками по минеральному и химическому составу. Они содержат: кварц – 36 %, полевой шпат – 8 %, слюду – 10 %, темноцветные минералы – 8 %, глинистые минералы – 10 %. Явное сходство составов, а также присутствие в полюсных илах станции AF-0701 углистых частиц и большого количества переотложенных палиноформ палеозойского и мезозойского возраста, сходных с таковыми из углистых алевролитов хребта Ломоносова, позволяют предположить, что в значительной мере они могли сформироваться в результате осаждения продуктов подводного размыва склонов этого хребта (Гусев и др., 2008б).
Содержащиеся в описанных выше илах гранитные обломки были выделены в результате промывки секционных проб рыхлого материала (рис. 7). Оказалось, что обломки располагались на трех разных уровнях осадочного разреза. Два обломка гранитных пород (образцы № 1 и № 2) были сразу обнаружены в самом основании осадочного разреза; еще два – при промывке 20-килограммовой пробы осадков из нижней (25–50 см) части разреза (образцы № 3 и № 4); еще один обломок гранита (образец № 5) был найден при промывке аналогичной пробы из верхней (0–25 см) части разреза (рис. 8).
Рис. 7. Станция AF-0701. Промывка секционных проб рыхлого материала, в которых обнаружены обломки гранитоидов
Рис. 8. Интервалы осадочного разреза, в которых обнаружены обломки гранитоидов
Образец № 1 (рис. 9, 10,11) представляет собой угловатый обломок (7х9х12 мм) розовато-темно-серого, слабополосчатого мелкозернистого гранито-гнейса или метаморфизованного гранита, имеющего следующий состав: щелочной полевой шпат – 25 %, плагиоклаз (альбит) – 25 %, кварц – 30 %, биотит (лепидомелан) + редкоземельный эпидот – 20 %; акцессории: апатит, циркон (выделены и измерены 8 зерен), торит, магнетит, гематит. Порода перекристаллизована.
Рис. 9. Образец 1. Метаморфизованный гранит (гранито-гнейс) (?) (цена деления линейки – 1 мм, ширина поля зрения в шлифе – 3 мм).
Рис. 10. Образец 1. Зерно циркона в кварце. (масштабный отрезок 100 мкм).
Рис. 11. Образец 1. Зерно циркона в редкоземельном эпидоте (масштабный отрезок 10 мкм).
Образец № 2 (рис. 12, 13) – неокатанный обломок (20х10х7 мм) розовато-светло-серого среднезернистого и огнейсованного двуслюдяного гранита, содержащего: калишпат (микроклин-пертит) – 25 %, плагиоклаз – 35 %, кварц – 35 %, биотит – до 5 %, мусковит – 1–2 %; акцессории: апатит – до 1 %, монацит и циркон (выделены 4 зерна). Порода катаклазирована.
Рис. 12. Образец 2. Катаклазированный двуслюдяной гранит (?). (цена деления линейки – 1 мм, ширина поля зрения в шлифе – 3 мм).
Рис. 13. Образец 2. Тонкопризматические мелкие кристаллы циркона в кварце. (ширина поля зрения в шлифе – 0.3 мм).
Образец № 3 (рис. 14, 15) – угловатый обломок (4х6х5мм) розовато-серого среднезернистого и огнейсованного мусковит-биотитового плагиогранита (?): плагиоклаз (олигоклаз) – 70 %, кварц – 20–25 %, биотит – до 10 %, мусковит – 5 %; акцессории: эпидот (совместно с биотитом), циркон (выделены 2 кристалла, заключенные в биотите), апатит. Порода катаклазирована, участками перекристаллизована.
Рис. 14. Образец 3. Двуслюдяной плагиогранит (?). (масштабный отрезок – 2 мм, ширина поля зрения в шлифе – 5 мм)
Рис. 15. Образец 3. Кристаллы циркона в биотите. (ширина поля зрения в шлифе – 0.6 мм).
Образец № 4 (рис. 16) – удлиненная галька (5х3х2мм) розовато-темно-серого мелкозернистого гранита, содержащего: пелитизированный калишпат (пертит) – 45 %, кислый плагиоклаз – 20 %, кварц – 20 %, хлоритизированный биотит – 5 %, магнетит – до 5 %. Порода сильно катаклазирована. В этом образце цирконов не обнаружено.
Рис. 16. Образец 4. Катаклазированный гранит(?). Цирконы не обнаружены (масштабный отрезок – 2 мм, ширина поля зрения в шлифе – 5 мм).
Образец № 5 (рис. 17, 18) – изометричный неокатанный обломок (3х4х6 мм) розовато-серого слабо огнейсованного плагиогранита (?): плагиоклаз (альбит и олигоклаз) – до 70 %, калиевый полевой шпат – 1–2 %, кварц – 5 %, частично хлоритизированный биотит – 15 %, эпидот – 10 %; акцессории: сфен (в ассоциации с эпидотом), апатит, циркон (измерен 1 крупный зональный кристалл размерами до 100х50 мкм), гематит, магнетит.
Рис. 17. Образец 5. Плагиогранит (?). (масштабный отрезок – 2 мм, ширина поля зрения в шлифе – 5 мм).
Рис. 18. Образец 5. Крупное зерно циркона (100x50 мкм) в срастании с эпидотом. (ширина поля зрения в шлифе – 0.6 мм).
Таблица 1. Химический состав цирконов (масс. %)
Таблица 2. Химический состав плагиоклазов (масс. %)
Таблица 3. Химический состав слюд (масс. %)
Таблица 4. Химический состав акцессорных минералов (масс. %)
Измерения выполнены на микрозонде CAMSCAN
Вместе с образцами 3 и 4 было выделено 15 мелких (2–27 мм) угловатых и окатанных обломков осадочных пород и жильного кварца. В пробе из верхней части разреза вместе с образцом 5 были обнаружены 7 мелких (3–10 мм) обломков осадочных пород. Последние в обеих пробах представляют собой темно-серые, зеленовато-серые и буровато-серые, иногда полосчатые, тонкозернистые песчаники (аркозовые, слюдистые), серые алевролиты, аргиллиты и тонкообломочные кварциты. Оставшийся рыхлый материал пробы AF-0701 был также промыт и показал присутствие мелких обломков (1–10 мм) песчаников, алевролитов и аргиллитов.
В 2009 г. во Всероссийском геологическом институте (ВСЕГЕИ, Санкт-Петербург) было проведено петрографическое и минералогическое изучение гранитных образцов, а также изотопное датирование методом SHRIMP 15-ти кристаллов циркона, найденных в четырех образцах станции AF-07-01. Самые молодые цирконы были обнаружены в образце № 2, их возраст определен в интервале 2221±10 – 2492±16 млн. лет. Цирконы в образцах № 3 и № 5, характеризующихся преобладанием кислого плагиоклаза, несмотря на различия в составе и структуре, имеют близкий возраст: 2651±21 – 2684 ±25 млн. лет. Максимальное количество кристаллов циркона (8 зерен) было обнаружено в гранито-гнейсе образца № 1. Самые молодые цирконы в этой породе имеют возраст 2454±17 и 2370±9 млн. лет, а самые древние – 2954±8, 2976±10 и 2987±8 млн. лет. Два зерна циркона из этого образца состоят из двух генераций, различающихся по возрасту на 200 млн. лет (табл. 5,6; рис. 19).
Рис. 19. Диаграмма распределения значений U-Pb возраста цирконов в образцах станции AF-07-01.
Таблица 5. SHRIMP-датирование цирконов и образцов гранитных пород
Рис. 20. Основные направления ледового разноса в Северном Ледовитом океане (Атлас океанов. Северный Ледовитый океан. Изд-во ВМФ СССР, 1980).
На первый взгляд, появление пород континентального происхождения, – таких, как граниты, на склоне глубоководной котловины Амундсена у подножия подводного хребта Ломоносова наиболее просто объясняется ледовым или айсберговым разносом. Схемы ледового разноса, составленные разными авторами, имеют много общего, различаясь лишь в деталях (Атлас Северного Ледовитого океана, 1980; Атлас Арктики, 1985; и др.) (рис. 20). Древние граниты с архейско-палеопротерозойскими возрастами обнажаются в пределах Арктической суши по периферии Северного Ледовитого океана лишь на Канадском, Гренландском, Балтийском и Анабарском щитах. Раннедокембрийские породы Балтийского и Анабарского щитов не выходят непосредственно к морскому побережью и, кроме того, лежат далеко в стороне от известных трасс ледового разноса. На Таймыре, Северной Земле и Новосибирских островах, откуда начинает свое движение к полюсу и далее в Северную Атлантику вдоль подводного хребта Ломоносова устойчивое и широкое ледовое течение, нет гранитоидов и метаморфических пород архейского возраста. Круговой ледовый дрейф («Ocean Beaufort Gyre», Gratz, 2001) (рис. 21) в Амеразийском бассейне способен транспортировать в район Северного полюса обломочный материал с Земли Элсмира, прилегающих островов Канадской Арктики, с Аляски, Чукотки или острова Врангеля, однако и там архейских пород, как известно, нет. Архейские породы Канадского и Гренландского докембрийских щитов отделены от побережья палеопротерозойско-палеозойским мобильным поясом Элсмир-Инглефилд, наиболее древние гранитоиды в котором датированы 1900–1960 млн. лет (Henriksen et al., 2000). Переработанные архейские гнейсы, интрудированные метаморфизованными плутоническими породами, были установлены в Северо-Западной Гренландии лишь на единичных локальных участках (комплекс Этах в Нагсугтоквидском и Ринкском тектонических блоках), но и там они располагаются далеко от арктического побережья и не могут быть подвергнуты воздействию ледового разноса.
Рис. 21. Течения и направления движения льдов в Северном Ледовитом океане в позднеплейстоценовых межледниковых периодах и границы материкового льда в максимум плейстоценового оледенения (Грантц, 2001).
Исходя из вышеизложенного, можно выдвинуть вторую версию происхождения «полюсных гранитов», а именно: предположить снос обломков древних гранитоидных пород с близлежащего склона хребта Ломоносова. Континентальная природа этого подводного хребта у большинства арктических геологов уже не вызывает сомнений. При этом сам перенос на расстояние порядка 100 км, скорее всего, мог осуществляться мутьевыми турбидными потоками со склона хребта при относительно высоком его стоянии в период пониженного уровня океана, или же вследствие вертикальных неотектонических подвижек. В районе Северного полюса наблюдается сужение и резкое изменение простирания хребта Ломоносова, увеличение крутизны его склонов. По геоморфологическим и геофизическим данным здесь предполагается разломно-блоковое строение поднятия. Кажется вполне вероятным, что на уступах хребта, обращенных к котловине Амундсена, мог оказаться приподнятым блок, сложенный породами архейско-палеопротерозойского кристаллического фундамента, который и послужил источником гранитного обломочного материала. Это тем более вероятно, что новейшими сейсмическими и магнитометрическими исследованиями датских и канадских геологов обнаружено высокое стояние фундамента Пригренландского сегмента хребта Ломоносова, прикрытого лишь маломощным осадочным чехлом (Trine Dahl-Jensen et al, 2008).
В заключение можно отметить, что в пользу второй версии происхождения рассматриваемых гранитных обломков говорят следующие данные: 1) принципиальная возможность отнесения всех изученных гранитоидов, по их составу и возрасту, к единому архейскому домену, переработанному в палеопротерозое; 2) залегание гранитных обломков на нескольких уровнях в едином, ненарушенном разрезе поднятых донных осадков на протяжении не менее 28 тыс. лет, что говорит о повторяемости механизма транспортировки и захоронения обломков; 3) слабая окатанность обломков, косвенно свидетельствующая о коротком пути транспортировки; 4) своеобразие состава полюсных донных осадков, вмещающих гранитные обломки, его отличие от среднего состава донных илов глубоководных котловин Арктического бассейна и, наоборот, связь с составом некоторых характерных пород (например, углистых алевролитов) хребта Ломоносова; 5) значительная мощность (27 км) и континентальный тип коры хребта Ломоносова, а также неглубокое залегание кристаллического фундамента хребта под утоненным осадочным чехлом.
Таким образом, нами высказано предположение, требующее дальнейших серьезных исследований, которые будут продолжены уже в самое ближайшее время.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?