Текст книги "Истинный творец всего. Как человеческий мозг сформировал вселенную в том виде, в котором мы ее воспринимаем"
Автор книги: Мигель Николелис
Жанр: Биология, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 9 (всего у книги 28 страниц) [доступный отрывок для чтения: 9 страниц]
Но на подопытных животных эта проблема не распространяется. Например, в нашей лаборатории мы регулярно встраиваем от десятков до сотен микропроводников глубоко в мозг мышей, крыс или обезьян для измерения характера активности нейронов, которую невозможно изучать с помощью ЭЭГ. Этот подход позволяет понять, могут ли парциальные повреждения умеренной тяжести ограничиваться субкортикальными зонами и вызывать поведенческие реакции такого типа, как мы наблюдаем у пациентов. Именно таким образом мы с Кафуи обнаружили множество связанных с различными мозговыми нарушениями типов эпилептической активности умеренной тяжести в разных сетях нейронов.
Моя теория о том, что повреждения нейронов определяют общий нейрофизиологический путь клинического проявления большинства мозговых нарушений, также подтвердилась в серии клинических исследований, показавших, что эпилептическая активность часто наблюдается у пациентов с болезнью Альцгеймера – еще одним из самых распространенных мозговых нарушений нашего времени. В обзоре на эту тему в 2017 году Кейт Воссел с коллегами указывали, что наличие повреждений может приводить к ускоренной деградации когнитивной функции. Еще одно подтверждение этой связи следует из наблюдения о возможном положительном эффекте низких доз противосудорожных препаратов для пациентов с болезнью Альцгеймера, у которых на ЭЭГ наблюдаются изменения эпилептического типа. Если все эти данные подтвердятся, это может в значительной степени изменить наш подход к лечению пациентов с болезнью Альцгеймера в будущем. Я убежден, что в будущем не лекарства, а нейроимплантаты такого типа, как мы создали для изучения болезни Паркинсона, или продвинутые неинвазивные методы типа ТМС станут стандартным методом лечения значительного числа мозговых нарушений, включая те, которые сегодня относят к психиатрическим заболеваниям.
Это будущее представляется возможным благодаря многочисленным обнадеживающим разработкам и открытиям в формирующейся сфере нейромодуляции. Например, сейчас научное сообщество постепенно приходит к консенсусу относительно идеи о том, что многократные сеансы ТМС в области дорсолатеральной префронтальной коры эффективно ослабляют симптомы хронической депрессии. ТМС все еще не настолько эффективна, как электросудорожная терапия, до сих пор являющаяся наиболее эффективным методом лечения в случае тяжелой формы депрессии, но она показала положительные результаты в нескольких исследованиях на случайных выборках. Однако главным недостатком нового подхода является то, что пациенты должны часто приходить в больницу или клинику, чтобы проходить сеансы ТМС под наблюдением врачей. Ввиду этого важного ограничения я полагаю, что наш метод электростимуляции спинного мозга может быстро стать альтернативным способом лечения таких пациентов. Наши предварительные результаты уже показывают, что он позволяет ослаблять симптомы депрессии у пациентов. Поскольку это лечение осуществляется с помощью встроенного в спинной мозг нейрочипа без необходимости наблюдения специалиста, пациенты смогут проходить лечение постоянно или по периодическому расписанию стимуляции (например, по часу в день) в домашних условиях и им не придется регулярно посещать клинику. Аналогичным образом, если подтвердится роль кортикальных повреждений в развитии болезни Альцгеймера, в теории можно представить, что электрическая стимуляция спинного мозга также будет использоваться для частичного устранения когнитивного дефицита у таких пациентов или даже для замедления развития заболевания.
Существует интересная перспектива того, что в будущем ТМС спинного мозга воспроизведет результаты, которые мы получили с нашими имплантатами. На самом деле я предвижу сценарий, при котором пациенты с болезнью Паркинсона или Альцгеймера, депрессией и многими другими мозговыми патологиями смогут осуществлять ежедневные лечебные процедуры дома в терапевтическом кресле, в спинку которого встроена портативная система ТМС. В таком случае, пока пациент удобно сидит и читает книгу на протяжении часа или около того, встроенная в кресло система ТМС неинвазивным путем осуществляет электромагнитную стимуляцию спинного мозга, которая требуется для лечения пациента с мозговыми нарушениями[13]13
Подобная стимуляция, однако, будет воздействовать на мышцы позвоночника, что может внести определенный дискомфорт. – Прим. науч. ред.
[Закрыть]. Если в один прекрасный день такая домашняя терапия мозговых нарушений будет реализована на практике, мы станем свидетелями гигантского прорыва в организации клинической помощи и в улучшении качества жизни миллионов пациентов, страдающих от разнообразных мозговых нарушений, не говоря уже о колоссальном сокращении расходов нашей системы здравоохранения.
Забавно, что, если терапия мозга на основе магнитных полей когда-нибудь достигнет предполагаемой мною степени распространенности, она подкрепит популярное и рожденное столетия назад мнение о том, что магнетит (природный камень с магнитными свойствами) обладает некой лечебной магнитной силой. Эту идею в XIII веке распространял англичанин Бартоломью, который писал: «Этот тип камня [магнит] возвращает мужей к женам и увеличивает элегантность и шарм речи. Кроме того, как и мед, он лечит водянку, раздражительность, лисью чесотку и ожоги… Если [магнит] положить на голову целомудренной женщины, яды его немедленно ее окутают, [но] ежели она прелюбодейка, то вскочит сама с постели, убоявшись наваждения».
Как бы удивился Бартоломью, если бы увидел, насколько далеко мы продвинулись в использовании электромагнетизма в медицинских целях!
Прежде чем продолжить, я хочу отдать должное тем, кто до меня изучал электромагнитные свойства нейронов в качестве возможного субстрата для построения общей теории функционирования мозга. За последние шестьдесят лет несколько исследователей выдвигали гипотезы о том, что слабые электромагнитные поля нейронов играют ключевую роль в функционировании человеческого мозга. Одна из первых попыток создать теорию мозга была сделана адептами гештальттерапии, которые считали, что для понимания нейрофизиологических механизмов, лежащих в основе высших когнитивных функций, следует изучать мозг глобально, а не как мозаику из отдельных частей. На основании этого философского подхода в начале 1950-х годов два известных сторонника гештальтпсихологии, Арон Гурвич и Вольфганг Кёлер, выдвинули идею о том, что электрические поля, создаваемые большими популяциями нейронов, таят в себе секреты человеческого восприятия. Тезис Гурвича и Кёлера решительно отвергали некоторые современные им американские нейробиологи (такие как Карл Лешли и лауреат Нобелевской премии Роберт Сперри), которые в конце 1950-х годов разработали и провели несколько экспериментов на животных с целью опровергнуть заявление Кёлера. Хотя в большинстве современных учебников по психологии говорится, что эти эксперименты успешно доказали несостоятельность идеи Кёлера, когда я через шестьдесят лет вновь обратился к исходным результатам Сперри и Лешли, я не понял, как это возможно. Интересно, что тогда, в 1950-х годах, этого не понял и сам Кёлер. Причина нашего с Кёлером скептицизма заключается в том, что из экспериментов Сперри или Лешли вовсе не следовало, что электромагнитные поля не играют никакой роли в функционировании мозга. Например, Лешли в своих экспериментах наносил на большую часть поверхности мозга обезьяны множество полосок золота. Другому животному он ввел в ограниченные области зрительной коры в обоих полушариях десяток золотых шпилек. Лешли утверждал, что эти манипуляции должны ослабить электрические поля, о которых говорил Кёлер, и тем самым ухудшить способность обезьяны решать зрительные задачи. Далее Лешли в одном эксперименте протестировал обеих обезьян, проверив их способность выполнять очень простую зрительную задачу, которой они обучились до имплантации золотых полос и шпилек. Поскольку обе обезьяны справились с заданиями так же хорошо, как раньше, Лешли заключил, что опроверг теорию Кёлера. Забавно, что Лешли никогда не пытался использовать более сложное визуальное задание или хотя бы зарегистрировать активность мозга во время эксперимента. Хотя Сперри был менее категоричен в интерпретации собственных результатов, он сообщал, что имплантация танталовых шпилек в головной мозг кошек не нарушает зрительное восприятие животных.
С учетом того, что нам известно о мозге сегодня, оба этих грубых вида манипуляций с корой ничего не говорят о влиянии электромагнитных полей на работу мозга (или его отсутствии). Говоря попросту, вопреки представлениям Лешли и Сперри, использованные ими золотые или танталовые имплантаты не могли оказывать значительного влияния на электромагнитные поля мозга. И по этой причине из их экспериментов ничего не следует. Любопытно, что на протяжении последних семидесяти лет любые новые теории в сфере функционирования мозга немедленно опровергались большинством нейробиологов с отсылкой на эти грубые, неполноценные и неубедительные эксперименты. Но идея продолжала жить, хотя и в научном подполье современной нейробиологии.
Позднее, пытаясь объяснить нелокальный аспект памяти, американский нейробиолог и бывший коллега Карла Лешли Карл Прибрам предположил, что мозг может работать как лазерная голограмма. В рамках его модели локальные электрические волны активности нейронов коры, создаваемые главным образом на уровне дендритов, интерферируют друг с другом, запасая информацию в виде серии локальных голограмм. Поэтому, в соответствии с идеей Прибрама, кора содержит не одну, а много таких локальных голограмм, организованных в виде так называемой голономии. Основанную на этих представлениях теорию Прибрама стали называть голономной теорией функционирования мозга. Выдвигая эту теорию, Прибрам находился под значительным влиянием работы американского физика Дэвида Бома.
Также важно подчеркнуть, что еще в 1942 году Анжелик Арванитаки показала, что, если аксоны гигантского кальмара разместить в непосредственной близости от среды с пониженной проводимостью, один аксон может подвергаться деполяризации за счет активности, возникающей в соседнем нервном волокне. Это явление стали называть эфаптическим взаимодействием нейронов. Недавние исследования показали, что похожие взаимодействия могут индуцироваться или модулироваться путем наложения на нервную ткань электромагнитных полей.
В 1990-х годах заслуженный американский нейрофизиолог из университета Нью-Йорка Эрвин Рой Джон вновь подогрел интерес к электромагнетизму нейронов, предположив, что электромагнитные поля нейронов могут заставлять отдельные нейроны, уже находящиеся у порога возбуждения, производить потенциал действия. Э. Р. Джон считал, что не отдельные нейроны, а популяции нейронов являются теми функциональными единицами, которые в мозге животных отвечают за вычисления и в конечном итоге делают из них разумных существ. Таким образом, единственный способ осуществлять идеальную синхронизацию активности гигантского числа повсеместно распределенных нейронов (что необходимо для выполнения всех главных неврологических функций мозга) заключается в использовании преимущества слабых – но достаточных для выполнения конкретного задания – электромагнитных полей. С помощью таких полей идеальная синхронизация нейронов всей коры достигается очень быстро. Много лет назад Э. Р. Джон прислал мне один из своих последних обзоров на эту тему, который я вновь изучил, когда писал данную книгу. Я нашел в нем идеи, очень похожие на те, что представлены здесь в рамках моей собственной теории.
Примерно пятнадцать лет назад молекулярный генетик Джонджо Макфадден из Университета Суррея вывел теорию, названную им теорией осознанной электромагнитной информации, в которой предположил, что сознание и другие мозговые функции высшего порядка определяются электромагнитной активностью нейронов. Макфадден опубликовал серию статей, где излагал подробности своей теории и бесчисленные результаты работ других лабораторий, которые могли ее подтвердить. Однако, как это произошло с идеями Гурвича и Кёлера, а потом с идеями Э. Р. Джона, подавляющее большинство нейробиологов вновь отринули идею о наличии какой-либо роли электромагнитных полей в функционировании мозга.
Электромагнетизм – одна из четырех фундаментальных сил, действующих в природе. И по этой причине электромагнитные поля повсеместно обнаруживаются в космосе, а их величина колеблется от невероятного числа гигатесл, как в случае магнетаров (массивных нейтронных звезд), до нескольких микротесл, как в случае поля вокруг Земли, действующего в качестве защитного экрана, без которого жизнь на нашей планете была бы невозможна. На краю гелиосферы – гигантского магнитного пузыря, определяющего пределы солнечного магнитного поля, распространяющегося за границы орбиты Плутона, – сила магнитного поля Солнца достигает своего минимального значения – порядка сотни пикотесл. Если разделить этот солнечный минимум на 100, получится значение, близкое к силе магнитного поля человеческого мозга, – 1 пикотесла. Поэтому не приходится удивляться, что мало кто из нейробиологов пытался учитывать потенциальную роль столь слабого поля в создании большинства, если не всех, наших самых ценных мозговых функций. Я не считаю, что такая быстрая смена позиции уже полностью оправдывается экспериментальными результатами. Скорее, ситуация обратная: вопрос о важной роли электромагнетизма нейронов для функционирования мозга остается столь же открытым, как и в начале 1950-х годов. И по этой причине я постоянно представляю себе, как мы будем удивлены однажды в ближайшем будущем, когда получим очевидные экспериментальные доказательства, демонстрирующие, что для построения всей человеческой вселенной нужна лишь 1 пикотесла магнетизма.
Глава 6
Почему Истинный творец всего – не машина Тьюринга
Как-то утром летом 2016 года одна строка, напечатанная в престижном американском журнале Scientific American, мгновенно окончательно разбудила меня и привела в чувство. Она гласила: «Искусственные синапсы могут позволить суперкомпьютерам имитировать человеческий мозг».
Корейский материаловед Тае-Ву Ли сообщил журналистам, что теперь, когда ученые научились производить крохотные транзисторы, способные имитировать синапсы между нейронами, вот-вот будет реализована давнишняя мечта о построении машины, напоминающей мозг. Источая энтузиазм, Ли рассказал, что это «может привести к созданию более качественных роботов и самодвижущихся машин, извлечению данных, медицинской диагностике, анализу фондовых рынков и другим умным интерактивным системам и машинам в будущем». В статье говорилось, что благодаря примерно квадрильону связей между 100 миллиардами нейронов (реальное число ближе к 86 миллиардам) человеческий мозг может выполнять порядка 10 квадрильонов операций в секунду. Для сравнения: на тот момент самый быстрый в мире китайский суперкомпьютер Tianhe-2 работал с максимальной скоростью 55 квадрильонов в секунду. Однако Tianhe-2 для работы нужно в миллион раз больше энергии, чем человеческому мозгу. Понятный энтузиазм Ли был связан с тем, что его последняя версия искусственного синапса нуждалась лишь в 1,23 фемтоджоуля энергии для одной синаптической передачи – около одной восьмой от того, что требуется человеческому синапсу. Поэтому Ли считал, что, если разместить примерно 144 таких искусственных синапса на четырехдюймовой пластине и соединить их проволокой диаметром 200–300 нанометров, ему с коллегами удастся сделать важнейший шаг в воспроизведении работы человеческого мозга. Для этого, как он сообщил, нужно лишь дождаться некоторых усовершенствований трехмерной печати, чтобы собрать из этих пластинок трехмерные структуры, – и тогда почти из ничего появится искусственный мозг, способный превзойти по вычислительной способности серое вещество нашего собственного мозга.
Мир не в первый раз услышал прогноз о скорейшем падении Истинного творца всего с его пьедестала; аналогичные заявления делались регулярно со времен промышленной революции. Понятное дело, ни одна из предыдущих попыток не приближалась к отметке 1,23 фемтоджоуля на синапс. Однако на протяжении более трех столетий, какой бы ни была самая передовая технология времени – паровые машины, механические устройства, электронные гаджеты и начиная с 1936 года сложные цифровые машины, включая суперкомпьютеры, состоящие из тысяч взаимосвязанных микропроцессоров, – обязательно находились те, кто пророчил скорое воспроизведение специфических способностей человеческого мозга искусственными устройствами.
И неизбежно все эти начинания с треском проваливались.
Тем не менее с началом информационной эры наметилось неуклонное распространение идеи о том, что цифровые компьютеры в конце концов превзойдут по способностям человеческий мозг. Иногда, если судить по горячности, с которой делаются эти заявления, возникает впечатление, что сторонники данной идеи считают свой прогноз почти божественным пророчеством и что ничто не остановит нас на пути его реализации в ближайшем будущем. Но даже несмотря на множество предсказаний футурологов, а также практиков и энтузиастов в сфере искусственного интеллекта, нет никаких конкретных подтверждений того, что нас вскоре ждет этот самый революционный технологический прорыв в истории человечества.
Вместо убедительных подтверждений часто, особенно в последнее десятилетие, нам предлагают достаточно наивный аргумент вроде того, с которого начиналась данная глава, заключающийся в том, что для воспроизведения сложных мыслительных способностей нашего мозга нам нужно лишь правильно соединить сотни миллионов похожих на нейроны и энергетически эффективных транзисторов, а затем нажать на кнопку «ВКЛ».
Я готов с этим поспорить.
Идею о том, что внутреннюю работу человеческого мозга можно свести к алгоритму и воспроизвести с помощью цифровой логики, следует рассматривать лишь в качестве очередного постмодернистского мифа, урбанистической легенды или примера из эпохи постправды – времени, когда ошибочное или ложное заявление, повторенное множество раз и широко распространенное в обществе, начинает восприниматься в качестве истины. Мысль о достижимости уровня сложности нашего мозга просто за счет монтажа чрезвычайно большого количества эффективных электронных элементов не только очень далека от реальности, но при глубоком анализе вообще не имеет шанса на успешное воплощение – ни сейчас, ни когда-либо.
Очень немногие из тех, кто верит в эту идею, перестали считать, что человеческий мозг является истинным создателем цифровых машин и программ, а не наоборот. Слепая вера в то, что созданная человеком технология обернется против своего создателя и превзойдет его, постулирует, что система любого рода (скажем, наш человеческий мозг) способна создать нечто более сложное, чем она сама! Однако сторонники этого тезиса, кроме бесконечного озвучивания своей почти религиозной убежденности, не могут достоверно объяснить происхождение этой избыточной сложности. Я считаю подобное предположение очевидно ложным, поскольку оно нарушает многие общепринятые логические теоремы, включая две теоремы Курта Гёделя о неполноте и более позднюю формулировку, названную теоремой сложности и предложенную аргентинско-американским математиком Грегори Хайтином. По мнению Хайтина, формальная система (такая как компьютерная программа) не может создать подсистему (другую программу), превосходящую ее саму по сложности. В более формальной версии, представленной Джоном Касти и Вернером Депаули в книге «Гёдель: Жизнь логики, разума и математики», теорема Хайтина о сложности формулируется так: существуют числа, имеющие такую сложность, что ни одна компьютерная программа не может их генерировать.
Очевидно, что совокупно труды Гёделя и Хайтина логически противоречат гипотезе о том, что если бы человеческий мозг был устройством компьютерного типа со сложностью X, он мог бы создать нечто (вроде сверхразумного искусственного устройства) с уровнем сложности выше X.
Поскольку эталоном в этом сравнении является цифровой компьютер, имеет смысл начать наш рассказ с возвращения к историческим корням этой удивительной машины. Любой современный цифровой компьютер представляет собой одно из множества возможных конкретных воплощений абстрактного вычислительного устройства, впервые предложенного британским математиком и логиком Аланом Тьюрингом в 1936 году. Этот ментальный конструкт, названный в его часть универсальной машиной Тьюринга (УМТ), и сегодня описывает функционирование любой цифровой машины – от портативного компьютера до самого мощного суперкомпьютера планеты. Универсальная машина Тьюринга работает на основании встроенной таблицы запрограммированных пользователем инструкций, последовательно считывая и оперируя символами с поступающей в машину пленки. По мере прочтения символов на пленке, последовательно одного за другим, машина Тьюринга использует внутреннюю таблицу инструкций (программу) для выполнения различных логических операций, а затем записывает результаты.
Звучит просто, не правда ли? Но, к лучшему или к худшему, большинство технологических прорывов последних восьмидесяти лет, включая появление самого революционного инструмента массовой коммуникации в истории нашего вида – интернета, можно рассматривать в качестве побочного продукта абстрактной ментальной игрушки, возникшей в глубинах разума гениального математика.
Идея о том, что все природные явления можно симулировать на цифровом компьютере, во многом почерпнута из своеобразной и ошибочной интерпретации так называемого тезиса Чёрча – Тьюринга, исходно сформулированного Тьюрингом и американским математиком Алонзо Чёрчем. По сути, этот тезис гласит, что, если известна серия строго определенных этапов решения конкретного математического уравнения или задачи (эта серия этапов называется алгоритмом), цифровой компьютер способен воспроизвести эту операцию и найти решение данного уравнения. Такое уравнение относят к исчислимым функциям.
Здесь-то и начинается путаница.
Исходная гипотеза Чёрча – Тьюринга относилась исключительно к вопросам, связанным с формальным математическим моделированием. Однако с тех пор многие авторы интерпретировали гипотезу Чёрча – Тьюринга в таком ключе, как если бы она устанавливала предел вычислений для всех природных явлений. В целом эти авторы считали, что ни одно физическое вычислительное устройство не может превзойти по способностям машину Тьюринга. Звучит безобидно, но, игнорируя тот факт, что вычисления по Тьюрингу относятся только к области формальной математики, мы рискуем породить множество проблем и ошибочных выводов. На самом деле, если задаться вопросом о том, является ли мозг человека или других животных просто машиной Тьюринга, мы обнаружим, что вычислительная теория Тьюринга предполагает серию допущений, исключающих ее прямое приложение к сложным биологическим системам, таким как мозг. Например, в машине Тьюринга представление информации является формальным (т. е. абстрактным и синтаксическим, как 1+1), а не физическим и семантическим, как в большинстве биологических систем. В таком мозге, как наш, особый тип информации – информация Гёделя – физически записывается в нервную ткань, из которой состоит центральная нервная система (см. главу 3). Семантический анализ показывает, что даже простая фраза типа «Да ты меня ограбил!» приобретает разные значения в зависимости от контекста: это может быть дружеская шутка или серьезное обвинение. Люди легко улавливают правильный смысл, но машина Тьюринга, основанная на битах, испытывает большие трудности при анализе такого предложения.
Тем не менее многие программисты и нейробиологи использовали тезис Чёрча – Тьюринга в качестве главного теоретического основания для предположения, что мозг любого животного, включая нас, может быть приведен к алгоритму и симулирован на цифровом компьютере. Эти ученые полагают, что успешный подход к использованию симуляций механических систем можно беспрепятственно распространить на изучение биологических систем, сложность которых намного превосходит сложность любого созданного человеком устройства. Эта философская позиция называется компьютационализмом: данный термин связывают с именем Хилари Патнэма, который предложил его в 1963 году в книге «Мозг и поведение», но затем его защищали многие другие философы, такие как Джерри Фодор. Критики компьютационализма рассматривают этот тезис исключительно в качестве мистической фантазии. Поскольку множество людей ныне считают, что мозг похож на цифровой компьютер, использование моего определения органического компьютера при обсуждении мозга животных приобретает в нашем контексте особый смысл.
В экстремальной форме компьютационализм не только постулирует, что весь спектр человеческого опыта можно воспроизвести и инициировать с помощью цифровой симуляции, он также подразумевает, что в ближайшем будущем благодаря экспоненциальному росту мощности компьютеров машины смогут полностью заменить мыслительные способности человека. Это последнее утверждение, высказанное Реем Курцвейлом и другими, называют гипотезой сингулярности. В книге «Эпоха духовных машин: когда компьютеры превзойдут человеческий разум» Курцвейл выдвигает радикальную версию тезиса Чёрча – Тьюринга: «Если проблема не решается с помощью машины Тьюринга, она также неразрешима для человеческого разума». Однако истоки такого видения восходят к 1940-м и 1950-м годам, когда несколько прежних коллег Клода Шеннона из Массачусетского технологического института, такие как Норберт Винер и Уоррен Маккалок, а также многие другие уважаемые ученые, среди которых был и Джон фон Нейман, начали шире смотреть на многие спорные вопросы, чтобы сформулировать совершенно новую парадигму для определения человеческого разума и процесса обработки информации человеческим мозгом. Это движение было названо кибернетикой и на протяжении следующего десятилетия или около того обеспечивало интеллектуальные основы и обоснования той сферы исследований, которую теперь называют сферой искусственного интеллекта.
Как пишет в своей великолепной книге «Как мы становимся постлюдьми» моя коллега из Университета Дьюка Н. Кэтрин Хейлс, эта группа провела серию встреч, названных конференциями Мэйси по кибернетике[14]14
Конференции Мэйси – серия научных встреч ученых из разных дисциплин (не только специалистов по кибернетике), проходивших в Нью-Йорке с 1941 по 1960 год при поддержке фонда Джозайи Мэйси-младшего.
[Закрыть], чтобы создать совершенно новую сферу исследований. Они объединили теорию информации Клода Шеннона, модель Уоррена Маккалока с индивидуальными нейронами в качестве единиц обработки информации, новую архитектуру цифровых компьютеров на основе бинарной логики и цифровых сетей Джона фон Неймана и концепцию Норберта Винера о восприятии машин и человеческих существ в качестве представителей одного класса автономных самонаправляющих устройств. Хейлс пишет: «Результатом этого революционного предприятия стало не что иное, как новый способ восприятия человеческих существ. С этих пор людей стали воспринимать в первую очередь как обрабатывающих информацию субъектов, по сути напоминающих разумные машины».
Людей вдруг стали воспринимать так, как будто они состоят из огромного числа битов, и в таком случае их разум, историю жизни, уникальный перцептивный опыт и воспоминания, их вкусы и решения, любовь и ненависть, вплоть до составляющей их органической материи, могут воспроизвести (и в какой-то момент воспроизведут) машины. Как считали кибернетики, цифровые машины будущего смогут загружать, ассимилировать, повторять, воспроизводить по своему желанию и, главное, симулировать все, что делает человека человеком. Таких разумных машин еще не существовало в то время, когда проходили конференции Мэйси (конечно же, их нет и до сих пор), но, как и современные пророки от мира искусственного интеллекта, некоторые участники кибернетического движения, по-видимому, считали, что это был лишь вопрос времени и, главным образом, вопрос уровня развития технологии. В этом контексте возникло много исследовательских программ (в том числе программа «сильного искусственного интеллекта», которая не смогла реализовать предшествовавшие оптимистические предсказания), нацеленных на создание аналогичных мозгу машин или по меньшей мере на симуляцию физиологического поведения мозга животного с помощью суперкомпьютеров (такие проекты, как Brain Project компании IBM и Human Brain Project Европейского союза). В 1968 году руководитель лаборатории искусственного интеллекта в МТИ Марвин Минский заявил: «За одно поколение мы получим разумные компьютеры, как HAL в фильме „2001“». Понятно, что его предсказание не сбылось, и недавно Минский объявил, что программы по симуляции мозга имеют очень небольшой шанс на успех.
Как рассказывает Хейлс в своей книге, довольно интересно, что Клод Шеннон не был склонен экстраполировать свое довольно узкое определение информации на другие сферы, в которых происходит обмен информацией. Как показала история, эта осторожность Шеннона была абсолютно оправданна. Вообще говоря, его определение информации никоим образом не учитывало смысла, контекста, семантики или, если уж на то пошло, особенностей среды. Более того, основываясь исключительно на бинарной логике и жестком цифровом синтаксисе, что невероятно облегчало применение алгоритмов в цифровых машинах, Шеннон также отделил свою идею от богатых в семантическом плане и зависящих от контекста процессов человеческого мышления и функционирования мозга.
В целом нейробиологи полагают, что высшие неврологические функции и животных, и человека проистекают из сложных эмерджентных свойств мозга, хотя происхождение и природа этих свойств остаются спорными. Эмерджентными свойствами обычно называют общие признаки системы, не определяющиеся ее индивидуальными компонентами. Такие эмерджентные свойства встречаются в природе повсеместно – там, где элементы взаимодействуют и сливаются между собой с образованием единого целого, как стая птиц, косяк рыб или фондовый рынок. Такие системы называют сложными. Таким образом, изучение сложных систем стало центром внимания в широком диапазоне дисциплин – от естественных наук, таких как химия и биология, до общественных наук, включая экономику и социологию.
Мозг животного – пример архетипа сложной системы. Следовательно, поведение мозга определяется разными уровнями организации мозга: его молекулярным, клеточным и сетевым строением вплоть до всей нервной системы в целом. Поэтому для точного моделирования мозга конкретного животного мы должны включить в описание его сложности обмен между центральной нервной системой и внешними элементами, такими как окружающая среда и мозг других существ, поскольку все они также взаимодействуют с конкретным изучаемым мозгом и непрерывно его модифицируют.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?