Электронная библиотека » Леонард Млодинов » » онлайн чтение - страница 5


  • Текст добавлен: 4 июня 2014, 14:04


Автор книги: Леонард Млодинов


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 18 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +

Второй – вы сразу же указываете не на ту дверь. Назовем такой случай «ошибочной догадкой». Шансы, что вы не угадаете, равны 2 из 3, так что «ошибочная догадка» в два раза вероятнее, чем «счастливая догадка». Как «ошибочная догадка» отличается от «счастливой догадки»? При «ошибочной догадке» «мазерати» находится за одной из тех дверей, которые вы обошли своим вниманием, а за другой такой – томики Шекспира на сербском. В противоположность «счастливой догадке» в этом варианте ведущий открывает невыбранную дверь не наугад. Поскольку он не собирается открывать дверь с «мазерати», он именно что выбирает ту самую дверь, за которой машины нет. Другими словами, в «ошибочной догадке» ведущий вмешивается в то, что до той поры называлось случайным процессом. Таким образом, процесс уже не может считаться случайным: ведущий пользуется своими знаниями, чтобы повлиять на результат, и тем самым отрицает само понятие случайности, гарантируя, что при смене двери участник получит это шикарное авто. Из-за подобного вмешательства происходит следующее: вы оказываетесь в ситуации «ошибочной догадки», и, следовательно, выигрываете при смене двери и проигрываете, если отказываетесь сменить ее.

В итоге получается: если вы оказываетесь в ситуации «счастливой догадки» (вероятность которой 1 из 3), вы выигрываете при условии, если остаетесь при своем выборе. Если вы оказываетесь в ситуации «ошибочной догадки» (вероятность которой 2 из 3), то под влиянием действий ведущего вы выигрываете при условии, если меняете первоначальный выбор. Итак, ваше решение сводится к догадке: в какой ситуации вы окажетесь? Если вы чувствуете, что вашим изначальным выбором руководит шестое чувство, что вас направляет сама судьба, может, и не стоит менять свое решение. Но если вам не дано завязывать ложки узлами с помощью одной только силы мысли, то наверняка шансы того, что вы попали в ситуацию «ошибочной догадки», равны 2 к 1, так что лучше сменить дверь. Вот и статистика телепередачи подтверждает: те, кто оказывался в подобной ситуации и изменял свое первоначальное решение, выигрывали примерно в два раза чаще, чем те, кто стоял на своем.

Задача Монти Холла трудна для восприятия, потому что тут нужно хорошенько подумать, иначе роль ведущего (прямо скажем, как роль мамы в нашей жизни) останется недооцененной. В то время как ведущий направляет игру в определенное русло. Роль ведущего станет очевидной, если мы предположим, что вместо 3 дверей у нас их 100. Вы, как и прежде, выбираете дверь 1, однако теперь ваша вероятность угадать равна 1 из 100. А шансы того, что «мазерати» спрятана за одной из оставшихся дверей, равны 99 из 100. Как и прежде, ведущий открывает все двери, кроме той, которую вы не выбрали, при этом не открывая ту самую дверь, за которой находится «мазерати» (если, конечно, такая дверь остается). После этого шансы того, что «мазерати» скрывается за дверью, которую выбрали вы, равны по-прежнему 1 из 100, а шансы того, что «мазерати» находится за другой дверью, все так же равны 99 из 100. Но теперь благодаря вмешательству ведущего остается только одна дверь, представляющая все 99 тех, других дверей, и таким образом вероятность нахождения «мазерати» за этой оставшейся дверью равняется 99 из 100!

Возникни задача Монти Холла во времена Кардано, интересно, чью бы позицию тот занял: Мэрилин вос Савант или Поля Эрдеша? Задача легко решается с помощью закона пространства элементарных событий, однако сказать наверняка мы все равно не можем, поскольку самое раннее упоминание о подобной задаче (под другим названием) возникает в 1959 г., в статье Мартина Гарднера в «Сайентифик Америкэн»[71]71
  Martin Gardner, “Mathematical Games”, Scientific American, October 1959, pp. 180–82.


[Закрыть]
. Гарднер назвал задачу «поразительной, сбивающей с толку задачей» и заметил, что «ни в одной другой области математики не совершают досадных промахов с такой легкостью, как в области теории вероятностей». Конечно, для математика досадный промах чреват разве что конфузом, а вот для игрока это вопрос, скажем прямо, жизненно важный. Поэтому нет ничего удивительного в том, что когда дело дошло до первой систематически изложенной теории вероятностей, именно Кардано как заядлый игрок и решил разобраться в ней.



Однажды, когда Кардано был еще подростком, у него внезапно умер друг. Прошло всего несколько месяцев, и Кардано заметил, что никто о друге больше и не вспоминает. Что его порядком опечалило, оставив отпечаток в душе. Как можно справиться с тем, что жизнь преходяща? И Кардано решил, что единственный способ – оставить после себя что-то: наследников, труды на века, а может, и то, и другое. В своей автобиографии Кардано пишет о том, что развивает в себе «непоколебимое стремление» оставить след на земле[72]72
  Jerome Cardan, The Book of My Life: De Vita Propia Liber, trans. Jean Stoner (Whitefish, Mont.: Kessinger, 2004), p. 35.


[Закрыть]
.

Выучившись на врача, Кардано вернулся в Милан и стал подыскивать работу. Еще во время учебы он написал труд «О разных взглядах на врачей», в котором по сути дела обозвал всех представителей медицины кучкой шарлатанов. И Миланский университет отплатил Кардано той же монетой, не дав ему места. Это значило, что он не мог заниматься врачебной практикой в Милане. На деньги, заработанные частными уроками и азартными играми, Кардано купил домишко на востоке страны, в Пиове-ди-Сакко. Он надеялся, что в этом городке дела у него пойдут хорошо, потому что там часто случались эпидемии, а врача не было. Однако, проводя свое маркетинговое исследование, Кардано совершил роковую ошибку: врача в городишке не было потому, что население предпочитало обращаться к знахарям и священникам. В результате по прошествии нескольких лет напряженной работы и учебы Кардано оказался с мизерным доходом и уймой свободного времени. Такая передышка в жизни выпала как нельзя кстати – Кардано воспользовался возможностью и взялся за перо. Одной из его работ и оказался «Трактат об азартных играх».

В 1532 г., проведя пять лет в Пиове-ди-Сакко, Кардано вернулся в Милан: он надеялся опубликовать свою работу и, кроме того, снова подал прошение о членстве в гильдии врачей. И в одном, и в другом он потерпел сокрушительное поражение. «В те дни, – писал Кардано, – я до того пал духом, что ходил к гадалкам и магам в надежде выпутаться из моих многочисленных затруднений»[73]73
  Cardano, quoted in Wykes, Doctor Cardano, p. 57.


[Закрыть]
. Один маг обнаружил в его жизни пагубное влияние Луны. Другой дал рекомендацию трижды чихнуть сразу после пробуждения утром и постучать по дереву. Кардано выполнял все предписания, но ему по-прежнему не везло. И вот под покровом ночи, накинув капюшон, он проникал в дома тех больных, которые не могли заплатить установленную гильдией врачей плату или же никак не поправлялись. В автобиографии Кардано писал, что в дополнение к деньгам от подпольной врачебной практики «вынужден был снова вернуться к азартным играм, чтобы содержать жену, и здесь-то мои знания одолели судьбу – у нас появились деньги на еду и жилье, хотя последнее и оставляло желать много лучшего»[74]74
  Cardano, quoted ibid.


[Закрыть]
. Что до «Трактата об азартных играх», то хотя в последующие годы Кардано неоднократно пересматривал его и исправлял, он уже не пытался напечатать работу. Возможно, понимал: глупо учить других играть так же хорошо, как он сам.

В конце концов Кардано добился своей цели – обрел и наследников, и славу – да вдобавок ко всему и неплохие деньги. У него завелись средства, когда он опубликовал книгу на основе своей еще студенческой работы, изменив при этом наукообразное название «О разных взглядах на врачей» на более живое: «О повсеместно укоренившейся недобросовестной медицинской практике». Книга вмиг разошлась. Затем один из его тайных пациентов, настоятель известного августинского монашеского ордена, внезапно (и скорее всего по чистой случайности) пошел на поправку, что было приписано умелому лечению Кардано. Итак, слава Кардано как искусного врача взлетела до таких высот, что его не только приняли в гильдию врачей, но и предложили должность ректора в колледже. Кардано тем временем опубликовал еще несколько трудов, и они пользовались успехом, особенно тот, который из соображений сделать более понятным для широкой общественности назвали «Практическая арифметика». Еще через несколько лет Кардано издал уже научный труд «Ars magna», или «Великое искусство», – трактат по алгебре. В трактате Кардано впервые дал четкое представление об отрицательных числах и произвел анализ некоторых алгебраических уравнений, завоевав тем самым еще большую известность. В середине 1550-х гг., когда Кардано было за пятьдесят, он уже всего добился: и кафедры медицины в Университете Павии, и богатства.

Но вскоре удача от него отвернулась. Если говорить в общем, то Кардано пострадал от своего же наследия – от детей. Дочь Кьяра (названная так в честь матери) в шестнадцать лет соблазнила старшего брата, Джованни, и забеременела от него. Аборт был сделан удачно, однако в будущем Кьяра не могла иметь детей. Что, впрочем, устраивало ее как нельзя лучше, потому как она отличалась крайней распущенностью, причем даже после замужества, и в конце концов заразилась сифилисом. Джованни пошел по стопам отца, поступив учиться на врача, однако вскоре приобрел большую известность как мелкий мошенник, причем настолько большую, что некая семейка проходимцев шантажом заставила его жениться на своей дочери – якобы имелись доказательства того, что Джованни отравил некого чиновника. Тем временем Альдо, младший сын Кардано, в детстве истязавший животных, превратил свое любимое занятие в профессию – поступил на службу к Инквизиции пытать еретиков. Как и старший брат, он подрабатывал мошенничеством.

Через несколько лет после женитьбы старший сын Кардано дал одному из слуг некую микстуру – чтобы тот добавил ее в пирог для жены. Жена после съеденного десерта упала замертво. Власти догадались, что к чему. Джероламо потратил уйму денег на адвокатов, пытался задействовать свои связи, свидетельствовал в пользу сына, но ничего не помогло – молодого Джованни казнили в тюрьме. Пробоина в финансах Кардано, а также его подмоченная репутация сделали его уязвимым для старых врагов. Власти Милана вычеркнули имя Кардано из списка тех, кому разрешалось читать лекции, обвинили его в содомии и инцесте, изгнали из города. Когда в конце 1563 г. Кардано уезжал из Милана, он написал в автобиографии, что «снова оказался в нищете, без средств, без источника существования, без права снимать дом и продавать свои книги»[75]75
  Cardano, quoted ibid., p. 172.


[Закрыть]
. К тому времени у него стало плохо с головой – временами он начинал бессвязно бормотать. Последний удар ему нанес математик-самоучка Никколо Тарталья, недовольный тем, что в «Высоком искусстве» Кардано раскрыл его метод решения некоторых уравнений без его на то ведома. Тарталья подговорил Альдо дать свидетельские показания против своего отца, обещая за то место в Инквизиции – пытать и казнить еретиков в Болонье. Кардано недолго просидел в тюрьме – последние свои годы он тихо доживал в Риме. «Трактат об азартных играх» был все же напечатан, но уже в 1663 г., спустя сто лет после того, как юный Кардано изложил свое исследование на бумаге. К тому времени его аналитические методы были изобретены заново и усовершенствованы.

