Электронная библиотека » Маршия Бьорнеруд » » онлайн чтение - страница 4


  • Текст добавлен: 22 декабря 2020, 19:48


Автор книги: Маршия Бьорнеруд


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 16 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +
Уран-свинцовые часы

Первая попытка Артура Холмса определить абсолютный возраст пород, предпринятая еще до того, как было открыто строение атома и существование изотопов, была подобна интуитивной догадке Дарвина о существовании феномена наследственности, намного опередившей открытие генов и ДНК. В обоих случаях прошли годы, прежде чем остальная наука смогла в полной мере осознать и развить все следствия, вытекающие из их провидческих идей. Только к 1930-м гг. стала в полной мере понятна сложная геохимия изотопов свинца. В 1929 г. Эрнест Резерфорд установил, что два разных материнских изотопа урана, 238U и 235U, имеют разные периоды полураспада (4,47 млрд и 710 млн лет соответственно) и в результате радиоактивного распада превращаются в два разных изотопа свинца – 206Pb и 207Pb. Вскоре после этого Альфред Нир, физик из Миннесотского университета, открыл еще один изотоп свинца – 204Pb, имеющий не радиогенное происхождение, т. е. этот свинец изначально был свинцом и не являлся продуктом радиоактивного распада. Нир также разработал основной инструмент изотопного анализа – масс-спектрометр, который позволяет разделять и сортировать изотопы одного элемента на основе их атомного веса.

Сделанные открытия натолкнули Нира на мысль, что эти три изотопа свинца можно использовать для датировки горных пород и даже для определения возраста самой Земли, поскольку на протяжении всего геологического времени количество изотопов 206Pb и 207Pb должно было увеличиваться математически предсказуемым образом, а абсолютное количество нерадиогенного 204Pb оставаться постоянным. Более конкретно: из-за сравнительно короткого периода полураспада 235U запасы 207Pb на раннем этапе истории Земли должны были расти быстрыми темпами, но затем скорость их роста должна была сгладиться – как совокупный доход на сберегательном счете с высокой процентной ставкой, с которого с первых же дней снимали значительные средства. В то же время вследствие гораздо более длительного периода полураспада 238U глобальные запасы 206Pb продолжали бы накапливаться – как доход на сберегательном счете с низкой процентной ставкой, но с более медленным снятием средств. Используя ту же метафору, запасы изотопа 204Pb можно сравнить с деньгами, спрятанными под матрацем. В 1940 г. Нир и его ученики собирались применить эту идею на практике для датирования геологических образцов, но им пришлось остановить работу, поскольку Энрико Ферми попросил Альфреда Нира, сына немецких иммигрантов, присоединиться к Манхэттенскому проекту. Ученым требовалось отделить делящийся изотоп 235U от слаборадиоактивного 238U, и масс-спектрометр Нира был единственным инструментом, позволяющим различить эти два изотопа[18]18
  Интервью с Альфредом Ниром о его работе до и во время Манхэттенского проекта можно найти на сайте: http://manhattanprojectvoices.org/oral-histories/alfred-niers-interview-part-1.


[Закрыть]
. Ниру пришлось переориентировать свою лабораторию с изучения геологического прошлого на проблемы неопределенного будущего.

Однако сразу же после войны Нир вернулся к своей идее и занялся измерением соотношений изотопов Pb в залежах галенита (сульфида свинца, PbS, – первичной свинцовой руды) различного возраста, расположенных в самых разных точках мира. Галенит по определению содержит много свинца, но этот свинец не захватывает уран при кристаллизации минерала. Это означает, что соотношения изотопов свинца в галените не меняются с течением времени и должны отражать ту конкретную смесь изотопов свинца, которая существовала в окружающей среде на момент образования минерала. Как и предсказывал Нир, образцы более древних руд имели более низкие соотношения 207Pb/204Pb и 206Pb/204Pb (соотношения свинца «с процентного счета» и свинца «из-под матраца»). Этих соотношений могло бы быть достаточно, чтобы определить возраст Земли, если бы изначально на нашей планете отсутствовали изотопы 207Pb и 206Pb. Но Нир знал, что в момент своего образования Земля почти неизбежно унаследовала какое-то количество радиогенного свинца, накопившегося на «банковских счетах» более древних космических объектов. Следовательно, чтобы вычислить возраст Земли, требовалось каким-то образом определить изначально существовавшие соотношения различных изотопов свинца в том строительном материале.

Кроме того, Нир увидел еще одну скрытую проблему: ни один, даже самый древний образец галенита не может отражать изначального состояния всей Земли в целом. Земля – не единый резервуар, где все смешивается в однородный общепланетарный геохимический коктейль. Как раз наоборот, ее структура с течением времени становилась все более неоднородной. Вскоре после своего рождения наша планета дифференцировалась на железо-никелевое ядро и каменную мантию, в которую перешла бóльшая часть остальных веществ, включая практически весь земной уран. С тех пор многократно повторяющийся процесс частичного плавления мантии с подъемом более легких пород на поверхность привел к образованию земной коры, которая оказалась гораздо богаче ураном, чем Земля в целом или ее мантия, подобно тому как более легкий молочный жир концентрируется в верхней части бутылки с молоком в виде сливок. Нир предположил, что, тогда как полученные им данные по изотопам свинца в целом соответствовали ожидаемой модели, некоторые из изученных образцов могли ассимилировать дополнительный радиогенный свинец (207Pb и 206Pb), образованный в результате распада «избыточного» урана в земной коре, и, таким образом, неточно отражали эволюцию изотопов свинца в масштабах всей планеты.

Артур Холмс, который к концу 1940-х гг. стал профессором геологии в Эдинбургском университете и переключил свое внимание на другие важные проблемы геологии (такие как движущие силы, стоящие за образованием гор), продолжал тем не менее пристально следить за работой Нира по определению возраста Земли. Его особенно заинтересовал один из изученных Ниром специфических образцов – галенит из очень древней толщи пород в Гренландии, имевший крайне низкие концентрации урана и низкие отношения изотопов свинца. Холмс, который отличался склонностью к широким умозаключениям и оценочным расчетам, оказался готов, в отличие от щепетильного Нира, сделать предположение, что соотношения свинцовых изотопов в этом гренландском галените могут быть очень близки к их изначальным соотношениям в недифференцированном веществе Земли. С теоретической точки зрения определить возраст Земли на основе этих данных представлялось несложным: нужно было всего лишь рассчитать, сколько понадобилось бы времени, чтобы изотопные отношения изменились с этого изначального стартового уровня до значений, обнаруживаемых в более молодых залежах галенита. Но на практике вычисления оказались настолько сложными, что Холмсу пришлось приобрести механическую счетную машину. Спустя месяцы трудоемких расчетов Холмс опубликовал свою оценку минимального возраста Земли: 3,35 млрд лет[19]19
  Следует отметить, что русский геохимик Э. К. Герлинг выполнил похожие расчеты почти одновременно с Холмсом и получил возраст Земли в 3,1 млрд лет. Но его работы до недавнего времени не были известны на Западе. См.: Dalrymple, G. B., 2001. The age of the Earth in the twentieth century: A problem (mostly) solved. In Lewis, C., and Knell, S., The Age of the Earth from 4004 BC to AD 2002. Geological Society of London Special Publication 190, 205–221.


[Закрыть]
. Наконец-то геологи могли успокоиться: у земной истории было изобилие времени.

Но эта временна́я оценка породила новый конфликт – на этот раз с астрофизиками. Согласно теории Большого взрыва и расширения Вселенной, получившей признание в научном сообществе с конца 1920-х гг. благодаря наблюдениям Эдвина Хаббла за красным смещением галактик, возраст Вселенной можно определить поразительно просто – почти элементарно по сравнению с выполненными Холмсом расчетами возраста Земли на основе изотопов свинца. Для этого требовалось построить график зависимости между скоростью (расстояние/время) удаления галактик и звезд от Земли и расстоянием до этих объектов. Наклон этой линии называется постоянная Хаббла, и величина, обратная этой постоянной, отражает время, прошедшее с начала расширения, т. е. возраст Вселенной. В 1946 г., когда Холмс объявил, что возраст Земли должен быть более 3 млрд лет, возраст Вселенной, по оценкам астрофизиков, составлял только 1,8 млрд лет[20]20
  Brush, S., 2001. Is the Earth too old? The impact of geochronology on cosmology, 1929–1952. In Lewis, C., and Knell, S., The Age of the Earth from 4004 BC to AD 2002. Geological Society of London Special Publication 190, 157–175.


[Закрыть]
.

Геохимики перехватывают инициативу

Это смущающее расхождение между геологическим и астрономическим временем оставалось неразрешенным почти целое десятилетие, пока астрофизики не уточнили свои оценки космологических расстояний и не открыли еще более удаленные галактики, что позволило им уменьшить общепринятое значение постоянной Хаббла и существенно увеличить возраст Вселенной. Между тем в 1948 г. талантливый аспирант Чикагского университета Клэр Паттерсон решил применить новый оригинальный подход к определению возраста Земли. К тому времени стало очевидно, что на Земле не сохранились первозданные породы, которые отражали бы изначальное состояние земной коры. Артур Холмс использовал соотношение свинцовых изотопов в древнем гренландском галените как лучшее из доступных приближений к изначальным значениям, но Паттерсон нашел более надежный источник информации – внеземные породы, т. е. метеориты.

Метеориты представляют собой протопланетный строительный материал и остатки разрушенных планет, которые некогда сформировались одновременно с Землей и остальной частью Солнечной системы. В отличие от земных пород, которые находятся в процессе постоянного изменения и перерождения в результате выветривания, эрозии, метаморфизма и плавления, большинство метеоритов не претерпели никаких трансформаций в космическом вакууме с момента образования Солнца и планет. Под их тонкой оболочкой, приобретенной в результате прохода через атмосферу или пребывания на поверхности Земли, скрывается нетронутый материал, несущий отпечаток самых ранних дней Солнечной системы.

Паттерсон предположил, что железные метеориты, содержащие свинец, но практически не содержащие уран, отражают первичный состав изотопов свинца, присутствовавший в зарождающейся Солнечной системе. А каменные метеориты, содержащие свинец и уран, позволяют более точно, чем любая земная порода, расcчитать среднее содержание этих элементов в современной земной коре (напоминающей хорошо перемешанный молочный коктейль). Подход Паттерсона состоял в том, чтобы измерить первичное и современное соотношения изотопов свинца, представленные в этих двух видах метеоритов, а затем повторить расчеты Холмса (рис. 5).



И снова в теории идея казалась простой, но на практике потребовала титанических усилий. Паттерсону понадобилось почти восемь лет, чтобы только собрать и проанализировать образцы метеоритов. Он столкнулся с неожиданными сложностями: ему никак не удавалось получить в достаточной степени согласующиеся результаты измерений изотопов свинца в дублирующих пробах, чтобы провести заслуживающие доверия расчеты. Тщательно изучив свой метод анализа на предмет возможных ошибок, он в конце концов понял причину проблемы: оказалось, что образцы метеоритов уже до проведения анализов загрязнялись свинцом, в больших количествах присутствующим в окружающей среде – в воздухе, на рабочих поверхностях и приборах, на одежде и коже исследователей. За эти восемь лет, работая в Калифорнийском технологическом институте и в Аргоннской национальной лаборатории в Иллинойсе, Паттерсон создал первую в мире «стерильную лабораторию» со сложной системой очистки воздуха и вентиляции (сегодня такие лаборатории являются неотъемлемым атрибутом многих научных и медицинских исследовательских учреждений). В 1956 г. он наконец-то получил цифру, которая по сей день остается общепризнанным возрастом Земли: 4,55 млрд ±70 млн лет[21]21
  Patterson. C., 1956. Age of meteorites and the Earth. Geochimica et Cosmochimica Acta, 10, 230–277. doi:10.1016/0016–7037 (56) 90036–9


[Закрыть]
. (Теперь Дарвин может покоиться с миром!) Успешно завершив двухсотлетние поиски святого Грааля, которые велись геологами и физиками со времен Геттона, Паттерсон в возрасте 31 года оставил академическую науку и посвятил остаток своей жизни крестовому подходу за запрет использования свинца (об опасных нейротоксических свойствах которого к тому времени уже было известно) в красках, игрушках, жестяных банках для продуктов питания и бензине. Казалось бы, такое научное достижение, как определение возраста нашей планеты, более чем достойно Нобелевской премии, но геологии даже нет в списке номинаций. Незадолго до своей смерти в 1995 г. Паттерсон получил престижную Премию Тайлера за достижения в области охраны окружающей среды, но я считаю это недостаточным признанием для парнишки из небольшого городка в Айове, не побоявшегося противостоять таким гигантам, как Кельвин, Хаббл и крупные нефтяные компании.

Геохронология достигает научной зрелости

После новаторских работ Нира, Холмса, Паттерсона и других ученых геохронология – научная дисциплина, занимающаяся определением возраста геологических материалов, – значительно расширила арсенал своих методов исследования, ранее включавший только уран-свинцовый анализ. В природе встречаются 92 элемента и тысячи их изотопов, большинство из которых радиоактивны (всего 254 из них стабильны). Но не все радиоактивные изотопы могут служить счетчиками геологического времени. Во-первых, период полураспада изотопа должен соответствовать продолжительности измеряемого времени. У многих же изотопов он составляет несколько дней или даже секунд, поэтому использовать их для измерения геологического времени – все равно что пытаться измерить Аляскинскую трассу 30-сантиметровой линейкой. Кроме того, вследствие экспоненциального характера процесса радиоактивности, когда за каждый период полураспада распадается половина материнского вещества, после 10 периодов полураспада в материале почти не останется материнских изотопов, независимо от того, сколько их было изначально (аналогично тому, как даже самый большой лист бумаги можно сложить пополам лишь определенное количество раз). Во-вторых, материнский изотоп должен присутствовать в датируемой породе или минерале в достаточно высокой концентрации, чтобы его можно было измерить, а также чтобы произвести измеримое количество дочернего изотопа. Конечно, понятие измеримости со временем меняется – по мере того, как прогресс в приборостроении позволяет обнаруживать элементы в минералах даже в очень низких концентрациях, измеряемых миллиардными и триллионными долями (ppb и ppt)[22]22
  Миллиардная доля – единица измерения концентрации и других относительных величин. Обозначается сокращенно млрд–1, или ppb (англ. parts per billion – «частей на миллиард») = 0,0000001 % = 10–9. Приблизительно равна одной капле чернил в среднем бассейне. Триллионная доля – трлн–1, или ppt (англ. parts per trillion – «частей на триллион») = 10–12. Приблизительно равна одной капле чернил в судоходном шлюзе, заполненном водой. Далее в книге автор использует также единицу измерения ppm – миллионная доля, млн–1 = 0,0001 % = 1 г/т. – Прим. ред.


[Закрыть]
.

В-третьих, дочерний элемент в идеале не должен присутствовать в минерале на момент кристаллизации – с которого начинается отсчет времени на изотопных часах, – чтобы гарантировать, что все количество дочернего изотопа в образце было образовано в результате радиоактивного распада материнского вещества после того, как кристалл стал закрытой системой. За этим стоит та же логика, что и за ненавистным студентам требованием использовать на экзаменах «голубые тетради», которое гарантирует, что все ответы на тест были написаны после того, как они вошли в класс и закрыли за собой дверь. (Разумеется, существуют математические методы, позволяющие ввести поправку на первоначальное количество дочернего изотопа, – точно так же, как опытный преподаватель может обнаружить мошенничество на экзамене.)

Наконец, в-четвертых, дочерние изотопы должны удерживаться в кристаллах, даже несмотря на то, что они обычно становятся «чужаками» в этой системе. Материнский атом со своим конкретным диаметром и электрическим зарядом занимает в кристаллической решетке строго определенное место, где он чувствует себя абсолютно комфортно и гармонично связан с соседними атомами. Но после того, как материнский атом в результате радиоактивного распада превращается в дочерний – совершенно другой элемент с другим размером атома, другими химическими свойствами, он перестает вписываться в гармоничную кристаллическую систему. Чувствуя себя дискомфортно в родительском доме, дочерние изотопы зачастую стараются сбежать из кристалла, как только предоставляется такая возможность, что чаще всего происходит в какой-то момент геологической истории при нагревании породы, открывающем кристаллическую решетку для диффузии. Поскольку соотношение дочерних и материнских изотопов является основой для определения возраста пород (табл. 2. 1), любая потеря дочерних изотопов ведет к тому, что образец будет казаться моложе своих лет.

Из-за всех этих ограничительных критериев существует всего с десяток подходящих изотопных пар (включающих материнский и дочерний изотопы), которые могут быть использованы для датирования пород (табл. 2. 2). Эти материнские изотопы были унаследованы Землей при своем формировании от предшествующих звезд и планет, и некоторые из них имеют непостижимо долгие периоды полураспада. Так, период полураспада рубидия-87 (87Rb) составляет 49 млрд лет, что намного больше не только возраста Земли, но и возраста всей Вселенной (который сейчас, после пересмотра постоянной Хаббла, оценивается примерно в 14 млрд лет). Никакого противоречия тут нет – это просто означает, что с момента образования Земли истекла всего десятая часть периода полураспада 87Rb, поэтому лишь малая часть изначального 87Rb превратилась в стронций-87 (87Sr). Но, поскольку рубидий является типичным рассеянным элементом, присутствующим во многих минералах, оба изотопа, 87Rb и 87Sr, встречаются в достаточно высоких концентрациях, что делает возможным их количественное определение для целей радиоизотопного датирования пород.



Некоторые породы, например гранит, содержат два или более минералов, каждый из которых может быть датирован на основе своей изотопной системы «материнский изотоп – дочерний изотоп», и нередко анализ этих минералов показывает разный возраст. Это еще одно геологическое наблюдение, на которое любят ссылаться креационисты-младоземельцы как на якобы опровергающее существующую геохронологическую шкалу. На самом деле было бы странным как раз обратное: если бы все минералы в магматических породах, таких как гранит, которые образуются в результате медленного остывания магмы на большой глубине, имели одинаковый изотопный возраст. Дело в том, что температура закрытия, т. е. температура, при которой кристаллические «двери» закрываются для диффузии, неодинакова для разных материнских элементов в разных видах минералов. Знание конкретных температур закрытия позволяет детально реконструировать историю застывания глубинных магматических тел – плутонов (или плутонических массивов), названных так в честь Плутона, древнеримского бога Подземного мира. Например, комбинированное датирование минералов из гранитов Туолумне в Йосемитском национальном парке на основе изотопных пар U – Pb, Rb – Sr и K – Ar показывает, что те оставались при температуре свыше 350 ℃ на протяжении более 3 млн лет[23]23
  Coleman, D., Mills, R., and Zimmerer, M., 2016. The pace of plutonism, Elements,12, 97–102. doi:10.2113/gselements.12.2.97


[Закрыть]
. Эти граниты, ныне образующие величественные пики горного хребта Сьерра-Невада, некогда были гранитной магмой в магматических бассейнах, питавших мощные вулканы юрского периода (с тех пор стертые с лица Земли всесильной эрозией). Понимание того, как долго может сохранять активность магматическая система, помогает предсказать извержения современных вулканов, таких как Йеллоустоунская кальдера, где многочисленные грязевые котлы и гейзеры свидетельствуют о неспокойствии в Подземном мире.

Радиоуглеродное датирование

Самый известный изотоп, используемый сегодня для датирования, – углерод-14 (14C). Этот изотоп необычен во многих отношениях и отличается от других материнских изотопов по ряду важных аспектов. Имея чрезвычайно короткий период полураспада – всего в 5730 лет, он непригоден для датирования чего-либо старше примерно 60 000 лет (поэтому его применение в геологии ограничено), и за 4,5 млрд лет на Земле не осталось первичного 14С. Этот изотоп имеет космогенное происхождение и постоянно образуется в верхних слоях атмосферы под воздействием космических лучей – потока высокоэнергетических заряженных частиц, прилетающих из далекого космоса. Считается, что основным источником космических лучей являются вспышки сверхновых – так астрономы называют грандиозные, феерические взрывы старых массивных звезд в конце эволюционного цикла (в процессе чего происходит выброс элементов и изотопов, впоследствии становящихся строительным материалом для новых планет). Именно для того, чтобы предотвратить негативное долгосрочное воздействие этой естественной космической радиации, для пилотов и стюардесс вводятся ограничения на годовое количество дальнемагистральных рейсов на большой высоте.

Углерод-14 образуется в результате столкновения атомов азота-14 (14N) в верхних слоях атмосферы с прилетающими из космоса высокоэнергетическими частицами, которые выбивают из ядра азота протон. Часть образовавшегося в результате изотопа 14C опускается на поверхность Земли и в процессе фотосинтеза поглощается растениями и водорослями, откуда, в свою очередь, в виде органических соединений попадает в питающиеся ими организмы, такие как грибы, все виды животных и люди в том числе. Пока растение или животное живет, дышит, фотосинтезирует или ест, относительное содержание находящихся внутри него изотопов углерода (стабильных 12C и 13C и радиоактивного 14C) соответствует их содержанию в окружающей среде. Но, когда организм умирает, углеродный обмен с внешней средой прекращается, и с этого момента количество стабильных изотопов углерода остается неизменным, тогда как радиоактивный 14C постепенно распадается, и его содержание в останках уменьшается. В отличие от других методов изотопного датирования, в которых для определения возраста образца используется соотношение дочерних и материнских изотопов, радиоуглеродный возраст рассчитывается на основе активности присутствующего радиоуглерода – она определяется как число распадов в единицу времени на грамм углерода. Это объясняется просто: изотоп 14C распадается с образованием азота 14N – газа, который быстро улетучивается из образца.

Радиоуглеродный анализ является важнейшим инструментом в археологических и исторических исследованиях и может быть использован для датирования широкого спектра образцов, содержащих биогенный углерод, включая дерево, кости, слоновую кость, семена, раковины, лен, хлопок, бумагу, торф и многое другое. Можно датировать даже океанскую воду благодаря содержанию в ней небольшого количества растворенного углекислого газа. Так, радиоуглеродный анализ показал, что возраст воды в глубинных слоях в северной части Тихого океана составляет около 1500 лет[24]24
  Gebbie, G., and Huybers, P., 2012. The mean age of ocean waters inferred fromradiocarbon observations: Sensitivity to surface sources and accounting for mixing histories. Journal of Physical Oceanography, 42, 291–305. doi:10.1175/JPO-D-11–043.1


[Закрыть]
 – это означает, что эти воды не взаимодействовали с атмосферой со времен рождения пророка Мухаммеда.

Однако, по сравнению с методами определения геологического возраста, радиоуглеродному методу присуща относительно большая неопределенность, связанная с варьированием скорости образования 14C в верхних слоях атмосферы с течением времени, что зависит от ряда факторов, в том числе от флуктуаций геомагнитного поля, которое частично защищает нашу планету от бомбардировки космическими лучами. Чтобы откалибровать радиоуглеродные датировки с учетом этого варьирования, ученые обращаются к незатейливому, но весьма надежному хронометру – годовым кольцам на деревьях: благодаря тому, что в каждом году только внешняя часть дерева активно обменивается углеродом с окружающей средой, каждое кольцо имеет свой радиоуглеродный возраст. Соотнося данные по самым старым кольцам в живых деревьях с данными по самым молодым кольцам в древних деревьях, сохранившихся в болотах, а также найденных в местах археологических раскопок, ученые сумели продлить эту дендрохронологическую летопись на 10 000 лет в прошлое и теперь используют ее для уточнения радиоуглеродного анализа. Кольца роста в кораллах (состоящих из кальцита, CaCO3) дают менее точные исторические данные по 14C, чем кольца деревьев, но позволяют откалибровать радиоуглеродные датировки еще дальше в прошлое. Тем не менее неопределенность для датировок на основе 14C остается довольно высокой – порядка сотен и даже тысяч лет (от 5 до 10 % фактического возраста).

Люди также сыграли свою роль, добавив сложности радиоуглеродному датированию. Во-первых, надземные ядерные испытания в начале холодной войны привели к интенсивному образованию в атмосфере углерода-14 – пик, который нужно обязательно учитывать при датировании современных образцов. Вот почему радиоуглеродный возраст обычно измеряется в «годах до 1950 г.». Во-вторых, за столетие интенсивного сжигания ископаемого топлива в атмосферу было выброшено огромное количество «мертвого» углерода, что отразилось на изотопном составе атмосферного углерода. Это явление получило название эффекта Зюсса по имени австрийского физика Ганса Зюсса, который впервые описал его в 1955 г.[25]25
  Suess, H., 1955. Radiocarbon concentration in modern wood. Science, 122, 414–417.


[Закрыть]
(и который во время Второй мировой войны принимал участие в германской ядерной программе, гитлеровском аналоге Манхэттенского проекта в США). В то время как углерод 14C, образовавшийся в результате ядерных испытаний, постепенно рассеивается, эффект Зюсса только продолжает нарастать.


Страницы книги >> Предыдущая | 1 2 3 4 5 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации