Текст книги "Истинный творец всего. Как человеческий мозг сформировал вселенную в том виде, в котором мы ее воспринимаем"
Автор книги: Мигель Николелис
Жанр: Биология, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 8 (всего у книги 28 страниц) [доступный отрывок для чтения: 9 страниц]
Существует и проблема иного рода, когда пациенты с когнитивным дефицитом навыков высокого порядка, так называемым односторонним пространственным игнорированием, не способны ориентироваться и действовать в пространстве, локализованном со стороны, противоположной поврежденной стороне теменной доли. Одностороннее пространственное игнорирование чаще всего наблюдается у пациентов с обширными повреждениями коры правого полушария. После обширного инсульта или травматического повреждения теменных областей с правой стороны пациенты не узнают левую сторону собственного тела и внешнего пространства. Жертв такого поражения легко распознать, поскольку они оставляют левую сторону тела неодетой и неухоженной. Кроме того, если их просят пройти через длинный коридор, повернуть налево и войти в дверь, такие люди обычно проходят чуть дальше вперед, поворачивают направо, а затем, когда достигают нужной двери, вновь поворачивают направо, чтобы выполнить инструкцию. Если их просят нарисовать часы, висящие перед ними на стене, такие пациенты изображают замкнутый круг, а затем размещают все цифры, соответствующие часам, на правой части рисунка.
Релятивистскую теорию мозга подтверждает и другой удивительный пример – иллюзия резиновой руки, при которой здоровый человек сообщает, что рука манекена ощущается как его собственная биологическая рука. Для создания этой иллюзии одну руку человека удаляют из его поля зрения и размещают перед ним руку и кисть манекена. Затем экспериментатор на протяжении 3–5 минут синхронным образом дотрагивается до спрятанной руки человека и до руки манекена. И когда экспериментатор прекращает дотрагиваться до руки человека, но продолжает дотрагиваться до руки манекена, большинство людей воспринимают руку манекена как свою собственную.
Ощущение фантомной конечности, одностороннее пространственное игнорирование и иллюзия резиновой руки позволяют предположить, что головной мозг имеет априорный внутренний и постоянно действующий образ тела, который очень быстро изменяется в соответствии с переживаемым опытом. Этот внутренний образ тела отвечает за все сенсорные и аффективные пути, посредством которых мы воспринимаем обладание собственным телом. Канадский нейробиолог Рональд Мелзак назвал этот образ тела нейроматрицей и предположил, что некоторые его составляющие определяются наследуемыми генетическими факторами. Однако Мелзак не указал ни на один возможный нейрофизиологический механизм, поддерживающий это внутреннее, создаваемое нейронами представление тела с момента нашего рождения и до самой смерти.
Очевидно, что ни ампутированная конечность, ни резиновая рука манекена не создают тактильных или проприоцептивных импульсов, поэтому классическое объяснение восприятия, предложенное Хьюбелом и Визелем, никак не может учесть эти явления. Дело в том, что их классическая теория предполагает, что для восприятия любого тонкого соматосенсорного ощущения, поступающего от конечности, ее боли или движения, в ней должны создаваться соответствующие тактильные, болевые или проприоцептивные сигналы, которые затем передаются по периферическим нервам и сенсорным путям в наш мозг, где сначала из этих стимулов извлекаются ключевые сенсорные свойства, а затем они каким-то образом связываются в цельное перцептивное описание конечности. Теория Хьюбела и Визеля также не может ответить на вопрос о том, какой механизм используется для решения задачи создания цельного многомерного восприятия объекта или нашего собственного тела. Поскольку эти условия не соблюдаются в случае феноменов фантомной конечности, одностороннего пространственного игнорирования и иллюзии резиновой руки, для них требуется другое объяснение. Более того, никакие элементы модели Хьюбела и Визеля не объясняют слияние множества сенсорных и аффективных ощущений, посредством которых мы обычно ощущаем самих себя.
По моему мнению, многие явления, связанные с существованием у нас в мозге схемы тела (и ощущения самих себя), могут быть описаны исключительно в соответствии с ожиданиями мозга (аналоговой ментальной абстракции) относительно конфигурации тела человека, которая, хотя и заложена изначально в наших генах, активно адаптируется и поддерживается на протяжении всей жизни. Согласно этой точке зрения, мозг создает внутри себя ожидание того, что должно иметься в теле человека, на основании комбинации накопленных воспоминаний, исходно заложенных нашим генетическим багажом (например, что тело имеет две руки и две ноги), и перцептивного опыта, накопленного за всю жизнь. В каждый момент жизни мозг непрерывно проверяет точность этого внутреннего образа тела, соответствующего его собственной точке зрения, путем анализа входящих сенсорных сигналов, непрерывно передаваемых от тела центральной нервной системе. Пока этот образ подтверждается периферическими сигналами, все хорошо, и мы воспринимаем наше тело во всей его целостности. Но если происходит значительное изменение потока периферической сенсорной информации (например, когда конечность ампутирована или скрыта из поля зрения), возникает несоответствие между содержащимся в мозге образом тела, созданном нейронами, и его реальной физической конфигурацией в данных условиях. В результате этого расхождения люди с ампутированной конечностью испытывают живое ощущение, исходящее от уже отсутствующей конечности, или, в случае иллюзии резиновой руки, воспринимают руку манекена в качестве своей собственной. Повреждения элементов кортикальных сетей, ответственных за создание этих ожиданий мозга, как в случае с односторонним пространственным игнорированием, в значительной степени изменяют восприятие физических границ нашего собственного тела.
В иллюзии резиновой руки кондиционирующая фаза, по-видимому, настраивает человека на восприятие последующего прикосновения к резиновой руке как к коже его собственной. Это происходит по той причине, что на стадии выработки рефлекса человек видит кисточку, касающуюся резиновой руки, и ощущает тактильную стимуляцию собственной руки, скрытой из его поля зрения. Это создает зрительно-тактильную ассоциацию, которая потом запускается каждый раз при прикосновении к резиновой руке. Мы подтвердили эту гипотезу, показав, что отдельные нейроны в первичной соматосенсорной коре обезьяны, натренированной решать аналогичную задачу, начинают отвечать на зрительные стимулы после кондиционирующей фазы, заключавшейся в синхронной стимуляции виртуальной и собственной лапы обезьяны. До кондиционирования эти клетки не отвечали на зрительные стимулы – лишь на тактильные сигналы, исходящие от конечностей.
В целом релятивистская теория предлагает объяснение этих явлений, постулируя, что ощущение самого себя и образ тела возникают благодаря широко распределенным электромагнитным полям, создаваемым многими кортикальными и субкортикальными структурами, которые участвуют в определении мозговой схемы тела.
Первые обнадеживающие доказательства гипотезы о роли электромагнитных полей нейронов в формировании сложных когнитивных функций, таких как построение схемы тела и создание ощущения боли, следуют из многочисленных данных по низкочастотной (обычно 1 Гц) транскраниальной магнитной стимуляции (ТМС) коры головного мозга людей с ощущением или болью фантомной конечности, односторонним пространственным игнорированием или хроническими нейропатическими болями. К моему счастью, ТМС также применяли к коре людей, испытывавших иллюзию резиновой руки. Если говорить коротко, эти научные данные показывают, что подобная стимуляция различных областей коры может ослаблять боль в фантомных конечностях у значительного числа пациентов. Сообщалось, что транскраниальная магнитная стимуляция левой части теменной коры приводит к клиническому улучшению в случае левостороннего пространственного игнорирования. Кроме того, было показано, что стимуляция зоны на границе затылочной и височной долей явно усиливает эффект иллюзии резиновой руки по сравнению с фиктивной стимуляцией. Наконец, ТМС также позволяет улучшить ситуацию при нейропатической боли.
Интересно, что накапливаются доказательства возможного влияния ТМС на мозг на разных уровнях его организации – генетическом, молекулярном, синаптическом и клеточном. И хотя большинство исследователей считают, что эффекты ТМС опосредованы главным образом индукцией электрического тока в нейронах, нельзя исключить, что ТМС также может оказывать прямое магнитное действие на нервную ткань. Подобный эффект согласуется с представлением о том, что индуцированные магнитные поля могут влиять на физические, химические и биологические системы. В 2015 году в обзорной статье о TMC в журнале Frontiers in Human Neuroscience Александр Червяков и его коллеги выдвинули интересную идею о том, что создаваемые стимуляцией низкочастотные электромагнитные волны могут влиять на ткани мозга одновременно на квантовом, генетическом и молекулярном уровне. Поскольку известно, что крупные молекулы и даже клеточные органеллы деформируются под действием магнитного поля, ТМС может модулировать или даже изменять многие опосредованные ими функции нейронов. Это имеет принципиальное значение в случае белковых комплексов, которые, как мы знаем, важны для таких функций мозга, как пластичность и обучение, а также приобретение, накопление и сохранение воспоминаний. Эта последняя возможность представляется одновременно очень важной и вероятной, учитывая, что вызванный ТМС эффект иногда сохраняется на протяжении еще шести месяцев после окончания лечения. В общем, это означает, что техника ТМС способна вызывать долгосрочные пластические изменения сетей нейронов, что имеет непосредственное отношение к нашему рассказу.
Хотя возможность непосредственного магнитного влияния ТМС на головной мозг поддерживает мою точку зрения о формировании нашего внутреннего образа тела в аналоговом процессе, обнаружение влияния ТМС на пластичность нейронов подкрепляет гипотезу о том, что электромагнитные поля нейронов также обладают причинной эффективностью в отношении нервной ткани. Это возможно потому, что такие электромагнитные поля играют ключевую роль в процессе физического встраивания гёделевской информации в сети нейронов. Если это подтвердится последующими экспериментами, данная концепция позволит понять, что нейрофизиологические процессы формирования наших воспоминаний включают в себя нечто вроде электромагнитного протравливания нервной ткани. С моей точки зрения, этот процесс может происходить за счет обширного влияния электромагнитных полей на синхронную модуляцию трехмерной структуры (и, следовательно, функции) большого числа внутриклеточных белков нейронов и синаптических белков по всей коре. В результате одновременного действия на всю кортикальную мантию этот механизм отвечает за увеличение и уменьшение числа синапсов и силу отдельных синапсов. Кроме того, этот механизм может объяснить хорошо известную делокализованную природу наших воспоминаний, которые хранятся не в каком-то одном ограниченном участке, а обычно распределены по обширным областям неокортекса.
С другой стороны, электромагнитные поля также участвуют в считывании этих воспоминаний и их трансляции в распределенные пространственно-временные картины электрической активности нейронов. Таким образом, электромагнитные волны, несущие высокоразмерную гёделевскую информацию, за счет индукции преобразуются в низкоразмерную шенноновскую информацию (см. рис. 3.2), выражающуюся в виде потоков электрических импульсов нейронов, которые легко транслируются в движения тела, речь и другие формы коммуникации, по большей части основанные на цифровых сигналах.
Я считаю, что идею о хранении долгосрочных воспоминаний в распределенном виде по всей ткани коры гораздо легче объяснить с помощью аналого-цифровой модели, чем с помощью одной лишь цифровой. На самом деле без учета аналогового компонента мозга очень трудно понять, каким образом кортикальные сети, характеризующиеся сложной и постоянно изменяющейся микроконнективностью, на протяжении всей жизни буквально мгновенно находят определенный тип информации, необходимый для появления воспоминаний.
Возможная роль нейронных электромагнитных путей в записи гёделевской информации в нервную ткань также согласуется с распространенным мнением о том, что одна из важнейших функций цикла сна заключается в консолидации воспоминаний, накопленных за предшествующий период бодрствования. В целом на электроэнцефалограмме (ЭЭГ) при смене разных фаз цикла сна можно идентифицировать разнообразные, точно синхронизированные нейронные осцилляции. Во время глубокого сна на ЭЭГ доминируют высокоамплитудные низкочастотные кортикальные осцилляции (0,5–4,0 Гц), известные как дельта-волны. Эти низкочастотные осцилляции многими рассматриваются в качестве основного компонента механизма, снижающего количество нежелательных метаболитов и обеспечивающего их выведение. В ночное время за эпизодами медленноволнового сна следуют краткие периоды быстрого движения глаз (БДГ), когда в активности коры преобладают быстрые гамма-осцилляции нейронов (30–60 Гц), напоминающие осцилляции в фазе бодрствования. Именно в фазе БДГ мы можем видеть сны. Фазу БДГ связывают с консолидацией воспоминаний и моторным обучением. В соответствии с релятивистской теорией мозга, во время цикла сна электромагнитные поля нейронов не только могут обеспечивать связь, необходимую для установления различных состояний синхронности в работе мозга, но также являются движущей силой для формирования воспоминаний, участвуя в процессах консолидации или уничтожения сформировавшихся за день синапсов. В таком контексте сны возникают в качестве одного из побочных продуктов работы аналого-цифрового вычислительного устройства, ответственного за тонкую еженощную настройку микросетей нейронов, необходимую для поддержания и уточнения наших мнемонических данных.
В целом релятивистская теория мозга предлагает новую концепцию биологического механизма рекурсивного аналого-цифрового вычисления для создания сложных и, по-видимому, невычислимых человеческих когнитивных способностей, таких как интуиция, догадки, творческий потенциал и умение решать задачи. Ученые, работавшие над созданием искусственного интеллекта в последние полстолетия, до настоящего времени испытывали непреодолимые трудности в попытках имитировать какие-либо из этих основополагающих человеческих когнитивных функций в цифровом варианте, и потому я называю их невычислимыми элементами. Как обсуждается в главе 6, я предполагаю, что эти и многие другие уникальные ментальные атрибуты человека невозможно ни свести к алгоритмической формулировке, ни симулировать с помощью какой-либо цифровой системы. Однако рекурсивная аналого-цифровая стратегия вычислений в сочетании со способностью физической записи гёделевской информации, которая обладает причинной эффективностью в отношении нервной ткани и легко преобразуется в шенноновский сигнал, может быть элементом нейрофизиологического механизма, лежащего в основе таких ментальных способностей нашего мозга.
Существование аналогового уровня дает мозгу животных еще один уровень пластической адаптации. На самом деле, если электромагнитные поля объединяют кору в континуум нейронов, в принципе, любая часть коры способна опосредовать (хотя бы частично) решение конкретной задачи. Например, когда люди временно или навсегда слепнут, их зрительная кора быстро (за несколько секунд или минут) включается в обработку тактильной информации, особенно когда они учатся читать рельефные знаки шрифта Брайля, водя по ним кончиками пальцев. Если бы это происходило исключительно за счет образования новых связей между ранее не связанными нейронами, было бы трудно объяснить, каким образом зрительная кора так быстро начинает решать новые задачи. На самом деле, если бы наша центральная нервная система опиралась только на цифровой метод функционирования и передачу шенноновской информации через потоки потенциалов действия по нервным клеткам, это вообще было бы невозможно. Путем подсоединения аналогового механизма, описываемого мной и заключающегося в действии электромагнитных полей (со скоростью света) на расстоянии, человеческий мозг, возможно, приобрел мощный дополнительный уровень гибкости и избыточности, позволяющий выполнять такие трюки за кратчайшие отрезки времени.
В соответствии с релятивистской теорией мозга, перцептивный опыт, приобретаемый в моменты бодрствования, требует полного вовлечения биологических соленоидов мозга на высокой синхронной частоте для создания в мозге сложных сочетаний электромагнитных полей, которые в конечном итоге обеспечивают богатство и непредсказуемость нашего осознанного опыта. Незрелость нейронных электромагнитных полей у человека в раннем возрасте может объяснять, почему отчетливое ощущение самих себя появляется у маленьких детей только через несколько месяцев после рождения: это время требуется для созревания количества белого вещества, необходимого для создания достаточно сильных электромагнитных полей, объединяющих мозг в континуум нейронов, на основе которого формируется ощущение самого себя и реализуется главный декартовский принцип нашего вида: сogito ergo sum.
Серьезные нарушения нормального функционирования нейронного пространственно-временного континуума также объясняют возникновение у людей широкого спектра мозговых патологий. Нормальное функционирование мозга опирается на правильную синхронизацию процессов на разных уровнях, и многие, если не все, мозговые нарушения могут быть результатом патологической гипер– или гипосинхронизации различных пространственных компонентов нейронного пространственно-временного континуума. Я не хочу сказать, что не существует генетических, метаболических или клеточных факторов, ответственных за появление этих патологических нейрофизиологических состояний, однако вполне возможно, что главные признаки и проявления любого мозгового нарушения являются результатом неправильной синхронизации нейронов между некоторыми участками нейронного континуума, формирующего центральную нервную систему. Например, за последние десять лет в нашей и других лабораториях было показано, что болезнь Паркинсона связана с появлением у нейронов хронической, умеренно выраженной активности эпилептического типа, которая характеризуется патологическим высокочастотным синхронным возбуждением в бета-диапазоне (12–30 Гц). Эти аномальные осцилляции активности нейронов наблюдаются в моторных сетях фронтальной коры (где локализуются моторные и премоторные зоны), а также в базальных ядрах и таламусе.
После этого открытия в 2009 году сотрудники нашей лаборатории опубликовали статью в журнале Science (см. Fuentes et al.), в которой показали, что при подаче высокочастотных электрических стимулов через микрочип, встроенный в поверхность спинного мозга грызунов (мышей и крыс), удается в значительной степени ослабить заторможенность движений, типичную для болезни Паркинсона. В этих экспериментах клинические проявления болезни вызывали путем генетических или фармакологических манипуляций, приводивших к значительному дефициту дофамина.
До электрической стимуляции животные совершенно не могли двигаться из-за заторможенности тела, возникавшей одновременно с обширной гиперсинхронизацией моторной системы на бета-частоте. Однако после внедрения в спинной мозг микрочипа в головной мозг начинали поступать высокочастотные электрические сигналы, и бета-активность эпилептического типа прекращалась. При этом животные начинали двигаться, как в нормальных условиях. Одно из важнейших наблюдений, сделанных в рамках этого исследования, заключалось в том, что такая электрическая стимуляция спинного мозга эффективна не только при постоянном действии. Примерно часа терапевтического воздействия в день оказалось достаточно для того, чтобы мыши и крысы двигались на протяжении нескольких дней или даже целой недели.
Пятью годами позднее мы воспроизвели эти результаты на модели болезни Паркинсона у приматов. А с 2009 года эффект этого нового потенциального метода лечения внимательно изучали на пятидесяти пациентах с болезнью Паркинсона на развившейся стадии с тяжелой формой заторможенности движений. За исключением двух случаев, в которых отсутствие терапевтического эффекта, вероятно, было связано с техническими проблемами адаптации нашего метода для применения на людях, все пациенты испытывали в ходе лечения значительные улучшения в отношении моторики и даже других серьезных проявлений болезни. Этот пример прекрасно показывает, насколько новая интерпретация патофизиологии болезни Паркинсона и других мозговых нарушений, предлагаемая релятивистской теорией мозга, может быть полезна в качестве первого шага к развитию будущих методов лечения неврологических и психиатрических нарушений, считающихся ныне неизлечимыми.
Поскольку развитие болезни Паркинсона никогда не связывали со спинным мозгом, наши результаты вызвали большое удивление, так как прежде все нефармакологические методы лечения этого заболевания подразумевали электростимуляцию моторных структур, таких как базальные ядра, которые непосредственно связаны с его возникновением. Однако если такие первичные клинические данные подтвердятся в ходе клинических испытаний на большей выборке, электростимуляция спинного мозга станет весомой альтернативой основному современному хирургическому методу лечения пациентов с болезнью Паркинсона, называемому глубокой стимуляцией мозга. Я считаю, что стимуляция спинного мозга представляет собой не только более простое, краткосрочное и менее рискованное хирургическое вмешательство, но и вызывает меньше серьезных побочных эффектов. Такую имплантацию сможет осуществить любой нейрохирург без специальной подготовки. Более того, при необходимости такие спинномозговые имплантаты легко удаляются. Наконец, имплантаты стоят намного дешевле, чем глубокая стимуляция мозга, а этот фактор в наши дни нельзя недооценивать.
Следуя этой линии рассуждений, за последние десять лет мы с моим бывшим аспирантом и сотрудником Кафуи Дзиразой показали, что аномальный уровень синхронизации активности нейронов в животных моделях некоторых неврологических и психиатрических нарушений проявляется. И опять же, эти наблюдения были сделаны в серии модельных экспериментов мозговых нарушений у трансгенных мышей и крыс. В любой животной модели мозговой патологии, которую мы изучали (мания, депрессия, обсессивно-компульсивное расстройство), мы неизбежно идентифицировали наличие патологических уровней нейронной синхронизации в разных областях мозга или даже в сетях всего мозга в целом. Эти эксперименты на животных позволили получить веские доказательства в пользу предположений релятивистской теории мозга о том, что значительное количество заболеваний мозга – не что иное, как результат нарушения возбуждения нейронов, известного в клинической неврологии как фокальная (парциальная) хроническая эпилепсия. На самом деле один из выводов из этого предположения заключается в отсутствии строгих классических границ, которые в медицине традиционно устанавливали между неврологическими и психиатрическими нарушениями. Важно, что в рамках релятивистской теории мозга все эти проблемы связаны с возбуждением нейронов, так что их можно объединить в одну группу в качестве различных подтипов мозговых патологий.
В техническом плане релятивистская теория мозга предполагает, что конкретные клинические проявления и симптомы, характеризующие каждое мозговое нарушение, являются результатом неправильной (патологической) укладки континуума нейронов, описывающего ментальное пространство. Под неправильной укладкой я подразумеваю вовлечение конкретной мозговой сети (пространственного компонента всего ментального пространства) в аномальную синхронизацию. Гиперсинхронизация нейронов, как в случае болезни Паркинсона, может происходить из-за избыточной укладки ментального пространства, тогда как гипосинхронизация возникает из-за недостаточной укладки. Следовательно, появление концепции непрерывного ментального пространства становится полезным в самом практическом смысле, поскольку позволяет ввести в клиническую нейробиологию тот же тип математики (неэвклидову геометрию Римана), который использовал Эйнштейн в общей теории относительности. В сочетании с принципами физиологии ансамблей нейронов, перечисленными в предыдущей главе, это позволяет даже создать новый раздел алгебры, описывающий укладку коры в нормальных и патологических условиях.
Размышления в этом направлении также помогают понять, почему в большинстве случаев трудно осуществить однозначную дифференциальную диагностику заболевания, особенно с учетом многообразия известных науке типов психиатрических заболеваний. Нормальное функционирование мозга связано со взаимодействиями между корой и субкортикальными структурами, и то же самое должно быть справедливо при нарушении функционирования. Таким образом, признаки и симптомы у конкретного пациента могут быть проявлением широкого круга различных типов психиатрических заболеваний. Размышления о мозге в релятивистском аспекте помогают понять, почему у двух разных пациентов с одним и тем же заболеванием не приходится ожидать абсолютно одинакового набора его клинических проявлений и симптомов. При сравнении клинических симптомов у разных пациентов наблюдается значительная вариативность, приводящая к широкому спектру поведенческих фенотипов. Это помогает объяснить, почему так трудно найти типичные, хрестоматийные случаи традиционно выделяемых типов психиатрических заболеваний.
Еще одно подтверждение связи многих неврологических и психиатрических нарушений с аномальным уровнем синхронизации нейронов следует из хорошо известного наблюдения: некоторые противосудорожные препараты эффективны при лечении больных с другими клиническими проявлениями (например, с биполярным расстройством), хотя у нас нет внятного объяснения их эффективности в таких случаях – лишь эмпирические данные. Релятивистская теория мозга в некоторой степени проливает свет на это явление, предполагая, что эти препараты действуют путем ослабления парциальной эпилептической активности, вызванной патологической укладкой ментального пространства, из-за которой у пациента могут возникать основные симптомы.
До этого момента я в основном описывал патологические изменения уровня электрической синхронизации в разных мозговых сетях и их возможное влияние на симптомы и клинические проявления у пациентов, страдающих от того или иного мозгового нарушения. В рамках релятивистской теории мозга приходится признать, что эти патологические уровни синхронного возбуждения нейронов препятствуют формированию оптимальных электромагнитных полей нейронов. Если это так, то основные постулаты релятивистской теории мозга помогают объяснить глубокие нарушения настроения и цикла сна, измененное чувство реальности, восприятие личности, галлюцинации, бред и параноидальные мысли, являющиеся хорошо известными элементами психиатрических нарушений.
Возможную клиническую роль аномального формирования электромагнитных полей можно проиллюстрировать на примере еще одного очень распространенного мозгового нарушения – аутизма. За последние десять лет многие исследования с визуализацией головного мозга детей с аутизмом показали значительное нарушение функциональной связи между многими зонами коры. Это результат нарушения развития дистанционных связей между удаленными друг от друга на большое расстояние участками коры. Таким образом, в соответствии с релятивистской теорией, основные симптомы аутизма возникают как непосредственное следствие нарушения формирования «биологических соленоидов» из белого вещества, таких как верхний продольный пучок, создающих электромагнитные поля, отвечающие за образование континуума кортикальных нейронов. Возможно, такое нарушение приводит к аномально низкому уровню синхронизации кортикальных нейронов, или гипосинхронизации (в результате недостаточности укладки ментального пространства). Это согласуется с теорией о том, что именно такой разрыв функциональных связей в коре отвечает за коммуникационные, когнитивные и социальные нарушения у детей с аутизмом. Однако я должен заметить, что у детей с аутизмом гораздо чаще, чем в норме, возникает эпилептическая активность, которая может проявляться локально в отдельных зонах коры, возможно, в результате общего снижения количества кортико-кортикальных связей.
Подтверждение такого представления об аутизме появилось в нашей лаборатории за последние пару лет в рамках работы молодого сотрудника из Южной Кореи Бобе Ан. Сначала Бобе Ан установила, что в процессе ухаживания самцы мышей, подобно певчим птицам, исполняют сложные ультразвуковые напевы самкам, с которыми собираются совокупиться. Регистрируя одновременно мозговую активность самцов и самок, Бобе наблюдала появление сложной картины синхронизации между двумя животными. Интересно, что эта межмозговая синхронизация производила волну, распространявшуюся от задней части мозга животных к передней. Далее Бобе повторила эти эксперименты с генетически модифицированными самцами мышей с социальным дефицитом, примерно как при аутизме, взаимодействовавшими с нормальными самками. Бобе показала, что эти генетически модифицированные самцы поют меньше, чем нормальные мыши, и это может объяснить, почему они не устанавливают физический контакт с самками. Интересно, что когда Бобе одновременно регистрировала мозговую активность самок и социально нефункциональных самцов, она выявила отсутствие синхронной межмозговой активности в направлении от затылка ко лбу. Именно такой тип гипосинхронизации, возможно, имеет место у детей с аутизмом при общении с братьями и сестрами или другими людьми.
Но если эпилепсия так широко распространена и может быть связана с большинством патологий центральной нервной системы, почему ее не так часто диагностируют в лабораторных исследованиях? Дело в том, что универсальный метод диагностики эпилептической активности – электроэнцефалография головы – позволяет с очень высокой точностью обнаруживать патологический уровень синхронизации нейронной активности только в самой поверхностной части головного мозга человека, т. е. в коре. Если имеет место хроническая парциальная эпилепсия средней тяжести, ограниченная глубокими субкортикальными областями мозга, ЭЭГ не выявляет какой-либо электрической аномалии, по крайней мере на ранних стадиях заболевания. Регистрация таких повреждений просто-напросто остается за пределами возможностей современной электрофизиологической технологии в применении к человеку.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?