Автор книги: Майкл Кристофер Маршалл
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 5 (всего у книги 18 страниц) [доступный отрывок для чтения: 6 страниц]
Желая заняться биохимией, Оро принял решение переехать в Соединенные Штаты. Он нашел себе место в Институте Райса (переименованном позже в Университет Уильяма Марша Райса) в Хьюстоне, штат Техас, и, покинув семью, отправился туда в августе 1952 года. Следующие три года он посвятил своей диссертации, не решаясь выезжать за пределы страны из опасения, что его не впустят обратно. Но в итоге ему удалось устроиться в Хьюстонский университет и его семья тоже перебралась в США.
Получив долгожданную возможность изучать пребиотическую химию, Оро в 1960 году совершил нечто удивительное[84]84
Brack A. et al. In Memoriam: Professor Emeritus Joan “John” Orо́ (1923–2004). Origins of Life and Evolution of Biospheres, vol. 35, iss. 4, pp. 297–298. 2005.
[Закрыть]. Он получил аденин, один из ключевых компонентов ДНК[85]85
Orо́ J. Synthesis of adenine from ammonium cyanide. Biochemical and Biophysical Research Communications, vol. 2, iss. 6, pp. 407–412. 1960.
[Закрыть]. Внезапно выяснилось, что на юной Земле мог существовать еще один класс биологических молекул. Оро использовал цианистый водород[86]86
Понятие “цианистый водород”, “циановодород” и “синильная кислота” обозначают одно и то же соединение с формулой HCN. Однако “синильная кислота” существует в виде водного раствора. Далее мы будет использовать все эти понятия как в целом синонимичные. – Прим. перев.
[Закрыть], молекула которого состоит из трех атомов: по одному атому водорода, углерода и азота. Он смешал это вещество с гидрохлоридом аммония и получил цианид аммония, который затем нагревал до 90 °C в течение 24 часов. Далее Оро удалил примесь черной смолы и смешал оставшееся с соляной кислотой – той самой кислотой, что содержится в желудке. В итоге образовалось небольшое количество аденина. Следует отметить, что установка Оро сильно отличалась от той, которая служила Миллеру моделью моря и атмосферы. Работа на установке Оро проходила в несколько этапов, и для нее требовались более изощренные реагенты.
Два из использованных Оро веществ (формальдегид и цианистый водород) позднее будут использованы в сотнях других подобных синтезов[87]87
Ferris J. P. et al. HCN: A plausible source of purines, pyrimidines and amino acids on the primitive Earth. Journal of Molecular Evolution, vol. 11, iss. 4, pp. 293–311. 1978.
[Закрыть]. Оба соединения связаны со смертью: формальдегид веками применялся для бальзамирования трупов, а синильную кислоту в виде Циклона Б использовали нацисты для умерщвления людей в промышленных масштабах. Удивительно, что именно они сыграли решающую роль в поиске ответа на вопрос о зарождении жизни.
В конце 1960-х годов Оро заинтересовался другими планетами и начал изучать органические соединения, обнаруженные в метеоритах. Он предположил, что необходимые для зарождения жизни вещества присутствовали в породах, из которых исходно состояла Земля[88]88
Orо́ J. Studies in experimental organic cosmochemistry. Annals of the New York Academy of Sciences, vol. 108, iss. 2, pp. 464–481. 1963.
[Закрыть]. После того как в Испании была восстановлена демократия, Оро вернулся в родную страну. Он умер от рака в 2004 году, появившись незадолго до смерти на испанском телевидении и в нескольких словах объяснив свое к ней спокойное отношение: “Мы всего лишь звездная пыль… Я счастлив вернуться обратно к звездам”[89]89
Eaude M. Obituary: Joan Orо́. Guardian, 9 September 2004.
[Закрыть].
Примерно в то же время, когда Оро публиковал свои первые результаты, в игру включился Сирил Поннамперума. Он, как и Оро, родился в 1923 году, только не в Испании, а в городе Галле на принадлежавшем Британии острове Цейлон (сейчас это Шри-Ланка)[90]90
Sullivan W. Cyril Ponnamperuma, Scholar of Life’s Origins, Is Dead at 71. New York Times, 24 December 1994, p. 10.
[Закрыть]. Став для начала бакалавром философии, молодой человек увлекся химией – в частности потому, что понадеялся на более стабильный заработок. После переезда в 1962 году в Соединенные Штаты Поннамперума занялся в Исследовательском центре NASA, Калифорния, экзобиологией (наукой о гипотетической внеземной жизни). Как и Оро, он добился известности благодаря синтезу ключевых биологических молекул, а позже углубился еще и в проблему освоения космоса[91]91
Navarro-González R. In Memoriam: Cyril Andrew Ponnamperuma, 1923–1994. Origins of Life and Evolution of the Biosphere, vol. 28, iss. 2, pp. 105–108. 1998.
[Закрыть].
Его главное достижение относится к 1963 году – тогда Поннамперума получил аденозинтрифосфат (АТФ)[92]92
Ponnamperuma C. et al. Synthesis of Adenosine Triphosphate under Possible Primitive Earth Conditions. Nature, vol. 199, pp. 222–226. 1963.
[Закрыть]. По своей химической структуре это вещество похоже на аденин, синтезированный Оро. Молекула АТФ содержит в себе аденин, который соединен с сахаром-рибозой, а к ней уже прикреплена цепочка из трех остатков фосфорной кислоты. АТФ был открыт в 1929 году, но его огромное биологическое значение стало понятно лишь ближе к 1940-м[93]93
Maruyama K. The discovery of adenosine triphosphate and the establishment of its structure. Journal of the History of Biology, vol. 24, iss. 1, pp. 145–154. 1991.
[Закрыть]. Эта молекула представляет собой химическую “батарейку”: получаемую из пищи энергию организм хранит в форме АТФ и использует по мере надобности.
Поннамперума был научным руководителем молодого ученого по имени Карл Саган, который позже прославился благодаря телесериалу “Космос”[94]94
Sagan C. Cosmos. 1980. Macdonald Futura.
[Закрыть]. Но наш рассказ относится ко времени, когда Сагану не было еще и тридцати. Тогда он как раз разводился со своей первой женой, микробиологом Линн Маргулис. Причиной развода стало чрезмерное увлечение Сагана собственной карьерой, мешавшее ему воспитывать двоих детей. Из-за этой истории едва не пострадала карьера самой Маргулис[95]95
Spangenburg R., Moser K. Carl Sagan: A biography. 2004. Greenwood Publishing Group.
[Закрыть], однако в итоге ей удалось войти в число виднейших биологов XX столетия[96]96
Каким образом? Потерпите до 6 главы.
[Закрыть].
Написав под руководством Юри бакалаврскую работу о возникновении жизни, Саган решил и дальше заниматься этой темой. Он предположил, что смесь аденина, сахаров и фосфатов могла образовать АТФ – если при этом не экономить на ультрафиолетовом излучении. Лаборантка Рут Маринер провела большую часть таких экспериментов и сумела получить некоторое количество АТФ. Это был большой успех, однако вскоре подоспела и критика: сомнения вызывало то, могла ли концентрация фосфатов быть настолько высокой на юной Земле.
Тем временем Миллер тоже продолжал свои исследования. К 1980-м он стал очень авторитетен и весьма охотно брался оценивать (особенно критиковать) любые предложенные ему новые идеи. Однако его карьера оборвалась в 1999 году, когда серия инсультов лишила его способности говорить. В итоге Миллер оказался в доме престарелых. Здесь его часто навещал Джеффри Бада, который в 1965–1968 годах написал под руководством Миллера диссертацию и позднее стал его сотрудником. Врач пытался заново научить Миллера выводить отдельные буквы, и пациент очень огорчался своим неудачам. Тогда Бада предложил Миллеру изобразить структуру метана, и последний, к изумлению присутствующих, уверенно и правильно написал “CH4”. Во всяком случае, часть его обширных знаний после инсульта уцелела.
И хотя карьера Миллера подошла к концу, его эксперименты в скором времени внезапно получили новую жизнь. В 2007 году надо было освободить его прежнюю лабораторию, а Миллер хранил там многие образцы, включая и полученные им в ходе первых опытов. Ученый тогда уже стал глубоким инвалидом, потерявшим способность говорить и понимать обращенную к нему речь. Но однажды, незадолго до смерти, Миллера навестил Бада и показал ему одну из маленьких коробочек. В этот момент Миллер широко раскрыл глаза, словно что-то вспомнив.
Бада и его сотрудники провели повторный анализ с применением современных методик и установили, что Миллер на самом деле синтезировал больше различных аминокислот, чем предполагали, хотя и в совсем маленьких количествах. В одном из своих экспериментов, желая воспроизвести условия извержения вулкана в очень влажной среде, он немного изменил установку: одна из стеклянных трубок была тоньше, из-за чего через электрические разряды приходило больше пара[97]97
Brahic C. Volcanic lightning may have sparked life on Earth. New Scientist, 16 October 2008.
[Закрыть]. Такая модификация эксперимента позволила получить 22 разные аминокислоты, включая те, что не встречаются в современных белках[98]98
Johnson A. P. et al. The Miller volcanic spark discharge experiment. Science, vol. 322, iss. 5900, p. 404. 2008.
[Закрыть]. Исходно предполагалось, что извержения вулканов выполняли на древней Земле роль химических заводов, производящих органические молекулы.
Еще любопытнее то, что в 1958 году Миллер пробовал использовать цианамид. Это белая пудра, похожая на муку, которую определенно не стоит совать в рот. Цианамид – очередная простая молекула, состоящая всего из пяти атомов: углерода, двух азотов и двух водородов. Тем не менее такое неприметное химическое вещество, вероятно, позволило Миллеру получить важные биологические молекулы – белки. Дело в том, что цианамид вызывает дегидратацию, то есть отнимает воду у других химических веществ. К реакциям дегидратации относится и синтез нуклеиновых кислот, в частности ДНК или белков из аминокислот. Когда команда Бада исследовала образцы с цианамидом, она обнаружила добрую дюжину аминокислот, причем некоторые из них к тому же оказались соединены попарно[99]99
Parker E. T. et al. A plausible simultaneous synthesis of amino acids and simple peptides on the primordial Earth. Angewandte Chemie, vol. 53, iss. 31, pp. 8132–8136. 2014.
[Закрыть].
Никто не знал, почему Миллер не опубликовал эти результаты, – ведь эта его идея оказалась пророческой. В целом потоке статей 1977 года Оро продемонстрировал, что именно цианамид позволяет синтезировать множество органических молекул, в том числе простые белки[100]100
Sherwood E., Orо́ J. Cyanamide mediated syntheses under plausible primitive Earth conditions. Part I. The syntheses of p1, p2-dideoxythymidine 5’-pyrophosphate. Journal of Molecular Evolution, vol. 10, iss. 3, pp. 183–192. 1977.
Sherwood E. et al. Cyanamide mediated syntheses under plausible primitive Earth conditions. II. The polymerization of deoxythymidine 5’-triphosphate. Journal of Molecular Evolution, vol. 10, iss. 3, pp. 193–209. 1977.
Nooner D. W. et al. Cyanamide mediated syntheses under plausible primitive Earth conditions. III. Synthesis of peptides. Journal of Molecular Evolution, vol. 10, iss. 3, pp. 211–220. 1977.
Eichberg J. et al. Cyanamide mediated syntheses under plausible primitive Earth conditions. IV. The synthesis of acylglycerols. Journal of Molecular Evolution, vol. 10, iss. 3, pp. 221–230. 1977.
Epps D. E. et al. Cyanamide mediated syntheses under plausible primitive Earth conditions. V. The synthesis of phosphatidic acids. Journal of Molecular Evolution, vol. 11, iss. 4, pp. 279–292. 1978.
[Закрыть]. Позднее (в главе 14) мы увидим, что цианамид имеет куда большее значение, чем Миллер мог себе вообразить.
Хотя финал этой истории и радует, однако в первое десятилетие после основополагающего эксперимента Миллера все это, по-видимому, не было так уж важно. Шла своего рода “борьба за химию”, хорошей иллюстрацией чему служит тот скептицизм, с которым встретили синтез АТФ Поннамперумой и Саганом. Тогда же возникли споры и о природе атмосферы юной Земли, и о том, можно ли всерьез относиться к поэтапному синтезу в пребиотических условиях.
Однако куда важнее оказались события 1950-х и 1960-х. Открытие структуры ДНК стало огромным прорывом в понимании того, как работают живые клетки. Выяснилось, что жизнь неизмеримо сложнее, чем Опарин, Холдейн и Миллер могли себе представить в 1953 году, и что получение некоторых аминокислот и других органических компонентов первичного бульона вовсе не равно объяснению зарождения жизни. То есть тогда был сделан лишь первый шаг на пути, который оказался неожиданно долгим.
Часть II
Странные сущности
Живые организмы – это странные сущности, что в той или иной мере наверняка осознавали люди разных эпох.
Жакоб Моно,
Глава 4
Революция ДНК
Если мы хотим разобраться с тем, как возникла жизнь, нам прежде всего следует понять, как она устроена. В начале XX века биологи, скорее всего, такими знаниями еще не обладали. Когда в 1920-е годы Опарин впервые вообразил капли желе в древнем океане, научные представления о внутренней жизни клетки были очень ограниченными. В те времена еще можно было рисовать себе клетку бактерии в виде мешочка, наполненного ферментами и другими веществами и устроенного не слишком сложно, хотя и занятого кипучей деятельностью. Однако эпохальные открытия следующих десятилетий показали, что работой клетки управляет чрезвычайно тонкая и сложная регуляция. Особенно важным стало открытие структуры и механизмов работы ДНК. Биохимики узнавали о ведущей роли ДНК в устройстве молекулярной машинерии всякой живой клетки чем дальше, тем больше, однако же понять, как вся эта конструкция возникла исходно, оказалось отнюдь не просто.
Сейчас ДНК очень популярна. При упоминании этих трех букв на ум приходит целый сонм образов и ассоциаций: изящная структура самой молекулы, вопросы наследственности и родительства, генетические заболевания, мутации, вызванные радиацией, но, возможно, также и “дизайнерские дети”, и пугающие истории вроде “Не отпускай меня” и “Гаттака”. Иными словами, представления о генах, которые состоят из ДНК, вошли в нашу речь и культуру.
Для большинства биологов огромная роль ДНК стала полной неожиданностью, поскольку всю первую половину XX века они считали эту молекулу чем-то второстепенным. ДНК казалась слишком простой для того, чтобы служить хранилищем генетической информации. Именно поэтому многие ученые связывали гены с молекулами посложнее – с белками[102]102
Более подробно мы рассмотрим белки в главе 7.
[Закрыть].
Первым вещество, которое сейчас назвали бы ДНК, начал изучать швейцарский биолог Фридрих Мишер, который в 1868 году работал в Тюбингенском университете (сейчас это земля Баден-Вюртемберг ФРГ, а тогда Тюбинген входил в Королевство Вюртемберг)[103]103
Dahm R. Discovering DNA: Friedrich Miescher and the early days of nucleic acid research. Human Genetics, vol. 122, iss. 6, pp. 565–581. 2008.
[Закрыть]. Пытаясь идентифицировать химические вещества из белых кровяных телец, полученных из гноя с хирургических повязок, Мишер обнаружил нечто неожиданное: неизвестный субстрат молочно-белого цвета, напоминающий комки шерсти. Исходно он находился в ядре клетки (лат. nucleus) – в ее округлой и более темной части. Мишер назвал это белое вещество “нуклеином” и в 1871 году опубликовал результаты своих исследований[104]104
Miescher F. Ueber die chemische Zusammensetzung der Eiterzellen. Medicinisch-chemische Untersuchungen, vol. 4, pp. 441–460. 1871.
[Закрыть].
Мишер изучал нуклеин в общей сложности четверть века. Он выяснил, что это соединение содержит углерод, азот, кислород и фосфор. А еще нуклеин проявлял свойства кислоты и потому со временем был переименован в “нуклеиновую кислоту”. Оказалось, что этой кислоты особенно много в головках сперматозоидов, что не могло не навести на мысль о наследственности. Но Мишеру и его коллегам даже в голову не пришло, что передачу генетических признаков способно осуществлять всего одно соединение. Опять-таки – ДНК казалась им слишком просто устроенной. Читать рассуждения Мишера, зная развязку всей этой истории, очень досадно, ведь он был так близок к разгадке.
Немецкий биохимик Альбрехт Коссель, вдохновившись работами Мишера, посвятил значительную часть своей карьеры разделению нуклеиновой кислоты на компоненты. За период с 1885 по 1901 год он сам и его студенты выяснили, что ДНК образована из пяти разных веществ меньшего размера. Сейчас мы называем их “нуклеотиды”: аденин, цитозин, гуанин, тимин и урацил[105]105
Jones M. E. Albrecht Kossel, a biographical sketch. The Yale Journal of Biology and Medicine, vol. 26, iss. 1, pp. 80–97. 1953.
[Закрыть].
Но, пожалуй, самый большой вклад в изучение нуклеиновой кислоты внес (заодно “подстегнув” пренебрежительное отношение к ней ученых) биохимик Фебус Левин. Он родился на территории современной Литвы, однако в начале 1890-х его семья, спасаясь от еврейских погромов, была вынуждена переехать в США. Этот худощавый невысокий человек, имевший привычку носить чрезвычайно потрепанную шляпу, владел дюжиной языков, играл на скрипке и, несмотря на довольно слабое здоровье, работал как проклятый.
Так вот, Левин выяснил, что нуклеиновую кислоту можно разделить на более мелкие молекулы, называемые нуклеотидами[106]106
Tipson R. S. Obituary: Phoebus Aaron Theodor Levene, 1869–1940. Advances in Carbohydrate Chemistry, vol. 12, pp. 1–12. 1957.
[Закрыть]. Каждый нуклеотид состоит из трех частей: азотистого основания, остатка сахара и фосфата. Стало быть, нуклеиновая кислота представляет собой соединенные в цепочку нуклеотиды.
Более того: оказалось, что нуклеиновых кислот на самом деле две – они отличаются друг от дружки тем, какой именно сахар в них присутствует. Выходило, что “нуклеиновая кислота” Мишера – это смесь из двух компонентов, а не одно вещество. В одной из двух нуклеиновых кислот присутствует сахар рибоза, поэтому Левин назвал ее рибонуклеиновой (РНК). Другая же содержит дезоксирибозу, которая очень похожа на рибозу, но все-таки имеет некоторые отличия – это уже дезоксирибонуклеиновая кислота (ДНК).
Второе различие ДНК и РНК касается состава нуклеотидов. Обе молекулы содержат аденин, цитозин и гуанин – но если в состав ДНК входит также тимин, то в РНК его заменяет урацил.
К несчастью, одно из предположений Левина было неверным. Установив, что четыре основания ДНК всегда присутствуют в равных количествах, он сделал из этого вывод, что такая простая молекула с повторяющейся однообразной структурой никак не может служить носителем генетической информации.
Первый шаг на пути к пониманию того, что гены находятся именно в ДНК, сделал британский микробиолог Фредерик Гриффит – причем сделал его благодаря чистой случайности. В 1920-х годах он исследовал бактерию под названием Streptococcus pneumoniae, которая вызывала смертельную вторичную инфекцию у заболевших гриппом (так называемой испанкой) в эпидемию 1918 года. Гриффит заметил, что этот микроб имеет две формы: способный вызывать инфекцию штамм с гладкой поверхностью и безвредный штамм с шероховатой поверхностью. Когда ученый убил гладкие бактерии, они, как и следовало ожидать, оказались лишенными способности к инфекции. Однако когда он смешал мертвые гладкие бактерии с живыми шероховатыми, вторые приобрели способность вызывать смертельную инфекцию и передавать это свойство своим потомкам. Переносящее в этом случае свойство заразности начало (сейчас мы назвали бы его “ген”) перешло от погибшей гладкой бактерии к живой шероховатой. Но Гриффит, проявив чрезмерную осторожность, опубликовал в 1928 году этот свой выдающийся результат в одном малоизвестном журнале[107]107
Griffith F. The significance of pneumococcal types. Journal of Hygiene, vol. 27, iss. 2, pp. 113–159. 1928.
[Закрыть].
К счастью, нашелся человек, который подхватил эту идею и дал ей новую жизнь. Им стал Освальд Эвери из Рокфеллерского университета в Нью-Йорке. Невысокий очкарик, Эвери страдал от гипертиреоза, из-за чего глаза у него были выпучены – пока в 1934 году ему не удалили щитовидную железу. В 1930-х и 1940-х годах команда Эвери повторила эксперимент Гриффита и смогла идентифицировать то самое начало. Ученые скрупулезно разрушали или удаляли все “подозреваемые” вещества – но остающиеся компоненты смеси по-прежнему передавали смертоносное свойство бактериям. Все изменилось только при добавлении разрушающих ДНК ферментов. Стало быть, именно она хранит в себе гены. “Кто бы мог подумать?” – напишет Эвери в письме своему брату. В 1944 году ученые опубликовали соответствующую статью[108]108
Avery O. T. et al. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: Induction of transformation by a deoxyribonucleic acid fraction isolated from Pneumococcus Type III. Journal of Experimental Medicine, vol. 79, iss. 2, pp. 137–158. 1944.
[Закрыть]. Однако, невзирая на все старания Эвери, эти результаты не получили всеобщего признания – его эксперименты сочли выполненными недостаточно тщательно.
Принято считать, что конец этим спорам положил эксперимент, проведенный Альфредом Херши и Мартой Чейз из Института Карнеги в Вашингтоне. Они исследовали просто устроенные вирусы, состоящие только из ДНК и белков[109]109
Hershey A. D., Chase M. Independent functions of viral protein and nucleic acid in growth of bacteriophage. Journal of General Physiology, vol. 36, n. 1, pp. 39–56. 1952.
[Закрыть]. Этим вирусам[110]110
Вирусы, инфицирующие бактерии, называют бактериофагами. – Прим. перев.
[Закрыть] для размножения необходимо сначала заразить бактерию. Херши и Чейз выяснили, что большая часть ДНК вируса проникает в бактерию, в то время как почти все белки остаются снаружи. Это подтверждало решающую роль в инфекции именно ДНК. Хотя эксперимент был менее убедителен, чем тот, что проделал Эвери (поскольку Херши и Чейз не слишком хорошо удалили примеси), для многих именно он стал решающим аргументом. Их статья вышла в сентябре 1952 года и положила начало увлекательной гонке, главным призом в которой были структура ДНК и механизмы ее работы.
Первым на старт вышел Морис Уилкинс, физик, отметившийся в Манхэттенском проекте и с отвращением оставивший эту область науки после уничтожения Хиросимы и Нагасаки. В книге “Величайшая тайна жизни” (Life Greatest Secret) Мэтью Кобб описывает его как “тихого и скрытного человека со странной привычкой отворачиваться от своего собеседника при разговоре” и даже “со склонностью к суицидальным мыслям”[111]111
Cobb M. Life’s Greatest Secret. 2015. Profile Books.
[Закрыть]. Уилкинс провел вторую половину 1940-х, изучая ДНК в Королевском колледже Лондона. Для выяснения структуры этой молекулы Уилкинс использовал метод рентгеновской кристаллографии. Он предполагает воздействие рентгеновским излучением на образец ДНК, из-за чего лучи отклоняются в разных направлениях. Получаемая в результате картина рассеяния позволяет судить о форме молекулы, однако интерпретировать ее чертовски сложно.
В 1950 году Джон Рендалл (начальник Уилкинса) нанял нового кристаллографа, Розалинд Франклин. Рендалл сразу внес путаницу, сообщив Франклин в письме, что ей якобы предстоит самой заниматься всеми исследованиями, связанными с ДНК. В результате вернувшийся из отпуска Уилкинс очень расстроился при виде Франклин, которая усердно изучала его любимый объект. Это недоразумение легко было исправить, но, к сожалению, никто из действующих лиц не блистал навыками работы в команде. Если Уилкинс был тихим и спокойным, то Франклин отличалась напористостью и даже резкостью.
Ко всему прочему Франклин пришлось столкнуться с проявлениями сексизма. Есть разные мнения о том, насколько велика была эта проблема. Подруга Франклин Анна Сейр, написавшая ее биографию, сообщает, что женщин-ученых редко нанимали на работу и что им приходилось обедать в отдельной от мужчин комнате[112]112
Sayre A. Rosalind Franklin and DNA. 1975. W. W. Norton & Company.
[Закрыть]. Однако эти подробности вызывают сомнения. Другие полагали тот отдел, где трудилась Франклин, более лояльным к женщинам в сравнении с остальной частью Королевского колледжа Лондона[113]113
Maddox B. Rosalind Franklin: The Dark Lady of DNA. 2002. HarperCollins.
[Закрыть]. И все же проблемы явно были: женщины не могли наравне с мужчинами пить послеобеденный кофе в комнате для курения, а стало быть, и участвовать в самых важных обсуждениях[114]114
Elkin L. Rosalind Franklin and the double helix. Physics Today, vol. 56, iss. 3, p. 42. 2003.
[Закрыть].
Третьим в этой не слишком благополучной команде стал Джеймс Уотсон, защитивший свою диссертацию в 22 года. Исследования ДНК привлекали Уотсона с тех пор, как он узнал об эксперименте Херши и Чейз и услышал доклад Уилкинса, в ходе которого тот показал рентгеновские снимки кристаллов ДНК. В итоге Уотсон оказался в Кавендишской лаборатории Кембриджского университета, где он делил кабинет с Фрэнсисом Криком, очередным бывшим-физиком-ныне-биологом. Крику было за тридцать, однако диссертацию он еще не защитил. Его предыдущий проект был прерван войной, а конкретнее – бомбой, пробившей потолок лаборатории и уничтожившей все оборудование[115]115
Rich A., Stevens C. F. Obituary: Francis Crick (1916–2004). Nature, vol. 430, iss. 7002, pp. 845–847. 2004.
[Закрыть]. Уотсон и Крик, можно сказать, нашли друг друга. Оба были настроены решительно и планировали узнать структуру ДНК первыми, причем желательно без проведения каких-либо экспериментов.
Итак, все участники вышли на старт и гонка началась.
21 ноября 1951 года Франклин получила несколько новых снимков ДНК, из которых следовала спиральная форма молекулы, а также то, что ДНК может иметь несколько цепочек, направленных в противоположные стороны. Уотсон присутствовал на докладе Франклин, но ничего не записывал и вместо этого, по его собственному признанию, разглядывал саму докладчицу. В результате он смог пересказать доклад Крику лишь в очень сокращенном варианте, что и привело к печальному итогу: предложенная этим дуэтом первая модель ДНК оказалась совершенно неправильной. Это были три цепочки из сахаров и фосфатов, переплетенные между собой и образующие спираль, из которой наружу, словно шипы, торчали азотистые основания. Авторы данной модели попали в очень неловкое положение, когда пригласили Франклин и Уилкинса и показали им свое детище. Франклин с ходу объяснила, почему такая модель не может соответствовать данным рентгеноструктурного анализа.
Весь 1952 год работа почти не двигалась с места. Франклин продолжала делать все новые рентгеновские снимки, но в итоге вынуждена была признать, что в одном Уотсон и Крик таки правы: ДНК – это действительно нечто спиральной формы с неизвестным количеством цепочек. Что касается самих Крика и Уотсона, то они большую часть 1952-го занимались другими делами и вернулись к работе только в январе 1953 года, когда узнали, что одна американская исследовательская группа заявила, будто разгадала структуру ДНК. Впрочем, дуэт вздохнул с облегчением, услышав, что предложенная американцами модель оказалась ошибочной.
Итак, Уотсон приезжает в Королевский колледж. В очередной раз поссорившись с Франклин, заходит в кабинет к Уилкинсу. А тот демонстрирует ему последний снимок Франклин, особенно отчетливо показывающий спиральную форму ДНК. И тут мы добираемся до самого противоречивого момента во всей истории. Вероятно, Уилкинсу все же не стоило давать это изображение Уотсону. По крайней мере – не спросив для начала разрешения у Франклин. Тем более что потом Крик еще и увидел отчет с подробно описанными результатами Франклин за 1951 год. Все это в совокупности убедило его в том, что ДНК и вправду состоит из двух цепей, направленных в противоположные стороны. Ну, а в феврале Уотсон выяснил, как связаны в этой спирали четыре азотистых основания: аденин спаривается только с тимином, а цитозин – исключительно с гуанином. Это оказалось чрезвычайно важно, поскольку объясняло способность ДНК копировать себя, одновременно сохраняя последовательность в неизменном виде. Теперь дуэту Уотсона и Крика предстояло создать на основании этого интуитивного понимания строгую модель. И тут они обошли как давно буксующего Уилкинса, так и находящуюся у самого финиша Франклин, работа которой имела настолько важное значение.
Разгаданная наконец структура ДНК поражает своей простотой. Она содержит две цепочки, закрученные друг относительно друга, словно волокна в канате или две винтовые лестницы, ведущие в противоположные стороны. Каждая такая цепочка состоит из чередующихся остатков сахара и фосфатов. Цепочки удерживают вместе связи между основаниями в паре: аденином и тимином либо цитозином и гуанином. Наглядным будет и сравнение с пожарной лестницей, в которой пары оснований служат перекладинами. Вот только такая пожарная лестница еще и закручена вокруг своей оси так, что стала спиралью.
Свою статью Уотсон и Крик заканчивают дерзким и подзадоривающим заявлением: “Мы не можем не отметить, что принятое нами за основу утверждение о специфичном образовании пар оснований напрямую указывает на возможный механизм копирования генетической информации”. Мысль, которая пришла им на ум и которую они не дали себе труда сформулировать, – это мысль о том, что ДНК способна разделяться на две отдельные цепочки. Далее каждая из них может захватывать проплывающие мимо нуклеотиды. Вновь образующиеся цепочки всегда будут иметь правильную последовательность из соответствующих друг другу пар нуклеотидов – иначе они просто не смогли бы встроиться в нее.
Описание структуры ДНК Уотсоном и Криком было опубликовано в апрельском номере журнала Nature[116]116
Watson J. D., Crick F. H. C. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature, vol. 171, pp. 737–738. 1953.
[Закрыть]. Эта короткая заметка сопровождалась статьями Уилкинса и Франклин, которые описывали результаты рентгеновской кристаллографии[117]117
Wilkins M. H. F. et al. Molecular structure of nucleic acids: Molecular structure of deoxypentose nucleic acids. Nature, vol. 171, pp. 738–740. 1953.
Franklin R. E., Gosling R. G. Molecular configuration in sodium thymonucleate. Nature, vol. 171, pp. 740–741. 1953.
[Закрыть]. Каким бы сложным и в чем-то даже сомнительным ни выглядел рабочий процесс выяснения структуры ДНК, итогом его стало одно из самых выдающихся научных открытий в истории. Ученые “сорвали маску” с молекулы, находящейся в основе всей наследственности. Сделанное открытие пролило свет на то, как именно живые организмы передают признаки своим потомкам. Теперь всякая гипотеза о возникновении жизни должна была объяснять и возникновение ДНК.
Однако журналисты практически проигнорировали это открытие. И если опубликованное несколькими месяцами ранее исследование Миллера было буквально разнесено по различным СМИ, то работе Уотсона, Крика, Франклин и Уилкинса пресса уделила лишь малую толику внимания. Со временем, впрочем, оно все же получило должную оценку: Крик, Уотсон и Уилкинс разделили Нобелевскую премию 1962 года по физиологии и медицине[118]118
www.nobelprize.org/prizes/medicine/1962/summary/
[Закрыть]. Франклин же, к сожалению, умерла от рака яичника четырьмя годами ранее, в возрасте тридцати семи лет.
Если обратиться к историческому контексту открытия Уотсона и Крика, то станет понятно: эта идея, можно сказать, витала в воздухе. Оба ученые прислушались к рассуждениям физика Эрвина Шрёдингера[119]119
Да-да, того самого Шрёдингера с котом, то есть с мысленным экспериментом о коте и коробке. В действительности этот эксперимент скорее иллюстрирует то, что Шрёдингер плохо знал кошачий нрав. В противном случае ему было бы известно, что силком поместить кота в коробку попросту невозможно.
[Закрыть], который в 1944 году в своей книге “Что такое жизнь?” (What is Life) предположил, что генетическая информация должна храниться в своего рода “апериодическом кристалле”. Имеется в виду кристалл с изменчивой структурой – в противоположность обыкновенному кристаллу, где расположение атомов строго определено: они чередуются в правильном порядке[120]120
Schrödinger E. What Is Life? The physical aspect of the living cell. 1944. Cambridge University Press.
[Закрыть]. Аналогично советский ученый Николай Кольцов в 1927 году предположил существование “генетических молекул”, имеющих “две зеркальные цепочки, которые способны копировать себя”[121]121
Soyfer V. The consequences of political dictatorship for Russian science. Nature Reviews Genetics, vol. 2, iss. 9, pp. 723–729. 2001.
[Закрыть]. Однако его идеи не получили признания, а сам Кольцов, обличенный Лысенко, был в 1940 году отравлен советскими спецслужбами. Уотсон и Крик скорее всего просто не знали о его трудах[122]122
Haldane J. B. S. A physicist looks at genetics. Nature, vol. 355, pp. 375–376. 1945.
[Закрыть].
Итак, структура ДНК была установлена, и перед биохимиками возникла новая проблема. Им предстояло выяснить, для чего эта молекула нужна в клетке. Что за сообщение содержит в себе последовательность нуклеотидов? Ответ на это дал тот же Крик: это инструкция, необходимая для производства белков, – одних из самых распространенных и важных биологических молекул. Определяя то, какие именно белки нужно синтезировать, ДНК контролирует и внутреннюю жизнь клетки. Мы присмотримся к белкам повнимательнее в главе 7, а пока просто скажем, что белки представляют собой цепочки из аминокислот. Все живое построено из 22[123]123
В стандартном генетическом коде 20 аминокислот. Две дополнительные аминокислоты – селеноцистеин и пирролизин – кодируются более сложным образом и есть далеко не у всех организмов. Например, пирролизин вообще есть только у части архей. – Прим. науч. ред.
[Закрыть] аминокислот, однако они объединяются в последовательности длиной в сотни отдельных аминокислотных остатков, примерно как буквы в слове “пневмоноультрамикроскопикосиликовулканокониоз”[124]124
Шутливое английское слово pneumonoultramicroscopicsilicovolcanoconiosis – пример чего-то излишне длинного и сложного. – Прим. перев.
[Закрыть]. Каким-то образом эти четыре основания ДНК кодируют нужную последовательность из аминокислот.
Возникла задача “взломать” этот генетический код[125]125
Об этом можно спорить, но, видимо, речь тут, скорее, должна идти не о коде, а о шифре. Код работает на уровне значения или смысла – скажем, замена слово “лиса” на соответствующий эмодзи представляет собой пример кода. Шифр же являет собой простую замену или соединение отдельных букв. Если вы поменяете каждую очередную букву в слове на следующую за ней по алфавиту, превратив слово “кот” в слово “лпу”, то это будет примером шифра, но не кода. К сожалению, подобные рассуждения едва ли помогут вам впечатлить друзей на вечеринке.
[Закрыть]. По сути, впрочем, это не одна, а две отдельные задачи: расшифровка находящегося в ДНК послания и выяснение механизмов, с помощью которых это послание используется для синтеза белков. Далеко не все из занятых этими проблемами ученых интересовались еще и зарождением жизни. Зато те, которые интересовались, настороженно следили за развитием событий. Они знали, что теперь им придется объяснять, как впервые возникла система из работающих вместе ДНК и белка.
Каким образом ДНК кодирует последовательность аминокислот в белке? Это несколько напоминает перевод с одного языка на другой, причем каждый из языков пользуется собственным алфавитом. “Алфавит” ДНК состоит из азотистых оснований: ее цепочки как раз и состоят из связанных нуклеотидов. Существует всего четыре основания, которые можно считать своего рода “буквами” ДНК. A – это аденин, C – цитозин, T – тимин и G – гуанин. Однако в “алфавите” белков аминокислотных “букв” уже 22. Требовалось понять, как именно всего четыре буквы “алфавита” ДНК умудряются кодировать все 22 буквы “белкового алфавита”.
Самая простая модель предполагает, что каждое азотистое основание кодирует одну определенную аминокислоту. Но такой вариант совершенно неприемлем, поскольку в этом случае возможно закодировать информацию только о четырех аминокислотах из 22. Напротив, каждую аминокислоту можно представить как короткую последовательность из оснований. Однако какую длину она должна иметь? Пары оснований вроде AC или TG тоже не сгодятся, поскольку таких комбинаций всего 16 (4 умножить на 4), что опять-таки меньше числа аминокислот. Сочетаний из трех азотистых оснований существует уже 64, намного больше, чем требуется, но по-другому представить этот код оказалось невозможно. Идея, что ДНК использует трехбуквенные последовательности (так называемые триплеты), стала предметом долгих дискуссий, но в итоге оказалась правильной.
Одним из первых это понял советский физик Георгий Гамов, который больше известен как один из создателей теории Большого Взрыва – концепции начала Вселенной. В 1954 году Гамов выпустил небольшую статью, в которой изложил идею о том, что основания ДНК являются шифром[126]126
Gamow G. Possible relation between deoxyribonucleic acid and protein structures. Nature, vol. 173, p. 318. 1954.
[Закрыть]. Он рассматривает белки как “длинные слова, «составленные из алфавита с 20 буквами»”, и задается вопросом о том, как “четырехзначные числа могут быть переведены в форму таких «слов»”.
Позднее Гамов основал эксцентричное общество под названием “Клуб РНКовых галстуков”. Оно было поименовано в честь молекулы-ближайшего родственника ДНК и намеревалось расшифровать генетический код. Членами Клуба стали и Уотсон с Криком – наряду с двадцатью другими людьми, каждому из которых выделялась собственная личная аминокислота и вручался вязаный галстук с изображением молекулы РНК. Значительную часть своих заседаний это общество посвящало “мозговым штурмам”, далеко не всегда происходившим на трезвую голову.
К сожалению, представления Гамова о химических основах процесса оказались неверны. Считая, что белки собираются непосредственно на ДНК, он предположил, что аминокислоты с помощью механизма “ключа и замка” проникают в зазор между нуклеотидами. Однако уже тогда было понятно, что белки не собираются на самой ДНК. Первые данные о том, где именно это происходит, начали поступать еще в 1955 году, когда румынский биолог Джордж Эмиль Паладе заметил крошечные гранулы внутри клеток[127]127
Palade G. E. A small particulate component of the cytoplasm. Journal of Biophysical and Biochemical Cytology, vol. 1, iss. 1, pp. 59–68. 1955.
[Закрыть]. Эти гранулы назвали “рибосомы”, и они оказались необычайно сложно устроенными комплексами, включающими в себя как РНК, так и белок. Со временем стало понятно, что именно рибосомы являются местом сборки белков из аминокислот. Для этого необходимо, чтобы соответствующие инструкции оказались определенным образом перенесены от ДНК к расположенным в другом месте рибосомам.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?