Глава 4. Прокладывая путь к успеху

Если бы средневековый игрок в азартные игры понял математические выкладки Кардано в области теории вероятностей, он заработал бы неплохие деньги, играя с менее искушенными напарниками. В наши дни Кардано прославился бы и разбогател на книжках вроде «Игры в кости с новичками: пособие для „чайников”». Но в XVI в. работа Кардано осталась незамеченной, а его «Трактат об азартных играх» вышел в свет через много лет после смерти самого автора. Почему же «Трактат» остался практически без внимания? Мы уже говорили о том, что одним из затруднений было отсутствие разработанной системы алгебраических записей. Во времена Кардано она начала развиваться, но все еще находилась в зачатке. Однако оставался еще один барьер, который только предстояло преодолеть: Кардано жил во времена, когда магическим заклинаниям доверяли больше, нежели математическим формулам. Люди той эпохи не стремились упорядочить природу, описать ее феномены в числах, поэтому теория влияния случайности на эти самые феномены была обречена на непонимание. Как потом оказалось, проживи Кардано еще лет двадцать-тридцать, он бы и труды свои написал иначе, да и приняли бы их совсем по-другому, поскольку через несколько десятилетий после его смерти в мышлении и верованиях европейцев произошли перемены исторического масштаба. Они получили название научной революции.

Революция была своего рода бунтом против того образа мысли, который господствовал в Европе, расстававшейся со Средними веками: в те времена представления о мире не подвергались глубокому исследованию и систематизации. В одном городе торговцы украли одежду у повешенного – они верили, что это повысит их продажи пива. Прихожане другого города верили, что можно излечиться от заболевания, если нагишом обойти вокруг церковного алтаря, распевая всякие богохульства[76]76
  Bengt Ankarloo and Stuart Clark, eds., Witchcraft and Magic in Europe: The Period of the Witch Trials (Philadelphia: University of Pennsylvania Press, 2002), pp. 99–104.


[Закрыть]
. Один коммерсант старался не справлять нужду в «не том» туалете, считая, что туалет этот приносит неудачу. Вообще-то, коммерсант был биржевым трейдером, он поделился своей тайной с журналистом из Си-эн-эн в 2003 г.[77]77
  Meghan Collins, “Traders Ward Off Evil Spirits”, October 31, 2003, http://www.CNNMoney.com/2003/10/28/markets_trader_superstition/index.htm.


[Закрыть]
Да, некоторые до сих пор верят в приметы, однако на сегодняшний день для любознательных существуют хотя бы научные объяснения, доказывающие или отрицающие эффективность соблюдения этих примет. Если современник Кардано выигрывал в кости, причем без применения математического анализа, он произносил благодарственную молитву, ну или считал, что ему помогли «счастливые» носки, и впредь не стирал их. Сам Кардано считал, что полосы неудачи случаются по причине «потери благосклонности судьбы» и что один из способов вернуть удачу – удачно сыграть в кости. Если в руке зажата счастливая «семерка», к чему вся эта возня с математикой?

Большинство считает, что началась научная революция в 1583 г, всего через семь лет после смерти Кардано. Легенда гласит, что именно в этом году в Пизанском университете на лекции сидел один студент, который вместо того, чтобы внимать словам службы, смотрел на нечто гораздо более занимательное: на подвесную вращавшуюся лампу. Используя свой пульс в качестве таймера, студент, Галилео Галилей, заметил: время, за которое лампа проходит большую дугу, равно времени, за которое она проходит малую дугу. Из этого наблюдения родился закон: период колебаний маятника не зависит от его амплитуды. Наблюдения Галилео отличались точностью и практичностью, они были простыми, но знаменовали собой новый подход к описанию физических явлений: наука, исследуя законы природы, стала основываться на опыте и эксперименте, а не на интуитивных догадках и отдельных умозаключениях. Однако самое главное в том, что эти опыты и эксперименты стали проводиться с помощью математических вычислений.

Исходя из своих научных знаний, Галилео написал небольшую работу об азартных играх: «Размышления на тему игры в кости». Работа была напечатана по заказу покровителя Галилео, герцога Тосканского. Герцога интересовал вопрос: почему при броске трех костей чаще выпадает 10, чем 9? Вероятность такой ситуации равна всего лишь примерно 8 %, ни 10, ни 9 не выпадает слишком часто. Видимо, герцог много играл, раз подметил такую небольшую разницу, и вполне возможно, что на самом деле он нуждался не в уме Галилео, а в пошаговой программе избавления от зависимости. Неизвестно, почему, но Галилео тема не вдохновила. Однако как любой советник, который хочет сохранить за собой место, он оставил свое недовольство при себе и выполнил заказ.

Если бросить один кубик, шансы того, что выпадет любая конкретная цифра, равны 1 из 6. Однако если бросить два кубика, шансы в сумме уже не равны. Например, для суммы кубиков, равной 2, существует 1 шанс из 36, однако шанс увеличивается в два раза, если сумма равна 3. Причина в том, что сумму 2 можно получить только одним способом: подбросив два кубика, которые выпадут единицами, но сумму 3 можно получить уже двумя способами: подбросив два кубика, которые выпадут единицами; подбросив кубики так, чтобы выпали 1 и 2 (или 2 и 1). Таким образом, мы продвигаемся еще дальше в понимании случайных процессов, которые и составляют тему данной главы: развитие систематических методов анализа числа способов тех или иных исходов.



Ошибку герцога можно обнаружить, если подойти к проблеме с позиций талмудиста: чем пытаться объяснить, почему 10 выпадает чаще, чем 9, лучше задаться вопросом: а почему 10 должна выпадать чаще, чем 9? Появляется соблазн – поверить, что два кубика должны выпадать в сумме 10 и 9 с одинаковой частотой: и 10, и 9 можно представить 6 способами, в зависимости от того, как упадут три кубика. Для 9 можно записать такие способы следующим образом: (621), (531), (522), (441), (432) и (333). Для 10 это (631), (622), (541), (532), (442) и (433). Применяя закон Кардано о пространстве элементарных событий, получаем: вероятность благоприятного исхода равна соотношению исходов, которые благоприятны. Сумма 9 и 10 может быть составлена теми же 6 способами. Тогда почему одно вероятнее другого?

А потому, что, как я уже говорил, закон пространства элементарных событий в его первоначальной форме применим только к тем исходам, которые обладают равной вероятностью. Вышеприведенные же комбинации таковыми не являются. К примеру, исход (631), то есть бросок, в результате которого выпадают 6, 3 и 1, обладает шестикратной вероятностью по сравнению с исходом (333), поскольку хотя и существует один способ, в результате которого выпадают три 3, способов, в результате которых получаются 6, 3 и 1, целых шесть: можно получить 6, затем 3 и 1, или же сначала 1, затем 3, а потом уже 6, ну и так далее. Представим запись исхода, где порядок бросков записывается трехзначными, разделенными запятой комбинациями. Тогда все то, что мы только что сказали, можно выразить короче: исход (631) состоит из возможностей (1,3,6), (1,6,3), (3,1,6), (3,6,1), (6,1,3) и (6,3,1), а исход (333) состоит только лишь из (3,3,3). Как только мы упростили запись таким вот образом, стало понятно: исходы одинаково вероятны, и можно применить закон. Поскольку существует 27 способов получить общую сумму в 10, бросая три кости, но лишь 25 способов получить сумму в 9, Галилей заключил: при броске трех костей вероятность выпадения 10 равна 27/25, то есть около 1,08 раза больше.

Решая поставленный перед ним вопрос, Галилей косвенным образом применил следующий важный принцип: «Вероятность события зависит от числа его исходов». Ничего удивительного в самом утверждении нет. Удивительно том, насколько обширен эффект, и насколько трудно его подсчитать. Предположим, вы даете 25 шестиклассникам список из 10 вопросов, на которые надо ответить быстро, не задумываясь. Подсчитаем возможные результаты одного конкретного ученика: он отвечает на все вопросы правильно; отвечает на 1 вопрос неправильно – тут возможны 10 вариантов, потому как вопросов 10; отвечает на 2 вопроса неправильно – возможны 45 вариантов, потому как вопросы группируются в 45 пар, и так далее. В результате в среднем в группе студентов, пытающихся угадать правильные варианты ответов, на каждого студента, который угадает 100 % правильных ответов, приходится около 10 студентов, которые дадут 90 % правильных ответов, и 45 студентов, которые дадут 80 % правильных ответов. Шансы получить около 50 баллов, конечно, все же выше, но в классе из 25 учеников вероятность того, что хотя бы один ученик получит 80 баллов или выше, если все ученики отвечают наугад, равна 75 %. Так что если вы преподаватель со стажем, то наверняка в вашей многолетней практике среди всех учеников, которые являлись на урок неподготовленными и более-менее угадывали ответы на контрольной работе, были и такие, которые умудрялись в итоге получить четверки или даже пятерки.

Несколько лет назад в Канаде проводилась государственная лотерея, и когда устроители решили вернуть накопившиеся призовые деньги, за которыми никто так и не пришел, они на собственном горьком опыте убедились в том, как важен тщательный подсчет[78]78
  Henk Tijms, Understanding Probability: Chance Rules in Everyday Life (Cambridge: Cambridge University Press, 2004), p. 16.


[Закрыть]
. Они приобрели 500 машин в качестве бонусов и запрограммировали компьютер таким образом, чтобы из 2,4 млн подписчиков на лотерейные билеты машина произвольно выбрала 500 счастливчиков. Затем список был опубликован. К смущению устроителей лотереи, один господин заявил (надо заметить, справедливо), что выиграл две машины. Устроителям было чему изумиться: из 2,4 млн номеров компьютер вслепую выбрал один и тот же номер дважды. Как могло такое случиться? Может, ошибка в программе?

Задача с подсчетом номеров билетов, с которой столкнулись устроители лотереи, ничем не отличается от задачи с днями рождения: сколько в группе должно быть людей, чтобы встретились два человека с одинаковым днем рождения (при этом предполагается, что одинаково возможны любые дни)? Большинство скажут, что ответ – количество дней в году, поделенное пополам, то есть что-то около 183. Но ответ этот можно счесть правильным для совсем другого вопроса: сколько людей с разными днями рождения должны присутствовать в группе, чтобы день рождения одного из них совпал с вашим? Если не заложено никаких ограничений относительно того, у каких именно двух человек дни рождения должны совпасть, то факт того, что существует множество возможных пар людей, дни рождения которых могли бы совпасть, коренным образом меняет дело. И число таких людей на удивление мало: всего 23. Если вернуться к канадской лотерее, где выборка производилась из 2,4 млн билетов, окажется, что необходимо гораздо больше, чем 500 номеров, чтобы номер повторился. И тем не менее исключать такую возможность не стоит. Шансы совпадения фактически равны примерно 5 %. Цифра небольшая, однако стоило ее принять во внимание и запрограммировать компьютер таким образом, чтобы он тут же вычеркивал из списка каждый выбранный номер. Да, а того счастливчика, который оказался обладателем двух машин, от одной попросили отказаться. Только он не согласился.

А вот еще один загадочный случай, связанный с лотереей и многих удививший; произошел он в Германии 21 июня 1995 г.[79]79
  Henk Tijms, Understanding Probability: Chance Rules in Everyday Life (Cambridge: Cambridge University Press, 2004), p. 80.


[Закрыть]
Проводилась лотерея под названием «Лото 6/49», означавшая, что шесть выигрышных чисел нужно выбрать из чисел от 1 до 49. В день объявления результатов были названы выигрышные числа: 15-25-27-30-42-48. Точно такая же последовательность уже выпадала ранее, 20 декабря 1986 г. Впервые за 3,016 выборок выигрышная последовательность повторилась. Каковы шансы такого повтора? Вовсе не такие уж и плохие, как вам может показаться. Если использовать математический подход, окажется, что шанс повтора равен примерно 28 %.

Поскольку в случайном процессе число исходов события и определяет его вероятность, главный вопрос в следующем: как подсчитать число исходов того или иного события? Похоже, Галилей не проникся всей значимостью подобного вопроса. В своем исследовании случайностей дальше задачи о костях он не пошел, а в начале работы упомянул, что пишет об игральных костях только «по обязанности[80]80
  David, Gods, Games and Gambling, p. 65.


[Закрыть]
». В 1633 г. в «благодарность» за пропаганду нового научного подхода Галилей был осужден Инквизицией. Однако наука и теология давно уже разошлись, и теперь ученые анализируют вопрос «как?», а богословы, облегчая жизнь ученым, размышляют над вопросом «почему?». Пройдет совсем немного времени, и ученый нового поколения, с юности воспринявший новую научную философию Галилея, проведет анализ вероятности и достигнет новых высот, поднявшись на такой уровень, без которого большая часть современной науки была бы попросту невозможна.



Научная революция разворачивалась, и границы теории случайности ширились от Италии к Франции, где ученые нового типа, подвергавшие сомнению Аристотеля и следовавшие Галилею, совершали еще более глубокие открытия, нежели Кардано или сам Галилей. На этот раз важность нового труда будет признана, он всколыхнет всю Европу. И хотя новые идеи будут проиллюстрированы все теми же азартными играми, первый ученый нового типа окажется математиком, впоследствии ставшим игроком, в противоположность Кардано, игроку, впоследствии ставшему математиком. Звали этого ученого Блез Паскаль.

Паскаль родился в июне 1623 г. в Клермон-Ферране, находившемся в 400 км от Парижа. Отец Блеза разглядел одаренность сына, семья переехала в Париж, и в возрасте тринадцати лет Блез был представлен недавно созданному кружку, который сами его члены называли Академией Мерсенна – по имени францисканского монаха-основателя. В кружок Мерсенна входили прославленный философ-математик Рене Декарт и гениальный математик-любитель Пьер де Ферма. Все они, представлявшие собой диковинную смесь блистательных умов и крайне высокого самомнения, вместе с Мерсенном, помешивавшим это «варево», оказали на юного Блеза большое влияние. Блез подружился с Ферма и Декартом, воспринял новый научный метод. «Пусть все ученики Аристотеля… – писал он, – признают: истинный учитель есть эксперимент, ему надлежит внимать при изучении Физики»[81]81
  Blaise Pascal, quoted in Jean Steinmann, Pascal, trans. Martin Turnell (New York: Harcourt, Brace & World, 1962), p. 72.


[Закрыть]
.

Но каким образом оторванный от жизни, скучный и набожный субъект стал завсегдатаем сборищ городских игроков? Время от времени Паскаль страдал болями в желудке, у него были трудности с глотанием и прохождением пищи по пищеводу, он испытывал изнуряющую слабость и сильную головную боль, внезапно потел, иногда у него даже отнимались ноги. Паскаль стоически следовал предписаниям врачей, назначавших кровопускание, слабительные, питье молока ослицы и другие «отвратительные» микстуры, от которых его едва не выворачивало – «истинные пытки», по словам сестры Жильберты[82]82
  Gilberte Pascal, quoted in Morris Bishop, Pascal: The Life of a Genius (1936; repr., New York: Greenwood Press, 1968), p. 47.


[Закрыть]
. К тому времени Паскаль уехал из Парижа, однако летом 1647 г. в возрасте двадцати четырех лет он вернулся вместе с сестрой Жаклин и, совсем отчаявшись, пустился на поиски средства, которое все же излечило бы его. Новые врачи дали наисовременнейший совет: «отказаться от напряженного умственного труда и как можно полнее отдаться развлечениям[83]83
  Gilberte Pascal, quoted in Morris Bishop, Pascal: The Life of a Genius (1936; repr., New York: Greenwood Press, 1968), p. 137.


[Закрыть]
». И вот Паскаль стал учиться отдыхать и расслабляться, начал проводить время в компании других молодых людей, ведущих праздный образ жизни. В 1651 г. умирает отец Блеза, и Паскаль неожиданно становится молодым человеком с наследством. Он нашел деньгам хорошее применение, по крайней мере, если исходить из рекомендаций врачей. Биографы Паскаля называют период с 1651 по 1654 гг. периодом «мирской суеты». Сестра Жильберта писала про «годы, которым он нашел наихудшее применение»[84]84
  Gilberte Pascal, quoted ibid., p. 135.


[Закрыть]
. Хотя Блез приложил некоторые усилия, чтобы сделать себе рекламу, его научные изыскания ни к чему не привели, зато он мог похвастать отменным здоровьем.

Зачастую в истории исследования случайности подтолкнувшее эти исследования событие само оказывалось случайным. Так вышло и с работой Паскаля: бросив исследования, он занялся изучением шанса. Началось все с того, что один из приятелей Блеза по развлечениям представил его одному снобу сорока пяти лет по имени Антуан Гомбо. Гомбо, этот аристократ с титулом шевалье де Мере, считал себя знатоком по части флирта и, судя по списку своих любовных похождений, таковым и был. Однако де Мере также имел репутацию опытного игрока, предпочитал высокие ставки и так часто выигрывал, что его даже подозревали в мошенничестве. И вот когда этот де Мере столкнулся с неким затруднением, он обратился за помощью к Паскалю. С этого началось исследование, которое положило конец «заклятию» Паскаля, отвратившему его от занятий наукой, обеспечило де Мере место в истории идей и разрешило проблему, которая так и оставалась нерешенной в работе Галилея, заказанной герцогом.

Шел 1654 год. Затруднение, с которым де Мере обратился к Паскалю, заключалось в очках. Предположим, вы с партнером играете, у вас равные шансы, и тот, кто первым наберет определенное количество очков, выигрывает. Игра прерывается; в это самое время один из игроков лидирует. Как справедливее всего разделить сумму? При разрешении этой проблемы, заметил де Мере, нужно учесть шансы каждого игрока на выигрыш исходя из того, у кого их, этих шансов, на момент прерывания игры больше. Но как произвести подсчет?

Паскаль сознавал, что, каким бы ни был ответ, методы для подсчета еще не изобрели, и эти методы, какими бы они ни были, могут иметь серьезные последствия в соревновательной ситуации любого рода. Как это часто случается в теоретических изысканиях, Паскаль испытывал неуверенность, даже замешательство по поводу своего плана действий. Он решил, что нужен посредник, то есть еще один математик, с которым можно было бы обсудить свои догадки. Марен Мерсенн, великий переговорщик, уже несколько лет как умер, однако Паскаль не порвал связей с членами Академии. И в 1654 г. завязалась одна из величайших переписок в истории математики: между Паскалем и Пьером де Ферма.

В 1654 г. Ферма занимал высокий пост – королевский советник парламента – в Тулузе. На заседаниях суда изысканно одетый Ферма занимался тем, что приговаривал согрешивших должностных лиц к сожжению. В свободное же от заседаний время Ферма прилагал свои аналитические способности к более изящным занятиям – занятиям математикой. Возможно, Пьер де Ферма и не был профессионалом, но за ним закрепилась слава величайшего математика.

Ферма получил видную должность отнюдь не благодаря своим честолюбивым устремлениям или неким заслугам. Она досталась ему старым, добрым способом – он постепенно поднимался по служебной лестнице, занимая кресла своих начальников, умиравших от чумы. Когда ему пришло письмо от Паскаля, Ферма и сам только-только начинал оправляться от этой болезни. Болезнь протекала настолько тяжело, что друг Ферма, Бернар Медон, успел объявить Ферма умершим. Когда же Ферма не умер, смущенный, но явно обрадованный Медон отозвал свое объявление, однако нет никаких сомнений в том, что Ферма одной ногой был уже в могиле. В конечном счете Ферма, который был старше Паскаля на двадцать два года, пережил своего новообретенного друга по переписке на несколько лет.

Как мы увидим, задача, связанная с очками, возникает в такой области, в которой оба, и Паскаль, и Ферма, соперничают. В ходе переписки Паскаль и Ферма разрабатывают свои подходы и предлагают несколько вариантов решения. Однако метод Паскаля оказался проще, да и изящнее, к тому же он мог быть применен к большому кругу задач, с которыми приходится сталкиваться в повседневной жизни. Поскольку задача впервые возникла в связи с заключением пари, возьмем пример на тему спорта. В 1996 г. команда «Смельчаки Атланты» победила «Нью-Йоркских Янки» в первых 2 играх бейсбольной Мировой серии (по условиям первая команда, победившая в 4 играх, становится чемпионом). Факт победы «Смельчаков» в первых 2 играх совсем не обязательно означал, что ее игроки сильнее других. И все же он служил знаком того, что они явно лучше. Для выполнения нашей текущей задачи предположим, что и та, и другая команды обладали равными шансами на победу в каждой игре, и что в первых 2 играх лишь по случайности выиграла команда «Смельчаки Атланты».


Страницы книги >> Предыдущая | 1 2 3 4 5 6 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации