Электронная библиотека » Матвей Бронштейн » » онлайн чтение - страница 5


  • Текст добавлен: 9 января 2018, 21:00


Автор книги: Матвей Бронштейн


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 20 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +
Рождение гелия

Известие об опыте Крукса дошло до лаборатории Резерфорда и Содди в далеком Монреале. И это известие неожиданно натолкнуло молодых ученых на решение вопроса, над которым безуспешно бился Рамзай.

Резерфорд и Содди сопоставили два факта.

Факт № 1: гелий, как установил Рамзай, всегда обнаруживается в минералах вместе с веществами, испускающими невидимые лучи, – с торием и ураном.

Факт № 2: невидимые лучи, как установил Крукс, – это поток каких-то частиц.

Между этими фактами, рассуждали Резерфорд и Содди, должна существовать какая-то связь. Какая же?

Резерфорд и Содди решились на смелую догадку:


Частицы, вылетающие из урана, тория, радия, нитона, – это частицы гелия. В уране, тории, радии, нитоне непрерывно рождается гелий. Вот почему в минералах, где есть уран и торий, всегда оказывается и гелий.

Проверка опытом

Высказать догадку – этого мало. Нужно суметь доказать, что она правильна. А для этого есть только одно средство – опыт.

Весной 1903 года Фредерик Содди приехал в Англию. В Лондоне он увиделся со знаменитым Рамзаем. Они решили проверить на опыте, верно ли, что частицы, которые наблюдал Крукс, – это частицы гелия.

Рамзай и Содди наполнили спектроскопическую трубочку нитоном. Через трубочку пустили электрический ток, и нитон засветился голубоватым огнем. Тогда Рамзай и Содди взяли спектроскоп и стали рассматривать спектр. Они увидели три яркие линии: оранжевую, желтую, зеленую. Это были спектральные линии нитона. Никаких других линий в спектре не было видно.

Рамзай и Содди оставили нитон в спектроскопической трубочке и ушли. А через два дня они вернулись в лабораторию, снова включили ток и снова рассмотрели спектр запертого в трубочке газа. И что же? Спектральные линии нитона горели на своих местах в оранжевом, желтом и зеленом участках спектра, но они стали гораздо слабее, чем за два дня перед тем. А рядом с ними горели новые линии, которых два дня назад не было. Рамзай и Содди сразу узнали их: это были спектральные линии гелия.

Извне гелий не мог попасть в спектроскопическую трубочку. Значит, он возник в самой трубочке, возник из нитона.

Прошло еще два дня, и Рамзай и Содди снова пропустили через свою трубочку ток. Трубочка зажглась, и сразу же стало видно, что с запертым газом произошла еще большая перемена. Четыре дня назад трубочка светилась голубоватым огнем. А теперь огонь был желто-белый – точь-в-точь такой, каким светятся трубки, наполненные гелием. Теперь можно было и без спектроскопа увидеть, что в трубочке гелий. А когда Рамзай и Содди все-таки заглянули в спектроскоп, то у них исчезли и последние сомнения. Спектральные линии нитона еще светились в спектре, но так слабо, что были еле видны. А спектральные линии гелия горели ярким блеском.

Так на глазах у Рамзая и Содди родился гелий.

Рождение гелия из нитона было доказано.

Сколько лет клевеиту?

Нитон превращается в гелий. А как же уран и торий? Ведь химики уже очень давно имели дело с этими металлами, и никто не заметил, что они превращаются в гелий. А если так, то нет ли какой-нибудь ошибки в утверждениях Резерфорда и Содди о том, что гелий рождается не только в нитоне, но и в уране и в тории?

Резерфорд и Содди продолжали настаивать: никакой ошибки нет. Разница между ураном и нитоном та, что нитон превращается в гелий быстро, в течение нескольких дней, а уран очень медленно. Потому-то никто до сих пор и не заметил превращения урана в гелий.

Содди взял большую колбу, наполнил ее веществами, содержащими уран, и тщательно удалил все газы, которые были растворены в этих веществах. Затем он закрыл колбу – так, чтобы никакие газы не могли проникнуть туда извне. А через год он снова исследовал содержимое колбы и обнаружил, что в ней появился гелий, которого раньше не было. Правда, гелия было очень мало – всего лишь одна десятая часть кубического миллиметра, – но для чувствительного спектроскопа и этого оказалось довольно. Содди явственно увидел желтую спектральную линию гелия. Значит, из урана тоже рождается гелий.

В колбе у Содди была тысяча граммов урана. А извлек он из колбы всего только десятую часть кубического миллиметра гелия.

Крохотный пузырек гелия – это все, что получилось из килограмма урана за год. Весит этот пузырек всего лишь одну пятидесятимиллионную долю грамма. Вот как медленно превращается уран в гелий: из каждой тонны урана ежегодно образуется всего лишь две сотых миллиграмма гелия!

Нет ничего удивительного в том, что химики до Содди не смогли заметить превращения урана в гелий. Содди заметил гелий только потому, что он его искал.

Но если уран превращается в гелий так медленно, то почему же в минералах, содержащих уран, находят иногда большое количество гелия?

Ответ ясен: потому, что эти минералы лежат в земной коре очень давно – миллионы, а то и сотни миллионов лет.

Гелий, найденный Рамзаем в клевеите, – это гелий, возникший из урана. А гелий, который извлекают из торианита, – это гелий, возникший из тория и из урана (в торианите есть и торий, и уран).

Сколько же лет пролежали в земле клевеит, торианит, фергусонит, монацит, прежде чем попали в руки человека?

Геологи не могли ответить на этот вопрос.

За них ответили физики после того, как узнали тайну рождения гелия.

Физика узнает возраст Земли

Английский физик Стретт[24]24
  Роберт Стретт – старший сын уже известного нам Джона Уильяма Рэлея – после смерти отца унаследовал его дворянский титул и стал именоваться четвертым бароном Рэлеем (первым был его прадед).


[Закрыть]
взял кусок минерала гематита. Минерал был добыт из пластов земной коры, хорошо исследованных геологами. По окаменелым остаткам животных и растений геологи давно изучили эпоху, в которую возникли эти пласты.

В Европе тогда было жарко, как теперь в тропиках. Всю Европу покрывали леса, но не такие леса, какие бывают в тропических странах в наше время, а совсем другие. Вместо лиственных деревьев в них возвышались гигантские хвощи и папоротники. В лесах было множество скорпионов, пауков и всяческих насекомых, но нельзя было бы отыскать ни одной птицы, ни одного млекопитающего. А о человеке и говорить нечего: на всем земном шаре тогда еще не было ни одного человека.


Так выглядела Земля в каменноугольную эпоху


Эту далекую эпоху геологи прозвали каменноугольной.

У них не было сомнений в том, что каменноугольная эпоха была очень давно. Но как давно? Сто тысяч лет тому назад, или миллиард лет тому назад, или триллион лет тому назад? На это геологи не могли дать ответа. Ведь людей в каменноугольную эпоху не было – значит, некому было отмечать время.

Столетия и тысячелетия шли, никем не считанные. Как же сосчитать их теперь, когда они уже давно прошли?

Стретт сумел их сосчитать. Для него это была простая арифметическая задача.

Взяв кусок гематита, выкопанный из пластов, которые возникли в каменноугольную эпоху, он исследовал его состав. Оказалось, что на каждый грамм урана в гематите приходится около двадцати кубических сантиметров гелия. А мы знаем, что в каждом грамме урана рождается в год одна десятимиллионная доля кубического сантиметра гелия. Весь этот гелий полностью должен был остаться в гематите, потому что в гематите нет трещинок и пор, по которым гелий мог бы пробраться наружу. Сколько же нужно было лет, чтобы гелия накопилось двадцать кубических сантиметров, если каждый год накопляется одна десятимиллионная часть кубического сантиметра?

Ясно, что двести миллионов лет.

Следовательно, каменноугольная эпоха была двести миллионов лет тому назад.

Стретт измерил количество гелия не только в гематите, но и в разных других минералах, оставшихся от всевозможных геологических эпох. И каждое такое измерение открывало ему новую дату истории Земли.

Он вычислил, что юрская эпоха – так называется та эпоха, когда млекопитающих еще не было[25]25
  Согласно новым представлениям ученых, тогда уже жили древние млекопитающие – далекие-далекие предки современных.


[Закрыть]
, а по воздуху летали крылатые ящеры и зубастые птицы, – была сто миллионов лет тому назад, а самая древняя эпоха – архейская, когда на Земле еще совсем не существовало животных, – была около миллиарда лет тому назад.

Миллионы и миллиарды лет гематит, уранинит, клевеит, торианит, фергусонит, монацит копили в себе гелий.

Измерив количество гелия, ученые установили хронологию Земли.

Минералы, содержащие уран и торий, стали хронометрами, по которым физики и геологи отсчитали не секунды, не минуты и не часы, а тысячелетия и миллионы лет.

Гелий на войне

Осенью 1914 года в Северной Франции шли ожесточенные бои. Французы, англичане и бельгийцы медленно отступали под напором германских армий.

Однажды на рассвете английские сторожевые самолеты заметили в небе германский цеппелин[26]26
  Цеппелин, или дирижабль, – летательный аппарат легче воздуха с корпусом, наполненным легким газом.


[Закрыть]
, который плыл прямо на них, очевидно, направляясь к Парижу. О появлении цеппелина летчики немедленно донесли в штаб, и английская зенитная артиллерия встретила неприятельский воздушный корабль зажигательными снарядами.

Зажигательные снаряды – это самое верное средство истребления дирижаблей. Как только такой снаряд попадает в оболочку дирижабля, водород, которым наполнена оболочка, мгновенно вспыхивает – и дирижабль сгорает, как солома. Из ста двадцати трех цеппелинов, построенных в Германии во время мировой войны, сорок погибло от зажигательных снарядов.

Но на этот раз цеппелин не сгорел. Снаряд пробил прорезиненную ткань оболочки, и раненый дирижабль, медленно истекая газом, поплыл обратно.

Англичане недоумевали. Водород – горючий газ, водород воспламеняется от малейшей искры. Что же произошло? Отчего водород не вспыхнул? Военные специалисты долго обсуждали удивительное происшествие, но никто не мог догадаться, в чем дело.

Загадка оставалась загадкой.

Наконец британское адмиралтейство получило письмо от химика Ричарда Трелфолла, которому удалось найти решение этой головоломки.

«Я полагаю, – писал Трелфолл, – что немцы изобрели какой-то способ добывать в большом количестве гелий и на этот раз наполнили оболочку своего цеппелина не водородом, как обычно, а гелием. Гелий – очень легкий газ, всего лишь в два раза тяжелее водорода. Значит, дирижабль, наполненный гелием, мало чем уступит в подъемной силе дирижаблю, наполненному водородом[27]27
  Многие читатели, вероятно, сочтут это рассуждение неправильным. Может ли быть, что подъемная сила гелия всего на несколько процентов меньше подъемной силы водорода? Ведь гелий тяжелее водорода в два раза!
  Но проделаем математический расчет.
  Известно, что водород в четырнадцать с половиной раз легче воздуха. Предположим, что мы наполнили оболочку дирижабля водородом такого же давления и такой же температуры, как окружающий воздух. Примем вес этого количества водорода за единицу. Это значит, что тяжесть тянет водород к земле с силой, равной 1. А окружающий воздух, по закону Архимеда, будет выталкивать тот же самый водород вверх с силой, равной 14,5 (весу вытесненного воздуха). Останется в результате подъемная сила 14,5 – 1 = 13,5.
  Если же наполнить эту оболочку не водородом, а гелием, то вес его будет равен не 1, а 2. А сила, с которой окружающий воздух стремится вытолкнуть дирижабль вверх, по-прежнему равна 14,5. Значит, подъемная сила будет равна 14,5 – 2 = 12,5, то есть на 1 меньше, чем 13,5. А единица составляет всего только 8 % от 13,5. Поэтому и подъемная сила гелия как раз на 8 % меньше подъемной силы водорода. – Прим. автора


[Закрыть]
. А в других отношениях гелий имеет огромные преимущества перед водородом. Ведь водород охотно присоединяет к себе кислород, потому-то он и воспламеняется так легко. Гелий же не соединяется ни с чем. Невозможно заставить его соединиться с кислородом – на то он и ленивый газ. Если немецкий цеппелин в самом деле был наполнен гелием, то нет ничего удивительного в том, что зажигательные снаряды не причинили ему большого вреда».

Доводы Трелфолла звучали убедительно. Но у всех, кто прочел его письмо, оставалось одно сомнение. Гелий – очень редкий газ, а на цеппелин требуется его не меньше чем пять-шесть тысяч кубических метров. Откуда же немецкие инженеры достали его так много? Может быть, они извлекли гелий из минералов, как когда-то извлек его Рамзай? Но минералы, содержащие гелий, недешевы. Неужели же немцы раздобыли десятки тысяч тонн монацита или торианита? Да в Германии и нет таких минералов. Монацитовый песок им пришлось бы ввозить из Бразилии, торианит с Цейлона, а время военное. Не нагружать же броненосцы бразильским песком!

Правда, существует другой источник гелия – воздух. Воздух, разумеется, есть и в Германии, его не надо привозить из чужих краев. Но зато в воздухе гелия очень мало. Холодильная машина системы Линде может в течение одного часа превратить несколько сот кубических метров воздуха в жидкость. Из этого жидкого воздуха можно извлечь два-три литра гелия. Два-три литра гелия в час, сколько же это составит в год? Не очень много: кубометров двадцать – двадцать пять. Чтобы наполнить небольшой цеппелин, холодильная машина Линде должна была бы работать несколько сот лет без перерыва. Можно, конечно, построить несколько сот холодильных машин и заставить их работать всего только год. Но и это не очень выгодно. Ведь машины дорого стоят; недешево обойдется и топливо, которое нужно затратить, чтобы приводить в движение насосы, качающие в машину воздух. Добыча гелия для одного цеппелина обошлась бы в огромную сумму денег. Вряд ли во время войны, когда на счету каждая копейка, немцы могли решиться на такой большой расход.

Ясно, что немцы добыли гелий как-то иначе. Значит, в природе существуют какие-то другие источники гелия, более богатые, чем воздух и минералы. Что же это за источники?

Опять ищут гелий

Британское адмиралтейство созвало совещание специалистов. Были тут и химики, и физики, и геологи. Долго обсуждали они вопрос о том, какие существуют в природе источники гелия. Наконец кто-то из них вспомнил об одной статье, которую написали в 1907 году американские химики Кэди и Макфарланд.

Кэди и Макфарланд произвели химический анализ природных газов, которые были найдены искателями нефти вблизи городка Декстер в штате Канзас.

Природными газами называются газы, бьющие из трещин земной коры. Газовые фонтаны – явление довольно обычное в тех местах, где в земле есть нефть. Большей частью это горючие газы: их можно употреблять на освещение и отопление, а можно и добывать из них разные ценные вещества – фенол, бензол, нафталин, антрацен и другие.

Кэди и Макфарланд изучили присланный им из Декстера газ. Опыты показали, что полтора процента в нем – гелий.

С тех пор и во многих других местах, богатых нефтью, химики не раз находили гелий в бьющих из-под земли природных газах.

Долгие годы никому не приходило в голову использовать гелий для практических надобностей, и потому люди не уделяли достаточного внимания газам, содержащим гелий. Но в 1914 году английские химики указали адмиралтейству, что из таких газов извлекать гелий дешевле и проще, чем из монацитовых песков и из воздуха.

Быть может, немцы добыли гелий для своего цеппелина не из природных газов, а как-нибудь иначе – установить это с полной достоверностью было нельзя, – но самая мысль о возможности добывать гелий из природных газов заинтересовала английское командование.

Адмиралтейство обратилось к химикам и геологам Англии и английских владений – Канады, Австралии, Новой Зеландии – с предложением немедленно приступить к самым тщательным поискам гелия в природных газах. Гелий приобрел неожиданную ценность. За гелием стали охотиться. Наконец канадскому физику Макленнану, исследовавшему различные нефтяные газы в Канаде, посчастливилось найти в них гелий. В 1918 году по поручению британского адмиралтейства он построил небольшой опытный завод вблизи города Гамильтон (Онтарио, Канада) для добычи гелия из природных газов. Несколько тысяч кубических метров гелия уже были готовы к отправке в Европу, когда война неожиданно прекратилась и весь этот добытый гелий оказался ненужным.

Лучший газ для дирижаблей

Только в 1930 году англичане впервые наполнили дирижабль гелием. Это был огромный дирижабль R-100.

Он вылетел из Англии в Канаду наполненный водородом, а вернулся оттуда наполненный гелием.

А как обстояло дело с драгоценным газом в других странах?

Японцы пробовали было добывать гелий из монацитовых песков в провинциях Секидамеи и Исикава, но скоро оставили эту невыгодную затею. В японском монацитовом песке оказалось очень мало гелия – так мало, что для наполнения гелием большого современного дирижабля надо было переработать больше миллиона тонн этого песка[28]28
  Японские профессора химии Танака и Нагаи, отчаявшись в возможности достать для японских дирижаблей гелий, пошли по совершенно другому пути. Они стали думать, нельзя ли прибавить к водороду такую примесь, чтобы он сделался невоспламеняемым. С помощью примесей им действительно удалось сфабриковать несгораемый водород. Но оказалось, что подъемная сила несгораемого водорода на несколько процентов меньше, чем подъемная сила гелия. Поэтому такой несгораемый водород (химики называют его флегматизованным) мало пригоден для дирижаблей. – Прим. автора


[Закрыть]
.

Немцы во время войны, как об этом правильно догадался английский химик, в самом деле добывали гелий. Но не из природных газов – газов, богатых гелием, в Германии нет.

Чтобы достать гелий, немцы пустились на хитрость: в течение нескольких лет перед войной все немецкие пароходы, возившие товары в Индию и в Бразилию, возвращались оттуда, груженные вместо обычного балласта монацитовым песком. В Германии скопилось пять тысяч тонн монацитового песка. Из этого песка немецкие химики добыли несколько тысяч кубометров гелия. Кроме того, они нашли гелий в воде минерального источника на курорте Наухейм. Из этого источника немцы ежедневно добывали семьдесят кубических метров гелия. Это составляет всего двадцать пять тысяч кубометров в год. А на большой дирижабль требовалось не меньше ста тысяч кубометров.

Гелия для военных дирижаблей не хватало. А к концу войны и наухеймский источник иссяк.

Единственное в мире государство, обильное природными источниками гелия, – это Соединенные Штаты Америки. Но добывать этот гелий для наполнения дирижаблей американцы принялись лишь после того, как вступили в войну с Германией. Еще в 1916 году во всех американских лабораториях, вместе взятых, не было даже и одной десятой части кубического метра гелия. Гелий можно было купить только в самых ничтожных количествах, да и то по баснословной цене – двести тысяч золотых рублей за кубический метр.

Только в 1917 году, после вступления Америки в войну, был построен завод для добычи гелия в городе Форт-Уорс в штате Канзас. Но война очень скоро прекратилась. Американцы, как и англичане, не успели воспользоваться гелием для военных целей. И все-таки они продолжали добывать его. А в сентябре 1923 года им наконец удалось накопить несколько десятков тысяч кубометров гелия. Этим гелием американцы наполнили дирижабль «Шенандоа».

Дирижабль «Шенандоа» некоторое время был единственным в мире гелиевым воздушным судном. Но он просуществовал недолго. В сентябре 1925 года, всего лишь через два года после того, как его впервые наполнили гелием, дирижабль «Шенандоа» был уничтожен бурей. И вместе с ним погиб весь накопленный гелий. Пятьдесят пять тысяч кубических метров драгоценного газа бесследно растеклись по воздуху.

Почти весь запас гелия, добытый к этому времени людьми на всем земном шаре, погиб во время бури, продолжавшейся полчаса.

Гибель «Шенандоа» – второго по величине дирижабля в то время – не остановила американцев. Они продолжали строить большие дирижабли, продолжали наполнять их гелием. Завод в Форт-Уорсе был расширен, и вскоре добыча гелия дошла до нескольких десятков тысяч кубометров в месяц. А в 1929 году в штате Техас, в окрестностях городка Амарилло, были найдены новые бьющие из-под земли природные газы, еще более богатые гелием, чем в Канзасе. И конгресс США постановил устроить в Амарилло второй правительственный гелиевый завод.


Дирижабль «Шенандоа»


Химики, геологи, инженеры съехались в Амарилло, чтобы изловить гелий, растекающийся по воздуху, собрать его, не позволить ему пропадать зря. Они проложили в земле газопровод длиной восемнадцать километров и через эту стальную трубу начали выкачивать насосами газовые струи, бьющие из-под земли. Они построили заводские здания и поставили в них сложные аппараты, которые очищали гелий от примесей, сжимали его до давления в полтораста атмосфер и загоняли в прочные стальные баллоны специальных вагонов-цистерн.

Через несколько месяцев в огромный воздушный порт Лейкхерст в штате Нью-Джерси стали прибывать транспорты гелия, добытые на Дальнем Западе, в новой «гелиевой столице мира» – Амарилло.


Дирижабль «Акрон»


К высокой причальной мачте лейкхерстского эллинга[29]29
  Эллинг – сооружение для постройки, хранения, технического обслуживания и ремонта дирижаблей.


[Закрыть]
слетелись воздушные суда. В теле мачты был проложен трубопровод, по которому снизу подавался гелий. Дирижабли жесткой системы, дирижабли мягкой системы, мелкие и крупные, военные и коммерческие, отяжелев после долгого плавания по воздуху, летели к лейкхерстской мачте, чтобы набрать гелия и стать легкими и подвижными, как раньше. Даже «Акрон» и «Мэкон», самые большие дирижабли в мире[30]30
  Оба дирижабля погибли во время бури. Построенный в 1932 году «Акрон» был уничтожен бурей в апреле 1933 года. Построенный в 1933 году «Мэкон» утонул в море в феврале 1935 года. – Прим. автора


[Закрыть]
, вместимостью сто восемьдесят пять тысяч кубических метров, не раз вынуждены были восстанавливать свои силы гелием из лейкхерстской мачты. Не наполнять же оболочки гигантских дирижаблей старомодным водородом! Водород ненадежен: он может вспыхнуть от случайного удара молнии. Никакая страховая компания не согласилась бы застраховать такой дирижабль, как «Акрон» или «Мэкон», если бы он был наполнен водородом. Да и пассажиров нельзя было бы уговорить полететь на таком дирижабле. Не очень-то приятно путешествовать, когда над головой висят сотни пудов легко воспламеняющегося газа. Другое дело – гелий. Он безопасен, он не хочет соединяться с кислородом, а потому не взрывается, не горит и даже не тлеет.

Есть из-за чего отправлять геологические экспедиции, строить машины для добычи благородного газа[31]31
  После того как в 1930-е годы погибло несколько крупнейших дирижаблей, строительство аэростатических летательных аппаратов (таково их научное название) надолго прекратилось. Однако позднее возросший уровень техники возродил интерес к дирижаблям. Очень уж велики преимущества этого вида транспорта – почти неограниченная грузоподъемность и вертикальный взлет. В 1987 году в США начались пассажирские полеты дирижабля нового поколения. И несущим газом по-прежнему служил гелий.
  Помимо воздухоплавания, у солнечного вещества за прошедшие десятилетия появились новые, более земные, но не менее интересные применения. Гелий, который так трудно было «заморозить», при низких температурах проявил фантастическое свойство сверхтекучести – течения без всякого трения. С помощью жидкого гелия было открыто родственное сверхсвойство – сверхпроводимость, протекание тока без всякого сопротивления.
  И все же недаром гелий впервые нашли на Солнце. О главных «неземных» событиях в биографии гелия рассказывается в послесловии «80 лет спустя. Солнечное вещество во Вселенной».


[Закрыть]
!

Судьба солнечного вещества

У гелия была судьба необыкновенная, непохожая на судьбу других веществ.

Другие вещества люди находили у себя на планете – в горных породах, в рудах, в минералах, в почве, в воде, в воздухе. Химики очищали добытые вещества от примесей, взвешивали на весах, запирали в свои реторты и колбы. Всякое новое вещество, попавшее к ним в руки, химики тщательно исследовали, чтобы убедиться, в самом ли деле оно отличается от других, прежде известных веществ.

И только у гелия была судьба иная. Гелий открыли и начали изучать задолго до того, как химикам удалось залучить его к себе в лабораторию, подержать в руках, подвергнуть опытам.

Гелий был открыт не на Земле, а на Солнце. Вряд ли кто-нибудь из пассажиров большого удобного дирижабля, наполненного безопасным газом гелием, помнил имя человека, который когда-то отправился на корабле в далекую Индию и был счастлив, впервые разглядев гелий в трубу спектроскопа на расстоянии полтораста миллионов километров от Земли.

Этому человеку поверили не сразу. На свете есть много людей, для которых существует только то, что можно потрогать руками, взвесить на весах, оценить в рублях и в копейках.

– А может быть, никакого гелия вовсе и нет на свете? – говорили скептики. – Может быть, спектроскоп ошибся, и новое вещество – это только выдумка фантазера астронома?

Прошли годы. Гелий оказался не выдумкой. Великий химик Рамзай нашел его и на Земле – в минерале клевеите и в атмосферном воздухе. Гелий уже стало возможно держать в руках, испытывать и взвешивать.

Кто же открыл гелий и его замечательные свойства? Астрономы Жансен и Локьер, химик Рамзай, физик Крукс или, может быть, Кирхгоф и Бунзен, построившие первый прибор для изучения состава небесных светил? Или, может быть, великий физик Ньютон, впервые разложивший солнечный луч на семь цветов радуги? Или Генри Кавендиш, обнаруживший в азоте таинственный пузырек – еще не разгаданную смесь аргона, неона, криптона и гелия?

Да, все они вместе, помогая друг другу, завоевали солнечное вещество. И не они одни. Разве возможно было бы завоевание гелия без инженеров и физиков, которые изобрели машину для превращения воздуха в жидкость? Без геологов, которые научились добывать солнечное вещество из недр земли? И, наконец, без тех многочисленных механиков и оптиков, которые вооружили физику точнейшими измерительными приборами?

Открытие гелия – это победа четырех наук: физики, астрономии, химии и геологии.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации