Электронная библиотека » Наталья Бехтерева » » онлайн чтение - страница 4


  • Текст добавлен: 8 апреля 2014, 13:44


Автор книги: Наталья Бехтерева


Жанр: Медицина, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 28 страниц) [доступный отрывок для чтения: 9 страниц]

Шрифт:
- 100% +

Очень важно использовать такие тесты, нейрофизиологические корреляты которых могут анализироваться и сопоставляться. Мы специально подчеркиваем это не потому, что в психологии не применяются тесты такого рода. Они используются, данные ответов подвергают специальной обработке, строят различные графики и кривые на основе статистической обработки данных. Но в психологии и, в частности, в ее ветви, наиболее близкой к нейрофизиологическому исследованию психической деятельности, – нейропсихологии – применяются и рекомендуются тесты, в которых задание представляет собой рассказ, ответ больного – пересказ этого рассказа, а о тех или иных нарушениях судят на основе близости пересказа к заданию или степени различных отклонений от него. Такой прием оказался очень эффективным для изучения нарушений психической деятельности и памяти при массивных поражениях лобных долей и их зон (Лурия, Хомская, 1966; Лурия, 1969, 1970, 1975; Хомская, 1972). Исследования, осуществленные с помощью такого метода, как видно из трудов А. Р. Лурия и его учеников, существенно обогатили нейропсихологию. Они в то же время не только сегодня, но и в ближайший период вряд ли окажутся пригодными для сочетанного нейрофизиологического и психологического изучения нейрофизиологических коррелятов психических процессов. Это же относится и к ряду других собственно психологических исследований, что и определило включение данного психологического экскурса в главу, посвященную нейрофизиологическим исследованиям.

С целью накопления достаточного для убедительной статистики количества данных использовались простые тесты в виде сравнения по величине двух предъявляемых с помощью тахистоскопа или светодиодной матрицы цифр, причем варьировали цифры, а сравнение их проводилось в том случае, если между ними был определенный знак (буква). Появление другого знака по условиям исследования требовало повторения второй цифры.

Исследование нейронной активности оказалось эффективным нейрофизиологическим приемом для изучения мозговых механизмов опознания образов. При решении этой задачи предъявлялись (обычно с помощью тахистоскопа) значимые и незначимые изображения, физические характеристики которых были сходны или сопоставимы. Придание значения исходно незначимому изображению, квазислову, неизвестному больному иностранному слову позволяло исследовать нейрофизиологические корреляты процесса обучения и т. д. (Бехтерева, Кропотов, 1984; Гоголицын, Кропотов, 1983).

Но вернемся к собственно нейрофизиологической стороне исследования. Запись импульсной активности нейронных популяций проводилась до предъявления различных, и в частности психологических, тестов во время их реализации и после. За редким исключением наблюдение за динамикой импульсной активности на экране осциллографа не давало убедительных представлений о наличии или отсутствии перестроек. Иногда заметно было увеличение или уменьшение количества разрядов, что, как правило, в так называемой интегральной кривой – огибающей текущей частоты – отражалось в виде значительных отклонений от фонового уровня. Изменения в импульсной активности отдельных нейронов и нейронных популяций выявлялись при усреднении данных, полученных при предъявлении достаточно большого числа (до 100 и более) однотипных тестов методом постстимульной гистограммы. Однако важной задачей анализа импульсной активности было обнаружение наиболее тонких, динамичных перестроек ее – паттернов – и расшифровка их, соотнесение со свойствами предъявляемого сигнала и в более общем виде – теста.

Решение этой задачи потребовало применения системы приемов анализа, одним из вариантов которого было выделение этого паттерна, его расщепление на элементы и представление его и его элементов в той форме, в которой они могли далее использоваться в качестве эталонов, закладываемых в ЭВМ, для обнаружения в других отрезках импульсной активности аналогичных паттернов, реализации эталонного поиска. Эталонный поиск обеспечил возможность, выявляя паттерны, соотносимые с различными словами, находить в импульсной активности мозговые корреляты слов, не присутствующих прямо ни в задании, ни в ответе. При всей динамичности, неустойчивости и отсюда трудности усреднения данных паттернов именно это позволило решать более сложные задачи нейрофизиологического исследования процессов типа умозаключения и принятия решения, перейти к изучению собственно мыслительной деятельности человека.

Статистически наиболее значимые результаты, сопоставимые с результатами экспериментальной нейрофизиологии, были получены при использовании приема построения постстимульных гистограмм (Гоголицын, Кропотов, 1983). Исследовались также интервальные последовательности, причем если первоначально акцент делался на изучении абсолютных значений интервалов в последовательных разрядах нейронов, то далее из-за динамичности этого показателя учитывались соотношения интервалов между последовательными разрядами (Шкурина, 1984).

В связи с обеспечением мыслительной деятельности многозвеньевой системой важным аспектом исследований было изучение соотношений нейронных разрядов в активных зонах, звеньях этой системы, расположенных в различных корковых и подкорковых структурах (Медведев и др., 1986). Так как мозг взрослого человека опознает объекты, слова и т. д. с одного предъявления, была поставлена и в первом приближении решена задача изучения мозговой нейродинамики не способами накопления, а в ходе одной мыслительной операции (Гоголицын, Пахомов, 1984, 1985; Бехтерева и др., 1985а). Это – принципиально новый этап изучения все еще молодой научной проблемы нейрофизиологии мыслительных процессов.

Математико-инструментальной обработке подвергались результаты исследования и других физиологических процессов с помощью приемов, составляющих комплексный метод изучения мозга, причем аппарат обработки варьирует в зависимости от задач исследования.

Запись физиологических процессов проводилась при бодрствующем спокойном состоянии больного, при засыпании и во время сна, а также при выполнении простых по сравнению со всей сложностью психической деятельности и сложных по сравнению с другими тестами психологических проб, поскольку предлагали сжимать руку в кулак и разжимать ее, сгибать и разгибать в локте, поднимать и опускать. При этом предлагалось проделывать все это правой или левой рукой, как правило, повторяя однотипные движения многократно. Двигательные пробы этого активного типа включали и движения ног. В отдельных исследованиях конечности в разных суставах сгибались исследователем или для этого использовались простые аппаратурные решения – пробы так называемого пассивного типа. Двигательные пробы максимально разнообразились, особенно у тех больных, у которых нарушения в первую очередь касались двигательной сферы.

Специального внимания заслуживает вопрос применения эмоциогенных тестов. Последние широко известны в психологии и очень разнообразны. Они применялись и в наших исследованиях и подробно описаны В. М. Смирновым (1976). Однако, рассматривая нейрофизиологический аспект вопроса, анализируя не собственно эмоциональные реакции, а выявляя их мозговую основу, следует подчеркнуть, что именно изучение нейрофизиологических механизмов эмоциональных реакций таит в себе некоторые подводные камни. Перефразируя известный философский тезис о том, что в одну реку нельзя войти дважды, можно сказать, что, применяя сходный и даже один и тот же эмоциогенный тест, трудно дважды вызвать аналогичную реакцию. Устрашающее в картах Роршаха быстро перестает устрашать, страшная новость второй раз воспринимается иначе, чем в первый, – и т. д. и т. п. А кроме того, все то, что с грехом пополам этически приемлемо в исследованиях, проводимых у здоровых (искусственное создание эмоционально положительных и эмоционально отрицательных ситуаций и т. п.), с большой осторожностью и только по прямым показаниям может применяться у больных. Если нужно уточнить эмоциогенную зону в мозгу, необходимо и оправданно применить эмоциогенный тест. Еще одиндва раза повторить сходную пробу нужно для дифференцирования неспецифической и собственно эмоциогенной перестройки в мозговых зонах. Но для убедительности нейрофизиологического анализа очень неплохо было бы повторить тест еще несколько раз. Медицинская этика – против. Действительно, вряд ли будет способствовать успеху лечения плохое настроение больного. А ведь важно проанализировать не только положительные, но и отрицательные эмоции, вернее, их механизм. И с другой стороны, плохо повторять принципиально те же, именно эмоциогенные, пробы… Но об этом уже было сказано. Отсюда бо́льшая часть изучения мозгового обеспечения эмоциональных реакций строится на индивидуальных наблюдениях, и требует, таким образом, для обобщений очень трудоемких массивных исследований.

Не очень просто обстоит дело с вегетативными коррелятами эмоций, причем лишь отчасти по мотивам этического порядка, а в основном из-за быстрой адаптации к допустимым по медико-этическим соображениям воздействиям. Именно в связи с этими факторами собственно нейрофизиологическое изучение эмоциональных и вегетативных реакций ведется и будет проводиться далее, но основным оказывается исследование мозговой структурно-функциональной организации и механизмов обеспечения эмоций.

Когда говорилось о значении комплексного метода изучения мозга, акцент был очень определенным на изучении его собственно физиологических показателей. Этот акцент по вполне понятным причинам останется, однако очень важно подчеркнуть, что комплексный метод – это физиологическое исследование мозга в разных физиологических и патологических состояниях и обязательно при реализации заданной деятельности. Это – прием изучения не только нейрофизиологии, но и в более широком плане функции мозга. Возможность изучать нейрофизиологию психической деятельности обусловлена не только прогрессом нейрохирургии, обеспечившим исследования в условиях прямого контакта с мозгом человека. В большой степени она обусловлена приходом в последние годы в медицину и физиологию одаренных представителей точных наук. Не тех, кого отторгла своя специальность, а тех, кто не побоялся сложности трудно формализуемых закономерностей, имеющих большое количество причинно не уточненных исключений в далеко не до конца созревших как науки медицине и биологии, действующих при многих, не всегда поддающихся точному учету условиях. Эти специалисты сумели выжать максимум из традиционных методов анализа и приборов и в ряде направлений пошли нетрадиционным для биологии и медицины путем (рис. 1, 2).

Сначала это был путь расширения приемов анализа на каждой ступени логической его цепи, а затем путь кристаллизации системы анализа, имеющей необходимый и достаточный элемент избыточности, целесообразный жесткий скелет, обрастающий гибкими ветвями при любой новой необходимости.

Рис. 1. Стереотаксический аппарат множественного наведения. Функциональные блоки: 1 — зубная пластина; 2 — основание аппарата; 3 — ориентирующее устройство; 4 — направляющее устройство; 5 — фантом (модель стереотаксических координат мозга и основание аппарата)


Таким образом, создавались и создаются методы, все более адекватные сложным проблемам физиологии мозга человека. Это – не славословие технике. Это – подчеркивание тех новых возможностей в комплексном изучении мозга, которые открываются при сближении наук о человеке с так называемой точной ветвью естествознания. Как специально подчеркивалось во всех наших предыдущих публикациях, комплексный метод включает не только более или менее подробно рассмотренные выше методики. В него входят регистрация и изучение физиологических и патологических показателей деятельности мозга и организма при диагностических и лечебных электрических воздействиях.

Результаты таких исследований наиболее полно представлены в отечественной и особенно зарубежной литературе. Достаточно упомянуть монографии Умбаха (Umbach, 1966), Сем-Якобсена (Sem-Jacobsen, 1968), Н. П. Бехтеревой (1971, 1974, 1980б), Дельгадо (Delgado, 1971), Валенштейна (Valenstein, 1973), В. М. Смирнова (1976), Н. П. Бехтеревой с соавторами (1977в, 1978) и главы в монографиях и сборниках (Данько, Каминский в кн.; Бехтерева и др., 1978; Ojemann, 1979, и др.). Кроме того, большое количество результатов стимуляций мозга описано в статьях тех исследователей, которые осуществляли электрическую стимуляцию при так называемых острых, одномоментных открытых и стереотаксических операциях по поводу гиперкинезов (Hassler et al., 1960, 1965).

Рис. 2. Обсуждение в лаборатории


Стереотаксическая неврология – новое научное направление, созданное В. М. Смирновым (1976), учение о функциональных спектрах, потенциях отдельных зон различных структур мозга человека, почти целиком базируется на результатах точечной электрической стимуляции мозга при паркинсонизме. Электрическая стимуляция, как указывалось выше, широко применяется при эпилепсии для уточнения эпилептогенных очагов и зон, тормозящих эпилептогенез. Полученные данные позволяют судить и о функциональных спектрах структур, и об изменениях физиологических показателей мозга. Предполагается, что электрическая импульсная стимуляция вызывает активацию стимулируемой структуры. Действительно, по-видимому, при оптимальных параметрах тока по отношению к структуре такого рода эффект возможен. Однако изменение параметров стимуляции может не только вызывать эффекты разного знака, но и просто различные эффекты.

Например, не только мы (Бехтерева и др., 1966), но и другие авторы (Van Buren, 1963; Sem-Jacobsen, 1968) показали, что электрическая стимуляция редкими импульсами одной из зон хвостатого ядра вызывает распространенный эффект типа тормозного, причем угнетаются и патологические паркинсонические проявления. Эффект частой стимуляции был противоположным. Который же из них отражает активацию структуры? Аналогия с раздражением нервов здесь вряд ли уместна, так как при электрической стимуляции мозга оказывается одновременное воздействие на множество нервных клеток, имеющих исходно разные характеристики и находящихся к моменту стимуляции в разном состоянии.

Мы говорим и пишем – «диагностическая, лечебная стимуляция». А стимуляция ли? Может быть, точнее – мягкое, повторное угнетающее воздействие? Пытаемся спорить: при воздействии током наблюдаются так называемые эффекты возбуждения. Возражаем: а при паркинсонизме мы видим симптом – тремор, повышение тонуса, причем в патогенезе паркинсонизма важную роль играет нарушение в тормозящих дофаминергических структурах. И так далее и тому подобное. Pro и contra при решении вопроса не в оценке внешнего эффекта, а в физиологическом контроле за состоянием нервной ткани в области электрического воздействия до, во время (желательно!) и после него. Измерив медленные электрические процессы и оценив состояние активности нейронов, ответить на эти вопросы можно.

Дальнейшее накопление материалов даст возможность более уверенно говорить об истинной стимуляции в тех случаях, когда как будто создаются электрические предпосылки для нее, и наоборот, в тех же условиях воздействия предполагать скорее тормозной эффект. В клинике нередко принимается точка зрения, согласно которой механизм действия не анализируется, так как важен лишь конечный положительный лечебный эффект. Такая точка зрения имеет право на существование, но она же дает возможность оспаривать прежде всего сами клинические, все еще далекие от идеала результаты. Только зная, что именно происходит в нервной ткани при воздействии на нее, можно реально управлять лечением.

Так называемое стимулирующее электрическое воздействие может усиливаться или ослабляться с изменением интенсивности и частоты воздействия. Это, вероятно, результат того, что структура активируется или угнетается, происходит вовлечение меньшего или большего числа нервных элементов. Развиваются разного рода дистантные эффекты как результат вовлечения в реакцию других звеньев той же системы, как результат активации тех структур, эффект которых не проявляется, если активна зона мозга, где приложено воздействие, или, наоборот, дистантного торможения активности под электродом, подающим ток. Дистантные эффекты того типа, когда одна структура тормозит или активирует другую, или более общего типа, когда в результате электрического воздействия на модулирующие зоны мозга меняется функциональное состояние сразу большого числа мозговых образований, все шире используются в клинике. При этом можно надеяться, что расшифровка физиологического состояния подвергающейся воздействию структуры позволит также более надежно направлять эффект в желаемое русло.

Но бывает, как указывалось выше, что при электрическом воздействии в зависимости от его параметров и исходного состояния структуры ответные реакции различаются не по знаку, не по интенсивности и многообразию, а по качеству. Так, например, при одном исходном состоянии стимуляция зоны обусловливает эмоциональную реакцию, при другом – ее отсутствие или изменение мышечного тонуса и т. д. В чем дело?

Как уже отмечалось выше, функциональный спектр мозговых зон в значительной мере определяется одной из составляющих СМФП – уровнем устойчивого потенциала милливольтового диапазона, или омега-потенциалом. Эта результирующая исходного функционального состояния и воздействия может определять эффект за счет активации или угнетения определенных типов клеток нейронной популяции под электродом, через который подается ток, или за счет поливалентности самих клеток. В этом случае данный уровень относительно стабильного функционирования проявляет какую-то одну (или несколько) из валентностей.

Зачем об этом, таком простом и давнем в клинике и эксперименте методе – электрическом импульсном воздействии на мозг – писать так подробно здесь, где затрагиваются в основном общие вопросы? Затем, чтобы подчеркнуть: механизм явления не только значительно сложнее, чем кажется, но и, что очень важно, настоятельно нуждается в дальнейшем изучении. Может и должен быть изучен на современном уровне возможностей физиологического исследования и прежде всего на основе применения в клинике и эксперименте комплексного, полиметодического подхода. А если и не всегда изучен, то в каждом конкретном случае исследован. В свою очередь, это позволит пересмотреть очень многие данные о свойствах и функциональных спектрах мозговых структур.

В клинике и эксперименте применяется не только импульсное электрическое воздействие, но и воздействие плавно нарастающим и плавно убывающим постоянным током. В данном случае в зависимости от интенсивности и продолжительности его действия и исходного состояния ткани возможна ее активация под электродом, угнетение (торможение?) и разрушение. Слабый постоянный ток, соизмеримый по интенсивности с собственными токами мозга, применяется для местного (через внутримозговые электроды) и общего (через внемозговые электроды) воздействия – микрополяризации. Ток интенсивностью до одного миллиампера вызывает ограниченное местное разрушающее воздействие с перифокально распространяющимся и после прекращения его действия эффектом угнетения. Микрополяризация применяется для уточнения функционального значения зоны и для лечения, макрополяризация, как правило, – лишь как проба перед собственно деструктивным, более массивным литическим воздействием, для того, чтобы используя это преимущественно обратимое воздействие, избежать возможных необратимых эффектов более массивной деструкции.

Микрополяризация казалась первоначально идеальным модулирующим воздействием. Она не поколебала в этом плане своего реноме – она действительно может очень мягко и локально влиять на состояние нервной ткани. Однако более чем при какомлибо другом методе электрического воздействия при внутримозговой микрополяризации необходима возможность воздействия не только на одну, а на несколько на расстоянии друг от друга расположенных точек мозга. Это связано с тем, что, почти физиологично изменяя состояние структуры мозга, микрополяризация вызывает к жизни одно из основных свойств мозга как целого – лишь только изменяется состояние одной его зоны, более или менее быстро развивается общая его перестройка. Эта перестройка, улавливаемая по медленным электрическим процессам и другим физиологическим показателям, требует для достижения желаемого эффекта микрополяризации различных точек.

Важным свойством микрополяризационного воздействия является и его своеобразная способность при некоторой длительности воздействия вызывать и местный, развивающийся во времени эффект. Такое развитие первоначально местного эффекта, а затем и распространение его наблюдается, как указывалось, обычно при воздействии более сильным постоянным током – макрополяризации. При макрополяризации местный и распространяющийся эффекты оказываются настолько выраженными, что их можно выявить, не прибегая к регистрации медленных электрических процессов: пространственную динамику отражает медленноволновая активность и на ЭЭГ. В случае если важно уточнить и количественную сторону эффекта, целесообразно ориентироваться на медленные процессы. Как указывалось выше, далеко не просто ответить на вопрос о физиологической сущности эффекта импульсной электрической стимуляции. С этой целью рекомендовалось использовать физиологические показатели состояния мозга. Дополнительные сведения могут быть получены при сопоставлении эффектов импульсного электрического воздействия и воздействия слабым постоянным током и путем анализа изменения физиологических показателей в этих условиях.

Эта проблема – проблема оценки физиологической природы явления, которое мы вызываем в мозгу, несомненно интересует клиницистов, решающих на основе результатов предварительных электрических воздействий, делать или не делать деструкцию (электролизис), продолжать ли электрическую стимуляцию или…

Очень нередкая в клинике ситуация. Электрическая стимуляция зоны «X» дает тот же клинический эффект, что и макрополяризация, заведомо вызывающая в неэпилептизированном мозгу угнетение. По аналогии остается предположить, что и стимуляция вызвала угнетение (торможение) нервной ткани под электродом! Дальнейшие действия в клинике основываются на характере эффекта с учетом состояния нервной ткани, его вызывавшего. А если не было поляризации? Что же – разрушать зону либо, наоборот, всемерно оберегать ее? Или продолжать стимулировать для получения лечебного эффекта?

На основе подтвердившихся и подтверждающихся представлений о роли устойчивого патологического состояния в патогенезе хронических заболеваний и значении в переходе к новому состоянию фазы дестабилизации основным критерием в клинике для дальнейших действий следует считать развитие колебаний симптомов заболевания (при гиперкинезах – мышечного тонуса, тремора) – степень дестабилизации их. Но критерий плюс-, минус-реакции (усиление или угнетение болезненных проявлений) в клинике при электрических воздействиях не отпал, а потому очень важно знать, что же действительно происходит в результате этих воздействий в точке их приложения, на расстоянии и во всем мозгу. Здесь в связи с этими положениями и рассуждениями и прежде всего как поводы для дискуссии целесообразно привести два рода достаточно недавно полученных результатов.

1. Электрическая стимуляция была применена при поражениях спинного мозга у наиболее сложно поддающегося терапии контингента больных. Оказалось, что эффект стимуляции зависит в этом случае от мощности подаваемого тока, определяясь его интенсивностью, частотой и длительностью импульсов лишь при «прочих равных условиях» (Гурчин и др., 1986). А так же ли обстоит дело при стимуляции головного мозга? Нерва?

2. Повторные лечебные электрические стимуляции положительных эмоциогенных зон у больных эпилепсией приводили к подавлению (угнетению? торможению?) большого количества разных собственно мозговых и организменных проявлений, наблюдавшихся при первых стимуляциях этих зон, и увеличению количества зон в мозгу, стимуляция которых вызывала положительный эмоциональный эффект (Бехтерева, Камбарова, 1984а). Как такого рода факты смотрятся с позиций физиологов, применяющих электрическую стимуляцию, в том числе повторную, как основной прием исследования?

По обеим этим позициям можно было бы привести ряд соображений, но, может быть, целесообразнее отложить это до времен более полной интеграции данных, полученных у человека и в эксперименте у животных…

Проблема электрических воздействий на мозг обсуждается и с физико-химической стороны в плане рассмотрения тех возможных молекулярных перестроек, которые развиваются под действием тока и других раздражителей в клетках мозговой ткани (Воронцов, 1961а, 1961б; Гречин, 1976; Хон, 1976). Это, существенно расширяя возможности физиологического анализа процессов, повышает вероятность его дальнейшей оптимизации.

По разным поводам в данной главе постоянно упоминаются возможности комплексного метода. Они действительно очень велики, хотя именно при сопоставлениях данных о структурнофункциональной организации больного мозга, полученных в результате исследования его физиологических процессов при адекватной и электрической стимуляции, были отмечены первоначально не всегда ясные расхождения. Так, электрическая стимуляция какой-то зоны мозга могла приводить к эффектам в двигательной сфере. И в то же время ни пассивные, ни активные движения больного не сопровождались воспроизводимыми изменениями физиологических показателей мозга в той же зоне (Бехтерева и др., 1975а, 1977в). Первоначально казалось, что периферическая реакция на электрическое воздействие, вероятно, развивалась за счет дистантного эффекта. Этого действительно никогда нельзя исключить. Однако при варьировании интенсивности электрического тока расхождение между реакцией на электрический и адекватный стимул нередко сохранялось. Подобное явление имеет, очевидно, не только одно объяснение. На второе место после указанного выше можно уверенно поставить связь его с метаболическими перестройками, вызванными болезнью мозга.

Впервые этот феномен был обнаружен при одной из длительно текущих болезней мозга – паркинсонизме, заболевании, важнейшим фактором в патогенезе которого является нарушение биохимической медиации в мозгу, ведущее к функциональному выключению структуры как звена системы обеспечения определенной деятельности. Дофаминовый дефицит угнетает или выключает важнейшие звенья системы обеспечения движений. Движение – естественный проприоцептивный раздражитель – не включает данное звено в работу. А электрическая стимуляция вызывает к жизни реакции, свойственные структуре в норме, которые могут восстанавливаться при нормализации биохимической медиации, что еще раз подчеркивает важность многостороннего подхода для получения достоверных сведений о состоянии мозговых образований. В связи с этим возникает и другой вопрос. Факты, которыми оперирует теперь нейрофизиология человека, в подавляющем большинстве получены при исследовании больного мозга. В какой мере они приложимы к здоровому мозгу?!

Представим себе, что на основе любого из приведенных выше физиологических подходов получены данные о мозговом обеспечении интеллектуально-мнестических функций и движений у психически сохранных больных паркинсонизмом. При достаточном числе исследований данные о структурно-функциональном обеспечении интеллектуально-мнестической деятельности могут быть приняты за основу для дальнейших исследований. Естественно, весьма желательно провести аналогичные исследования у больных с другими заболеваниями и сопоставить полученные данные. Иначе обстоит дело с результатами изучения структурно-функционального обеспечения движений у больных паркинсонизмом, так как двигательная сфера у них страдает очень существенно. В связи с наличием расстройств вегетативной сферы при паркинсонизме необходимо осторожно оценивать и данные о мозговом обеспечении вегетативных реакций. Даже очень большое количество исследований у значительного числа больных, страдающих одним заболеванием, хотя и внесет некоторую коррекцию в оценку результатов, далеко не решит вопроса полностью.

Среди многих представлений о патогенезе паркинсонизма по крайней мере два их элемента выдерживают проверку временем – представление о гиперфункции холинергической медиации и гипофункции дофаминергической – в той степени, в какой эта медиация обслуживает структуры мозга, имеющие отношение к двигательной сфере. На этой основе базируется практически все фармакологическое лечение паркинсонизма. Далеко не полный успех этого лечения и соответственно необходимость вводить в фармакологические противопаркинсонические препараты дополнительные компоненты свидетельствуют о том, что биохимический профиль паркинсонизма не может быть сведен к нарушениям указанных двух систем. Это обнаруживается и при направленном изучении отражения мозгового медиаторного обмена этих больных способом исследования продуктов распада медиаторов в биохимических жидкостях. Так, уже получены данные об изменениях пептидного спектра ликвора и крови у больных паркинсонизмом (Бехтерева и др., 1984б). Не исключено, что дальнейшие более тонкие биохимические и молекулярно-биологические исследования вскроют существенное патогенетическое звено этого заболевания, способствуя тем самым повышению эффективности фармакологического лечения. Однако и в этом случае останется действенной возможность некоторой коррекции нарушений двигательной сферы у больных паркинсонизмом с помощью холинолитических и дофаминергических препаратов.

Далее, при судорожных формах эпилепсии в бессудорожный период нарушения в двигательной сфере могут отсутствовать. Однако нет оснований предполагать идентичность организации мозговой системы обеспечения движений в норме и при эпилепсии. Изменения биохимической медиации при эпилепсии не однотипны, имеется множество их вариантов, так же как и вариантов клинических проявлений эпилепсии. В. К. Поздеев выделил пять типов этих нарушений (Бехтерева и др., 1978). Некоторые из них противоположны, что свидетельствует о неправомерности общего подхода к лечению. Принципиально такая же проблема встает при проведении исследований у больных с нарушениями эмоциональной сферы: полученные при этом данные мозговой структурно-функциональной и нейрофизиологической организации системы обеспечения эмоций не могут быть без коррекции учтены для суждения о механизмах мозгового обеспечения этих функций в норме.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 | Следующая
  • 4.2 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации