Электронная библиотека » Мигель Николелис » » онлайн чтение - страница 7


  • Текст добавлен: 28 февраля 2023, 08:11


Автор книги: Мигель Николелис


Жанр: Биология, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 28 страниц) [доступный отрывок для чтения: 8 страниц]

Шрифт:
- 100% +

Глава 5
Релятивистская теория мозга. Все решает пикотесла магнитного поля

Открытие того факта, что человеческий мозг опирается на динамические взаимодействия между обширными и широко распределенными популяциями сложных сетей нейронов, проливает свет на важнейшие и все еще не разгаданные тайны в области современных исследований мозга. Например, какие нейрофизиологические механизмы в процессе эволюции отвечали за слияние многих наших уникальных умственных способностей (таких как речь, модель психического состояния, изготовление орудий, общий и социальный интеллект, ощущение самих себя), позволив им объединиться и сформировать единый функциональный разум? Как мозг синхронизирует работу своих анатомических отделов, функционально связывая весь неокортекс, так что многие сенсорные сигналы, а также наши действия, абстракции и мысли сливаются в единый континуум? Каким образом мы на протяжении всей своей жизни обновляем и сохраняем воспоминания?

На поиски окончательных ответов на эти вопросы, вероятно, уйдет гораздо больше времени, чем я потратил на исследования за всю свою жизнь, но именно они движут мной и заставляют работать дальше в области системной нейробиологии. Я считаю, что нет более высокой цели, чем достичь более глубокого понимания этих важнейших проблем и найти их решение, исходя из предположения (и это серьезное предположение), что человеческий мозг способен полностью познать сам себя.

Если бы от меня требовалось в нескольких предложениях описать свою версию решения этих проблем исходя из нейрофизиологических принципов, рассмотренных в главе 4, я бы сделал это так. Мозг работает за счет рекурсивного смешения аналоговых и цифровых нейронных сигналов. Этот динамический процесс позволяет объединить нервную ткань в операционный континуум, задействованный в двунаправленном процессе взаимопревращения информации Шеннона и Гёделя (см. рис. 3.2). За счет рассредоточения энергии для физической записи информации Гёделя в нервную ткань (информация обладает прямой причинной эффективностью в отношении анатомических структур) мозг способен использовать входящие новые сигналы, описывающие окружающий мир, непрерывно обновляя свою внутреннюю модель реальности. И в итоге именно этот процесс проверок и обновлений собственной точки зрения мозга направляет действия нашей нервной системы в каждый момент времени.

Возможно, пока что эта моя догадка кажется многим читателем бессмыслицей. Но не стоит падать духом. В этой и нескольких последующих главах я разверну этот тезис и максимально доходчиво объясню, что у меня на уме – как в буквальном, так и в переносном смысле.

Мое решение главной проблемы нейробиологии сводится к тому, что я называю релятивистской теорией мозга. Исходные положения релятивистской теории мозга я изложил в книге «За пределами границ», и на протяжении последних восьми лет мы с моим другом Рональдом Сикурелом работали сообща, чтобы и дальше разъяснять ее догматы; в 2014 году мы в соавторстве написали на эту тему монографию «Релятивистский мозг: как он работает и почему машина Тьюринга не может его воспроизвести». Я выбрал термин «релятивистский» из-за его исторического смысла, чтобы выразить невозможность существования абсолютной системы отсчета для естественных феноменов. В других сферах исследований Аристотель и Галилей среди прочих тоже защищали «релятивистскую» природу человеческих концепций (этики и морали) и природных явлений (падение предметов). Немецкий философ Эммануил Кант ввел представление о том, что можно назвать релятивистской природой восприятия, предположив, что мы не можем напрямую воспринимать внешний мир, а можем лишь создавать ментальные изображения этой реальности, опираясь на наши чувства и мысли. Разделявший эту точку зрения уважаемый австрийский физик Эрнст Мах считал, что всякое движение можно описать только по отношению к остальной вселенной. Мах также применил релятивистский подход в обсуждении человеческого восприятия. В 1886 году в книге «Анализ ощущений» он вторил Канту: «Воспринимаемые нами объекты представляют собой просто наборы смысловых данных, связанных между собой правильным образом. Не существует никаких других предметов, не зависящих от наших чувств – никаких вещей в себе… Таким образом, мы знаем только кажущуюся сторону, но не саму вещь в себе – лишь мир наших ощущений. Поэтому мы никогда и не узнаем, существует ли вещь в себе. Следовательно, говорить о таких понятиях не имеет смысла».


Интересно, что идея Маха о восприятии мира прекрасно соотносится с новым взглядом на мир революционно настроенной группы художников, создавших направление импрессионизма во Франции в конце XIX века. В пику реалистической школе, исповедовавшей детальное превращение внешней реальности в фотографически точное изображение, импрессионисты горячо верили в то, что их главное дело заключается в изображении их внутреннего, субъективно личного видения мира. Как тонко подметил бразильский искусствовед Марио Педроса, импрессионисты предлагали «разжижить твердое и срезать углы, превращая все, от фасадов соборов до структуры мостов, в одну цветную и пятнистую массу по всей поверхности холста, без какой-либо иерархии».

Мне по душе такой подход!

В общем, идеи Маха хорошо резонируют с выбором слова «релятивистский» для обозначения новой теории функционирования мозга. И хотя кто-то может утверждать, что это Альберт Эйнштейн ввел наблюдателя в релятивистскую систему координат для описания всего космического пространства, на деле ни он, ни его предшественники или последователи не пытались сделать шаг вперед и выявить внутренние релятивистские механизмы работы мозга наблюдателя. К счастью, введение релятивистской теории функционирования мозга теперь открывает возможность всерьез поговорить о том, что происходит.

Если следовать нейрофизиологической версии рассуждений Маха, центральная аксиома релятивистской теории мозга утверждает, что общий принцип действия мозга млекопитающих основан на непрерывном сравнении внутренней модели мира (и тела самого субъекта) с бесконечным многомерным потоком сенсорной информации, достигающей нашей центральной нервной системы в каждый момент жизни. Из этого сравнения человеческий мозг для каждого из нас выводит ощущение самого себя и мозгоцентрическое описание окружающей вселенной. Следовательно, чтобы выполнить любую задачу – от расчета движения руки до построения самой сложной сети причинно-следственных связей, необходимых для конструирования космического корабля, – человеческий мозг постоянно создает ментальные абстракции и аналогии в поисках лучших совпадений между его внутренними нейронными моделями и его видением мира и необходимой работы. Все, что когда-либо материализовывалось внутри человеческой вселенной – от разговорной речи до создания новых орудий, сочинения симфоний или планирования и осуществления чудовищного геноцида, – должно было вначале появиться в чьей-то голове в виде ментальной абстракции или аналогии. Таким образом, прежде чем я начну выполнять рукой какое-то сложное действие, тысячи или даже миллионы нейронов коры должны будут на время объединиться и образовать органическую вычислительную машину (в эту функциональную единицу также вовлекаются тысячи субкортикальных нейронов, но для простоты пока не будем о них говорить и сконцентрируем внимание на коре). Эта единица – функционально интегрированная нейронная сеть – отвечает за расчет программы движения, согласно которой и выполняется само действие. Я называю эту программу внутренней ментальной аналогией движения, которое будет выполнено телом через несколько сотен миллисекунд. В таком случае, следуя принципам физиологии ансамблей нейронов, эта нейробиологическая единица представляет собой истинный аналог компьютера, симулирующего движения тела с помощью конкретной дистрибутивной картины нейронной активности. Однако в соответствии с принципом вырожденности каждый раз, когда должно совершиться действие, эту предшествующую ему ментальную работу выполняют разные комбинации нейронов.

В таком контексте главный вопрос заключается в том, каким образом мозгу удается так быстро формировать такие аналоговые компьютеры для каждого случая и как эти разные органические единицы могут надежно осуществлять точные движения – будь то движения скрипача, балерины, подающего в бейсболе или хирурга.

Второй принципиально важный вопрос: как согласуются локальный и общий режим действия мозга? На одном из уровней мозг использует для обмена информацией между нейронами электрические импульсы, называемые потенциалами действия. Цифровая природа этой информации определяется как бинарным способом создания этих потенциалов действия (все или ничего), так и точным расписанием их создания каждым отдельным нейроном из сети нейронов. Последовательности таких потенциалов действия передаются по аксонам нейронов; когда они достигают синапсов (концевых зон контакта между аксоном и другим нейроном), эти электрические сигналы вызывают высвобождение в синаптическую щель нейромедиаторов. Передача и обработка этих цифровых сигналов может быть описана с помощью теории информации Клода Шеннона, т. е. мы можем измерить информацию в этих сигналах в битах и байтах, как мы бы описали информацию, передающуюся по телефонным линиям или содержащуюся в символах в вашем компьютере.

Но мозг также опирается и на аналоговые сигналы нейронов, поскольку только они в полной мере способны обеспечить тип обработки информации, необходимый нашей центральной нервной системе для осуществления человеческих поведенческих реакций. Как обсуждалось в главе 3, я предполагаю, что кроме информации Шеннона мозг животных (и особенно человека) использует аналоговую информацию Гёделя для реализации функций и поведенческих реакций, отличающих животных от цифровых машин. Если говорить попросту, только аналоговый сигнал может представлять точную аналогию с физическими параметрами, с которыми мы сталкиваемся в природе, такими как электрическое напряжение или ток, температура, давление или магнитные поля. Подобно этим физическим параметрам, генерируемые нейронами сигналы тоже должны постоянно изменяться во времени, чтобы позволить мозгу правильно выполнять свою работу. При этом цифровая версия таких сигналов нейронов отражает лишь отдельные элементы из непрерывных спектров сигналов, отбираемые через какие-то предопределенные интервалы времени. И хотя точное время производимого нейроном электрического импульса можно задать цифровым способом, все генерируемые этими клетками мозга электрические сигналы, такие как их мембранный и синаптический потенциал, а также сам потенциал действия являются аналоговыми волнами с переменным во времени электрическим напряжением. Более того, общая электрическая активность мозга, складывающаяся из сочетания синаптических потенциалов и потенциалов действия миллиардов нейронов, тоже представляет собой аналоговый сигнал. На основании всего этого я предполагаю, что мозг животных и человека функционирует с помощью гибридного аналого-цифрового вычислительного механизма.

После нескольких лет изысканий мне стало ясно, что максимальная скорость проведения потенциалов действия нервными клетками (около 120 метров в секунду) недостаточна для объяснения скорости, с которой мозг выполняет некоторые из своих самых важных функций, таких как объединение многих когнитивных способностей в единый разум. Поэтому я начал искать аналоговый сигнал, который мог бы распространяться через весь мозг со скоростью, близкой к скорости самой быстрой вещи на свете – нет, речь идет не о принимающем игроке из команды «Филадельфийских орлов», а о чем-то еще более быстром вроде скорости света!

Одна из важнейших структурных особенностей человеческого мозга – наличие плотно упакованных пучков и петель нервных клеток, образованных десятками миллионов аксонов, ответственных за передачу быстрых последовательностей потенциалов действия из одной области мозга в другую (главы 2 и 4). Как выяснил Майкл Фарадей в начале XIX века, электрические токи создают магнитные поля. Аналогичным образом изменения магнитного поля приводят к спонтанному возникновению электрического тока в проводнике. Помня об этом, я начал размышлять о том, что все эти петли белого вещества в нашем мозге не просто проводят электричество, но покрывают мозг множеством изменяющихся во времени нейронных электромагнитных полей. Вот почему мне нравится называть белое вещество, соединяющее кортикальные и субкортикальные структуры, биологическим соленоидом.

Электрическое поле коры начали измерять с середины 1920-х годов с помощью метода электроэнцефалографии. Кроме того, на данный момент уже на протяжении нескольких десятилетий с помощью метода магнитоэнцефалографии измеряют и магнитное поле мозга. Однако этот последний метод в основном ограничивается анализом коры, поскольку пока еще не созданы достаточно чувствительные методы исследований, которые позволили бы ученым проникнуть в более глубокие слои мозга.

Релятивистская теория мозга предполагает, что крайне сложные пространственно-временные нейронные электромагнитные поля возникают в результате прохождения электрических потенциалов через множество биологических соленоидов, которыми усеян наш мозг.

Важно отметить, что эти биологические соленоиды образованы не только очень большим количеством петель нервов, но и мириадами других колец белого вещества разного размера, включая микроскопические кольца, образованные дендритами и аксонами небольших сетей нейронов. Учитывая такое общее анатомическое строение, релятивистская теория мозга предсказывает существование не только уже известных кортикальных полей, но и большого количества субкортикальных электромагнитных полей.

Я считаю, что ядром уникальных вычислительных способностей нашего мозга является рекурсивное взаимодействие между этими двумя классами мозговых сигналов – цифровых потенциалов действия и возникающих в результате их прохождения по нервам аналоговых электромагнитных полей (рис. 5.1). В этом контексте я предполагаю, что электромагнитные поля нейронов обеспечивают появление эмерджентных свойств нейронов, которые мы считаем необходимыми для проявления высших ментальных и когнитивных способностей человеческого мозга. Дело в том, что такие электромагнитные поля служат своеобразным физиологическим «клеем», необходимым для слияния всего неокортекса в единый органический компьютер, способный объединять все наши мыслительные способности, а также обеспечивать очень быструю координацию между кортикальными и субкортикальными отделами мозга. За счет всего этого мозг способен выступать в роли единого компьютера. Это происходит по причине того, что находящиеся вдали от равновесия множественные аналоговые электромагнитные поля мозга согласуются между собой и создают то, что я называю нейронным пространственно-временным континуумом. В таком контексте нейронное пространство и время сливаются точно так же, как в общей теории относительности Альберта Эйнштейна для всей вселенной.


Рис. 5.1. Две схемы рекуррентных аналогово-цифровых взаимодействий в коре, опосредованных нейронными электромагнитными полями (НЭМП), в соответствии с релятивистской теорией мозга. A: Нейроны создают ряд электрических потенциалов действия – основных производимых мозгом сигналов цифрового рода, которые затем, при передаче по пучкам нервов, могут создавать аналоговые сигналы – электромагнитные поля. B: Далее такие электромагнитные сигналы способствуют возникновению новых потенциалов действия в соседних нейронах (рисунок Кустодио Роса).


В целом, по моему мнению, это электромагнитное взаимодействие позволяет мозгу координировать и точно синхронизировать активность отдельных частей, даже если они разделены между собой пространством или временем. Как в теории Эйнштейна, где время и пространство «сворачиваются» из-за наличия массы, изменяя пространственно-временные отношения между предметами, я полагаю, что этот пространственно-временной континуум нейронов тоже может в некоем нейрофизиологическом смысле «сворачиваться». В результате это приводит к слиянию отдельных частей мозга, достаточно удаленных друг от друга физически, в единую нейрофизиологическую/вычислительную единицу. Я считаю, что этот феномен – в менее развитой форме – существует у всех высших млекопитающих. Но, как мне кажется, у человека образующийся нейронный континуум (или ментальное пространство, как мне нравится его называть) представляет собой аналоговый нейронный субстрат, из которого возникают все сложнейшие функции человеческого мозга.

Динамика ментального пространства зависит от нескольких факторов: пространственного распределения и состава нейронных ансамблей мозга; структурных особенностей нервных путей и петель белого вещества, связывающих эти кластеры нейронов; доступной для мозга энергии; различных типов нейромедиаторов в нервной ткани; а также наших воспоминаний, являющихся ключевым компонентом в определении собственной точки зрения мозга. На самом деле изменения одного, нескольких или многих отдельных компонентов (таких как пространственная конфигурация, плотность аксонов и уровень миелина в некоторых петлях белого вещества) вдобавок к увеличению объема мозга и количества нейронов, возможно, и были причиной столь значительного развития способностей мозга, произошедшего более чем за 6 миллионов лет эволюции гоминидов.

Чтобы проанализировать некоторые идеи, возникшие в рамках релятивистской теории мозга, мой аспирант в Университете Дьюка Вивек Субраманян создал модель рекуррентной аналого-цифровой вычислительной системы, в которой отдельные нейроны возбуждаются с образованием потенциалов действия цифрового рода, что может приводить к возникновению электромагнитных полей, которые в результате индукции вызывают следующий цикл возбуждения тех же нейронов. После нескольких циклов работы системы Вивек обнаружил, что при возбуждении очень небольшого набора нейронов с образованием единственного потенциала действия вся сеть распределенных в пространстве нейронов быстро эволюционирует и достигает состояния точной синхронизации, так что большинство образующих ее нейронов возбуждаются одновременно, создавая идеальные ритмические колебания. Такая точная синхронизация отдельных нейронов также сказывается на электромагнитных полях, возникающих при совместном действии нейронов этого ансамбля. Хотя эта простая модель не является окончательным доказательством, она подтверждает, что рекуррентные аналого-цифровые взаимодействия нейронов могут быть задействованы в механизме масштабной синхронизации, необходимой для связывания многих кортикальных и субкортикальных структур в единую вычислительную единицу. Кроме того, это исследование открывает путь к созданию на основе мозга аналого-цифровых вычислительных систем, которые в будущем могут оказаться более эффективными, чем современные цифровые алгоритмы машинного обучения, используемые для создания искусственного интеллекта в попытках имитировать поведение человека. Я считаю, что это возможно, поскольку рекурсивные аналого-цифровые вычислительные системы смогут решать задачи, которые считаются недостижимыми для современных цифровых компьютеров.

Получив эти первые результаты, Вивек, еще один сотрудник нашей лаборатории Гари Лехью и я попытались создать физическую версию этой компьютерной модели. Мы решили эту задачу путем прямого подсоединения электрических сигналов, производимых цифровой моделью широкой сети нейронов, к трехмерному диффузно-тензорному изображению группы спиралей белого вещества человеческого мозга, как показано на рисунке 5.2. В этой физической модели при прохождении электрического заряда по каждой спирали создается электромагнитное поле. В свою очередь, создаваемые биологическими спиралями электромагнитные поля индуцируют возбуждение цифровых нейронов системы. Такая физическая интерпретация «нейромагнитного реактора» описывает гибридный аналого-цифровой компьютер; подобные эксперименты позволяют наблюдать и подробно анализировать динамические операции, которые, как мы думаем, происходят внутри нашего мозга.


Рис. 5.2. A: Аналоговый компонент аналого-цифрового компьютера, созданного по подобию мозговых сетей, таких как представленная на рисунке B трехмерная модель организации пучков белого вещества коры, связанных с регуляцией моторной функции, которые ранее были обнаружены с помощью диффузионно-тензорного метода (рисунок Кустодио Роса).


Примечательно, что пока я описывал наш новый гибридный аналого-цифровой компьютер, созданный исходя из концепции мозгосетей, группа исследователей из Национального института технологических стандартов в Боулдере, в Колорадо (США), сообщила о своем опыте использования магнитных полей для создания нового измерения в кодировании информации для разработки «нейроморфного» устройства – машины для более точной имитации действий человеческого мозга. Их и наши находки показывают, что электромагнитные поля нейронов могут в ближайшем будущем стать активной темой исследований в области нейроморфных вычислений.

Один важный вопрос, возникающий в связи с этой аналого-цифровой моделью работы мозга, заключается в том, не влияют ли окружающие нас магнитные поля, такие как магнитное поле Земли, на активность нашего мозга. Этот вопрос вполне уместен, поскольку ученые обнаружили, что разные организмы способны чувствовать магнитное поле Земли, например некоторые бактерии, такие как Magnetococcus marinus, насекомые, нематоды, моллюски, морские угри, птицы и даже млекопитающие, включая лесных мышей, замбийских кротов-крыс, больших коричневых летучих мышей и рыжих лисиц. Для лис характерно удивительное охотничье поведение: они отслеживают мелких грызунов, передвигающихся по подземным ходам, в какой-то момент подпрыгивают вверх, а затем бросаются вниз головой в землю и хватают добычу. И эти прыжки осуществляются вдоль северо-восточного направления.

Способность многих видов животных ощущать магнитные поля также означает, что любые серьезные изменения магнитного поля Земли, такие как инверсии магнитного поля, происходившие на нашей планете в прошлом, могут повергнуть жизнь этих видов в хаос, в значительной степени влияя на их способность питаться и ориентироваться в пространстве. Интересным следствием этой идеи является гипотеза, согласно которой некоторые незначительные временные нарушения когнитивной функции, пережитые космонавтами, высадившимися на Луне при выполнении программы «Аполлон», возможно, были вызваны неврологическим эффектом, связанным с выходом из-под влияния магнитного поля Земли, окружавшего их с момента зачатия. Однако это еще нужно подтвердить.

В этом контексте, если считать, что нормальное функционирование человеческого мозга основано на крохотных нейронных электромагнитных полях, легко предположить, что создаваемые людьми магнитные поля, такие как поля МРТ, могут оказывать значительное воздействие на нашу ментальную активность. Вообще говоря, создаваемые этими устройствами магнитные поля в триллионы раз сильнее полей нашего мозга.

Одна из причин, почему ни магнитное поле Земли, ни большинство полей МРТ не влияют на наш мозг, заключается в том, что оба типа полей являются статическими и поэтому не могут заставить нейроны возбуждаться и создавать электрические импульсы. А переменные градиентные магнитные поля МРТ изменяются с гораздо более высокой частотой, чем низкочастотные (0–100 Гц) электрические сигналы, распространяющиеся в мозге. Иными словами, человеческий мозг в основном нечувствителен к большинству магнитных полей, существующих в природе или созданных искусственным путем. Тем не менее под влиянием полей, создаваемых аппаратами для магнитно-резонансной томографии, некоторые пациенты сообщают о незначительных неврологических эффектах, таких как головокружение или металлический привкус во рту. Если подвергнуть людей воздействию гораздо более сильных полей, чем те, что создаются такими аппаратами, возможно, эти эффекты усилятся и проявятся какие-то другие.

Новые доказательства влияния нейромагнитных полей на функционирование мозга появились благодаря созданию технологии транскраниальной магнитной стимуляции (ТМС). Если на голове пациента закрепить проводящую металлическую катушку специфической формы и пропустить через нее электрический ток, возникающие низкочастотные магнитные поля могут как индуцировать возбуждение нейронов коры, так и ингибировать его. И поэтому применение транскраниальной магнитной стимуляции в разных участках мозга способно вызывать длинный и все растущий список нейрофизиологических и поведенческих реакций.

Кроме синхронизации на уровне сетей нейронов, нейронные магнитные поля оказывают еще одно действие, о котором до последнего времени почти ничего не было известно. Рисунок 5.3 показывает, что мозг можно рассматривать в качестве многослойной структуры, работающей путем тесной интеграции многих уровней обработки информации – от атомного/квантового уровня до уровня молекул, генов, химических реакций, клеточных органелл, клеток и сетей нейронов. Для правильной работы мозг должен обеспечивать идеальную синхронность информационных потоков между этими уровнями, связанными множественными петлями с упреждающей и обратной связью. Каждый уровень – это открытая система, и взаимодействия между ними, скорее всего, являются нелинейными и даже попросту не поддающимися вычислению, что означает, что они не могут быть опосредованы одними лишь алгоритмическими и (или) цифровыми процессами. Интеграция всех этих уровней обработки информации в единую операционную единицу достигается только через аналоговый сигнал, способный вызывать эффект на всех уровнях разрешения одновременно. Электромагнитные поля соответствуют этому строгому требованию. Таким образом, электромагнитные сигналы нейронов обеспечивают работу мозга в качестве интегральной вычислительной системы, опосредуя функцию и обмен информацией между всеми уровнями ее обработки – от квантового уровня до сетей нейронов.


Рис. 5.3. Разные уровни организации мозга, на которые электромагнитные поля нейронов могут оказывать прямое и одновременное воздействие (рисунок Кустодио Роса).


В целом релятивистская теория мозга пытается учесть различные наблюдения, выходящие за пределы возможностей интерпретации в рамках традиционных теорий нейробиологии, таких как классическая модель зрения с упреждающей связью, предложенная Дэвидом Хьюбелом и Торстеном Визелем. Например, вводя понятие собственной точки зрения мозга, релятивистская теория мозга дает физиологическое объяснение тех наблюдений, которые привели к формулировке принципа контекста. Теория предполагает, что у животных в разных поведенческих состояниях (под наркозом, бодрствующих и полностью подвижных или бодрствующих, но обездвиженных) наблюдается разное динамическое состояние мозга. И по этой причине «собственная точка зрения мозга» очень сильно различается у животных под наркозом, у которых она фактически отсутствует, и у животных, активно вовлеченных в анализ окружающего пространства, у которых собственная точка зрения мозга выражена в полной мере. Поскольку ответ мозга на один и тот же сенсорный стимул зависит от сравнения входящего сенсорного потока с существующей у мозга собственной моделью мира, вызванные сенсорными стимулами реакции должны в значительной степени различаться в состоянии под наркозом или в полном бодрствовании/подвижности. Именно это и наблюдается в самых разных экспериментах на животных, затрагивающих тактильные, вкусовые, слуховые, зрительные и обонятельные системы. И то же самое должно быть справедливо для людей в разном эмоциональном состоянии. Например, хорошо известно, что иногда во время боя солдаты временно не испытывают боли, которая в нормальной ситуации была бы мучительной и невыносимой.

Вообще говоря, пример боли хорошо иллюстрирует идею о том, что сложный мыслительный опыт может создаваться за счет взаимодействия электромагнитных полей нейронов, описывающих ментальное пространство. Хотя уже идентифицированы нейроны, связанные с разными аспектами ноцицепции (т. е. обработки информации, связанной с болью), мы еще не понимаем, каким образом действие дистрибутивных сетей нейронов многих кортикальных и субкортикальных структур создает сложное интегральное ощущение боли (с учетом разнообразных факторов, включая спектр эмоций). Например, не удается выявить полный спектр связанных с болью ощущений и эмоций путем электрической стимуляции какого-либо отдельного участка коры, который, как было показано, участвует в возникновении боли.

В соответствии с релятивистской теорией мозга, сложность в идентификации конкретного источника болевого ощущения объясняется тем, что боль или любая другая сложная ментальная или когнитивная функция возникает в результате взаимодействий нейронов, распределенных на обширном участке нервной ткани, и созданных ими электромагнитных полей. В рамках релятивистской терминологии ощущение боли зависит от сочетания многих факторов (локализации и интенсивности боли, воспоминаний о предыдущих ноцицептивных стимулах и эмоционального состояния). Таким образом, предполагая, что боль возникает в аналоговом элементе мозга под действием цифровых сигналов нейронов и мнемонических образов, объединяющихся и создающих специфические электромагнитные поля, мы можем идентифицировать механизм, посредством которого эмоциональные, контекстуальные и исторические факторы играют столь важную роль в модуляции входящих ноцицептивных сигналов с периферии тела, и определить, почему одни и те же ноцицептивные сигналы не всегда вызывают одинаковые субъективные ощущения боли.

Другие клинические данные также подтверждают существование аналогового компонента в мозговых процессах. Например, интересный ряд явлений, известных как расстройства схемы тела, согласуется с релятивистской теорией мозга и возможной физиологической ролью электромагнитных полей нейронов. Самое известное явление из этого ряда – ощущение фантомной конечности, уже описанное в главе 3. Это часто наблюдаемое явление, при котором потерявшие конечность пациенты продолжают ощущать ее присутствие. После ампутации большинство людей не только чувствуют отсутствующую конечность, но и сообщают о мучительных болях в конечности, которой больше нет.

В процессе работы над проектом «Снова ходить» я вновь столкнулся с явлением фантомной конечности. Все пациенты с параличом нижних конечностей, участвовавшие в нашей программе упражнений, испытывали фантомные ощущения в нижней части тела после начала обучения использованию интерфейса «мозг-машина» для контроля движений ног виртуального футболиста. На первой фазе упражнений пациенты погружались в виртуальную реальность, что позволяло им с помощью электроэнцефалической активности управлять движениями виртуального футболиста, получая синхронизированные зрительные и тактильные сигналы, описывающие виртуальную прогулку по футбольному полю. Зрительная обратная связь осуществлялась через очки виртуальной реальности, а тактильная информация, отражающая момент соприкосновения ноги футболиста с поверхностью земли, поступала за счет стимуляции кожи предплечий. При взаимодействии с этим интерфейсом «мозг-машина» и источником виртуальной реальности все пациенты вновь испытывали отчетливое ощущение владения собственными ногами. Они сообщали, что чувствовали, как ноги движутся и касаются земли, хотя их ноги оставались парализованными, а двигались лишь ноги виртуального игрока. Для нас это было большим сюрпризом, учитывая, что описанное тактильное ощущение передавалось через предплечье пациента. Каким-то образом, наблюдая за перемещением виртуального игрока по виртуальному футбольному полю и испытывая на предплечье тактильный стимул, соответствующий контакту ноги виртуального игрока с поверхностью земли, мозг парализованных пациентов генерировал живое фантомное ощущение. В некоторых случаях это ощущение вызывало у наших пациентов слезы из-за эмоционального переживания того, что они словно вновь передвигаются на собственных ногах.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации