Электронная библиотека » Никита Моисеев » » онлайн чтение - страница 4

Текст книги "Алгоритмы развития"


  • Текст добавлен: 21 ноября 2017, 09:40


Автор книги: Никита Моисеев


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 19 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +

Особое значение приобретает «обобщенный принцип минимума диссипации», область применения которого непрерывно расширяется. На протяжении всей истории человечества стремление завладеть источниками энергии и вещества было одним из важнейших стимулов развития. И вместе с тем оно всегда было причиной конфликтов.

Но по мере развертывания научно-технического прогресса, по мере истощения земных ресурсов все более утверждается новая тенденция – стремление к экономному расходованию этих ресурсов. Возникают, в частности, безотходные технологии. Преимущественное развитие получают производства, требующие небольших затрат энергии и материалов (это прежде всего электроника). На протяжении всей истории человечества темпы развития энергетики опережали темпы развития других отраслей производства. Теперь они начинают выравниваться.

Способность использовать свободную энергию и другие ресурсы планеты практически всегда определяла исход конфликтов между социальными организмами и их организационными структурами, а также отбор таких структур. По-видимому, так будет и в дальнейшем. Поэтому изучение конфликтных ситуаций и принципов отыскания компромиссов приобретает на современном этапе особую важность. Именно в этой сфере знаний может проявиться потенциальная способность человека самостоятельно формировать алгоритмы развития.

5. О принципах минимума диссипации

Обсуждая принципы отбора и механизмы развития, особое внимание я уделил принципу минимума диссипации. Этот вопрос не нов. Проблема «экономии энтропии» как меры разрушения организации и как меры необратимого рассеяния энергии неоднократно была предметом весьма тщательного анализа. Однако я придал ей не совсем обычную трактовку. Поэтому, формулируя те или иные положения, касающиеся принципа минимума диссипации, необходимо показать их связь с теми утверждениями, которые формулировались другими авторами.

Мое утверждение, касающееся процессов, протекающих в мире «косной» материи, было следующим: если множество возможных устойчивых (стабильных) движений или состояний, удовлетворяющих законам сохранения и ограничениям, состоит более чем из одного элемента, т. е. они не выделяют единственного движения или состояния, то заключительный этап отбора, т. е. отбора реализуемых движений или состояний, которые также могут и не быть единственными, определяется минимумом диссипации энергии (или минимумом роста энтропии).

Именно это утверждение я и назвал «принципом минимума диссипации». Оно не является строгим утверждением, подобно принципам механики. Это всего лишь предположение, но достаточно правдоподобное и не противоречащее экспериментальному материалу. Кроме того, оно позволяет получать весьма полезные результаты для практики. Приведем один пример, иллюстрирующий его применение.

Рассмотрим установившееся движение по трубе смеси двух жидкостей разной вязкости, но одинаковой плотности. Коэффициент вязкости смеси этих жидкостей т) будет зависеть от их процентного соотношения. Обозначим через с концентрацию более вязкой жидкости. Рассматриваемое течение моделирует движение суспензии, представляющей собой жидкость со взвешенными в ней частицами, когда их характерный размер очень мал – в десятки раз меньше диаметра трубы. В этом случае, как это известно из многочисленных экспериментов13, в узкой зоне около стенок трубы взвешенные частицы отсутствуют. Это явление носит название пристеночного эффекта. Его аналитическое исследование было проведено Ю. Н. Павловским14.

Движение смеси двух жидкостей одинаковой плотности и разной вязкости можно интерпретировать как движение некоей вязкой жидкости, подчиняющейся уравнением Навье – Стокса, – жидкости, концентрация которой может быть некоторой функцией расстояния от центра трубы:

c = c (R).

Если считать количество жидкой субстанции и градиент давления вдоль оси трубы заданными величинами, то для каждого распределения c(R) мы можем построить свое течение Пуазейля, причем расход Q будет зависеть от характера функции с(R).

Поставим вопрос: какой должна быть функция c(R), которая максимирует величину расхода Q при заданных перепаде давления вдоль оси трубы и процентном содержании в смеси более вязкой жидкости, т. е. какова должна быть функция c(R), которая минимизирует долю кинетической энергии жидкости, переходящую во внутреннюю энергию в результате действия сил вязкости?

Ю. Н. Павловский показал, что функция c(R), удовлетворяющая этому требованию, такова, что всегда около стенки трубы существует некоторый интервал, зависящий от перепада давлений и количества более вязкой жидкости в единице объема смеси, внутри которого c(R) = 0.

Таким образом, течение, удовлетворяющее минимуму диссипации энергии, обладает пристеночным эффектом. Обратное утверждение строго доказать не удается – оно всего лишь не противоречит экспериментальному материалу. Нетрудно привести еще серию примеров, показывающих, как, используя принцип минимума диссипации, можно объяснить целый ряд наблюдаемых явлений.

Итак, опытные данные показывают, что существует определенный класс явлений в неживом веществе, для которых принцип минимума диссипации энергии оказывается одним из важных принципов, позволяющих выделить реальные состояния из множества виртуальных. На этом основании в предлагаемой книге и был сформулирован и использовался этот принцип – как некоторое эмпирическое обобщение, как некоторая гипотеза. Именно в такой форме он и был внесен в иерархию принципов отбора. Он играл роль «замыкающего принципа отбора: когда другие принципы не выделяют единственного устойчивого состояния, а определяют некоторое целое их множество, то принцип минимума диссипации энергии служит дополнительным принципом отбора. Заметим, что среди неустойчивых движений могут быть и такие, которым отвечает меньшее производство энтропии. Однако из-за их неустойчивости мы их не наблюдаем.

Наше утверждение не только не является строгой теоремой, но и вряд ли оно может быть обосновано с традиционных позиций, согласно которым обоснование того или иного вариационного принципа сводится к доказательству того, что экстремалями минимизируемого функционала являются уравнения движения. В нашем случае мы определяем функционал уже на множестве функций, удовлетворяющих уравнениям движения. Мне кажется, что обсуждаемый факт связан с общим стохастическим фоном любого явления, случающегося в нашем мире.

Заметим, что, никогда специально не формулируя, мы всегда пользуемся еще одним подобным принципом – «принципом устойчивости», который также связан со стохастичностью нашего мира. Этот принцип я бы сформулировал так: множество реально наблюдаемых стационарных состояний включает в себя лишь устойчивые состояния. Он тривиален, если учесть, что любая система все время подвержена действию случайных возмущений. В самом деле, мы никогда не наблюдаем карандаша, стоящего на своем острие, или маятника в его верхнем, неустойчивом состоянии.

Вариационные принципы возникли в механике и сыграли выдающуюся роль в ее развитии и создании эффективных численных и аналитических методов решения различных прикладных задач. В последующем вариационный подход широко использовался и при создании более сложных физических теорий. На этом пути очень важные результаты были получены еще в 1931 г. создателем неравновесной термодинамики Л. Онсагером, который сформулировал следующий вариационный принцип15: при постоянных условиях на границе некоторого объема V имеет место равенство



где σs – производство энтропии, Ф – функционал рассеяния, а δ означает обычный символ варьирования. Из (1), как это показал Бёрёш16, могут быть выведены уравнения Навье – Стокса. В 1947 г. И. Р. Пригожиным для стационарных условий был получен другим путем принцип, который был назван им принципом минимума производства энтропии17:



Оказалось, что при изученных условиях принципы (1) и (2) эквивалентны. Этот факт установил И. Дьярмати18.

Работы Онсагера, Пригожина и их последователей имели своей Целью построение «классических» вариационных принципов, т. е. таких, из которых следовали бы законы сохранения, т. е. уравнения, описывающие движение среды. Другими словами, ими была сделана попытка построить принципы, носящие достаточно универсальный характер, такой, как и принципы механики. Однако для их вывода потребовалось сделать ряд серьезных предположений об особенностях изучаемых процессов (локальная обратимость, линейности в смысле Онсагера и т. д.). Благодаря этому развитие и использование принципов Онсагера и Пригожина для анализа прикладных задач столкнулись с целым рядом трудностей. Для того чтобы их проиллюстрировать, рассмотрим, следуя К. П. Гурову19, задачу о переносе тепла вдоль однородного стержня – классическую задачу, рассмотренную еще Фурье. В этом случае по теории Онсагера



и принцип минимума производства энтропии (2) дает нам



Откуда, интегрируя по частям, находим



И следовательно:



Но равенство (4) в общем случае не эквивалентно закону Фурье:



Отсюда вытекает, в частности, что процессы переноса тепла, удовлетворяющие закону Фурье, будут сопровождаться таким производством энтропии, которое не доставляет минимум функционалу



Вместе с тем И. Р. Пригожий дает следующую формулировку принципа минимума производства энтропии: «Теорема о минимуме производства энтропии… утверждает, что производство энтропии системой, находящейся в стационарном, достаточно близком к равновесному состоянию, минимально»20. Он, как мы видим, рассматривает сформулированный принцип, известный как теорема Пригожина – Глейнсдорфа, в качестве весьма универсального принципа, управляющего самоорганизацией диссипативных систем. В то же время пример, который я привел, показывает сложности, возникающие при выяснении условий применимости принципа минимума роста энтропии. Вот почему в данной книге я придал иное содержание принципу «экономии энтропии». Принцип минимума диссипации не эквивалентен принципам Онсагера и Пригожина, не следует из них и рассматривается в моей работе в качестве эвристического утверждения, отвечающего тому, что мы наблюдаем в окружающем нас мире21.

До сих пор речь шла о неживой природе. В биоте проблема формулировки принципов отбора усложняется еще больше. Появляется стремление к сохранению гомеостазиса, которому отвечает представление об отрицательных обратных связях. Они, в свою очередь, являются некоторыми новыми принципами отбора, свойственными только живой природе. Но эти новые принципы действуют совершенно иначе, нежели принципы отбора в неживой природе. Так, законы сохранения массы или импульса не могут не выполняться. Ничему и никому ни при каких обстоятельствах не дано возможности нарушить их. Что же касается принципа стабильности (гомеостаза), то он проявляется как тенденция: живое существо стремится сохранить свою стабильность, но в принципе оно способно ее нарушить. При этом оно может погибнуть или выжить, но это уже другой вопрос. Таким образом, тенденция сохранения гомеостазиса, постоянно наблюдаемая у живых организмов, – это эмпирическое обобщение.

Точно так же и принцип минимума диссипации энергии проявляется в живом мире как некоторая тенденция. Эмпирический принцип переходит в эмпирическую тенденцию – любому живому существу свойственно стремление в максимальной степени использовать внешние энергию и вещество. Я думаю, что это очень важный синергетический принцип, управляющий процессами самоорганизации. И он не эквивалентен принципу сохранения гомеостазиса. Более того, в известных условиях первый может даже противоречить последнему. Я специально уже обсуждал эту проблему. Здесь заметим только, что с позиции представлений о самоорганизации разрешение возникающего противоречия вполне возможно: чтобы найти новые, более устойчивые состояния, живая система должна покинуть старое состояние, а это можно сделать только за счет внешних энергии и вещества и положительных обратных связей. Я думаю, что в живой природе описанное противоречие между тенденцией к локальной стабильности и стремлением в максимальной степени использовать внешние энергию и вещество является одним из важнейших механизмов отыскания новых форм существования материи.

Глава вторая
Память. Ее генезис в преддверии интеллекта

1. Возникновение генетической памяти и обратных связей

В предыдущей главе я изложил исходные принципы той методологии, которая должна лежать в основе глобального анализа: сама Земля и все, что на ней происходило вчера, происходит и сегодня и будет происходить завтра, суть следствия общего процесса саморазвития, самоорганизации материи, подчиняющегося единой системе законов (правил), действующих в нашем мире. Пользуясь терминологией, получившей сегодня распространение, мы можем сказать, что все наблюдаемое нами, все, в чем мы сегодня участвуем, – это лишь фрагменты единого мирового синергетического процесса. Его течение обусловливается законами, характерные времена изменения которых лежат за пределами доступных нам знаний, что позволяет нам считать их постоянными. Все развитие нашего мира выглядит сложной борьбой различных противоположных начал и противоречивых тенденций на фойе непрерывного действия случайных причин, разрушающих одни устойчивые (точнее, стабильные) структуры и создающих предпосылки для появления новых.

Несмотря на огромные успехи науки последних десятилетий, от нее сегодня, как и во времена В. И. Вернадского, остаются пока скрытыми основные детали важнейшей «земной тайны» – появления жизни на нашей планете, возникновения буфера («пленки», по терминологии В. И. Вернадского) между космосом и «косным» веществом Земли. Мы знаем только, что около 3,5–4 млрд лет тому назад на Земле появилась качественно новая форма организации материи, которая обладает удивительной способностью усваивать внешнюю энергию, прежде всего энергию Солнца, с помощью реакции фотосинтеза1. На этом этапе своего развития Природа нашла новый ряд состояний, которые обеспечивают материальным объектам значительно более глубокое значение минимума функционала, отвечающего обобщенному принципу минимума диссипации, – возникли организационные формы, способные не только рассеивать энергию, но и накапливать ее. Одновременно эти формы обладали невероятной способностью сохранять свой гомеостазис. В самом деле, первые прокариоты появились и жили. на Земле в условиях почти кипящего океана, при исключительной сейсмической активности и очень высоком уровне коротковолновой радиации. Я думаю, что из всех живых организмов, когда-либо существовавших на планете, они были, вероятно, самыми «жизнестойкими». Они обладали самой высокой способностью адаптации к быстрому изменению условий обитания, которое было характерно в то время для поверхности нашей планеты. И к этому надо добавить еще следующее – первые прокариоты были практически бессмертными. Именно бессмертными, как всякое неживое образование. Их можно было, конечно, разрушить, но собственной смерти они, вероятно, еще не знали. На этом этапе развитие уже отделило живое от неживого, но пропасть между жизнью и смертью еще не была столь глубока, как сегодня.

Тем не менее будущее принадлежало не этим существам, обладавшим удивительной способностью сохранять гомеостазис. В конечном итоге эта ветвь процесса самоорганизации оказалась тупиковой. Господство прокариотов на Земле тянулось, вероятно, значительно больше одного миллиарда лет. Это они создали газовую оболочку планеты и условия, которые позволили появиться гораздо позднее эукариотам. Последним и была передана эстафета дальнейшего развития. Обладая кислородным дыханием, эукариоты могли утилизировать внешнюю энергию неизмеримо более эффективно. Другими словами, они в гораздо большей степени могли добиваться локального снижения энтропии. Но возникшие формы организации жизни заплатили за все это дорогой ценой: эти новые живые существа сделались смертными. Они потеряли способность первых прокариотов сохранять свой гомеостазис практически в любых условиях.

В предыдущей главе я пытался показать, что многообразие форм жизни связано определенным образом со множеством возможных компромиссов между тенденциями обеспечения собственного гомеостазиса и стремлением реализовать обобщенный принцип минимума диссипации. Возникает ситуация, которая чем-то напоминает движение по поверхности Парето. Как известно, это многообразие замечательно тем, что увеличение значения одного из критериев сопровождается уменьшением (строго говоря, неувеличением) значений другого или других: на нем нельзя добиться одновременного роста значений всех критериев.

Примечание. Множество Парето играет важную роль в теории многокритериальной оптимизации. Предположим, что мы стремимся найти такую стратегию (вектор х), которая наилучшим образом отвечала бы нашим стремлениям увеличить значения критериев – скалярных функций φ1 (х), φ2 (х) … – Тогда, задавая некоторое значение вектору х = х1 в пространстве критериев мы получаем некоторую точку Р(х1) с компонентами φ1 (х1), φ2 (х1) … Предположим теперь, что мы нашли такую стратегию х, для которой



Очевидно, что теперь стратегию х1 мы можем уже не рассматривать – оно по всем критериям хуже х^. Значит, нас могут интересовать только те точки Р(х^) в пространстве критериев, для которых нельзя найти другой точки Р(х), такой, чтобы по всем критериям φi (х^) ⩽ φi (х). Совокупность всех подобных точек Р в пространстве критериев и называется поверхностью (или множеством) Парето.

Появление эукариотов, которые на определенном этапе сменяют прокариотов и становятся носителями дальнейшего развития жизни, служит иллюстрацией «паретовских компромиссов»: уменьшение стабильности отдельного организма, появление индивидуальной смертности сопровождались увеличением эффективности в использовании внешней энергии, что открывало совершенно новые возможности для развития жизни. Именно потеря бессмертия позволила включить в единый процесс развития новые механизмы эволюции. С момента появления эукариотов начинается быстрое совершенствование видов и стремительный рост их разнообразия.

Однако об этом периоде развития Земли мы знаем мало. Но нет сомнений в том, что он был одной из важнейших страниц истории нашей планеты. Появление эукариотов (и современных прокариотов) на авансцене жизни привело к возникновению генетического кода или, во всяком случае, было тесно связано с ним: без него ничто смертное не могло бы появиться в биосфере. Появление существ, индивидуальная жизнь которых конечна, стало возможным лишь при наличии специальной формы памяти, обеспечивающей реализацию принципа наследственности. И она возникла. Это был генетический код, с помощью которого запоминалась и передавалась необходимая наследственная информация. Напомню, что сейчас алфавит генетического кода состоит из четырех букв. Ничему не противоречит гипотеза о том, что в начале истории земной жизни могли быть и другие его варианты, но в наших земных условиях – подчеркну, в конкретных условиях земной жизни – сложившаяся форма передачи наследственной информации оказалась, вероятно, наиболее стабильной. Она позволила более надежно воспроизводить себе подобных, сохранив при этом оптимальную (для тех времен) изменчивость – «уровень мутагенеза». Генетическая память резко интенсифицировала весь эволюционный процесс.

Примечание. Я думаю, что генетический код, как и все гениальные «находки природы», возник и утвердился в результате жесточайшей конкуренции и естественного отбора. Живые существа, наделенные другими способами кодирования наследственной информации, просто не выдержали бы конкуренции и погибли. Разумеется, высказанное мнение не более чем гипотеза. Никаких подтверждений для него мы не знаем. Но оно не противоречит изложенным выше принципам самоорганизации материи и согласуется с ними. Если жизнь возникла (или существует) и в других мирах, в других частях Вселенной, то вовсе не обязательно, что ее генетический код, т. е. структура ее наследственной памяти, будет такой же, как на Земле. В других условиях более надежной может оказаться иная форма хранения и передачи наследственной информации. Возникновение наследственной памяти, взаимосвязанное с появлением смерти и редупликации, т. е. способности воспроизводить себе подобных, означало появление качественно новых возможностей для расширения многообразия организационных структур. В самом деле, конечность существования отдельного организма обеспечивает высокий уровень изменчивости и, следовательно, адаптации к изменяющимся условиям и «открытие» возможностей более эффективно совершенствовать способы освоения внешней энергии.

Особую роль в эволюции жизни играет история развития нервной системы. Говоря о нервной системе, мы неизбежно вступаем в область кибернетики или, точнее, теории управляющих систем. Ведь вместе с жизнью возникает целенаправленная деятельность, прежде всего стремление сохранить гомеостазис.

Мы уже не раз употребляли понятие «гомеостазис», и настало время уточнить его смысл, тем более что это понятие очень широкое. В медицине и биологии говорят о внутреннем равновесии и внутренней стабильности организма или об устойчивости живой системы, например популяции. Но не менее важна и оценка внешних характеристик, т. е. характеристик окружающей среды, их соответствия возможностям функционирования живой системы. Этот контекст более важен для данной работы, и именно в нем мы и будем использовать в дальнейшем понятие гомеостазиса.

Условимся называть границей области гомеостазиса (или просто гомеостазиса) данной живой системы множество (линию, поверхность, гиперповерхность) в пространстве параметров внешней среды, отделяющее область их значений, внутри которой существование живой системы возможно, от остального пространства. Переход из области гомеостазиса через ее границу означает прекращение существования живой системы.

Когда мы говорим о тенденции к сохранению гомеостазиса, мы имеем в виду стремление живого организма расширить границы своего существования. Это может быть достигнуто двумя путями. Во-первых, организм может так изменить свои собственные характеристики, чтобы область его гомеостазиса расширилась. Во-вторых, он, чтобы отодвинуть опасную границу, может изменить саму внешнюю среду, ее параметры. Эволюция живой природы использует, разумеется, обе эти возможности. Другими словами, живые существа стремятся не только сами адаптироваться к окружающей среде, но и изменять эту среду так, чтобы ее характеристики в наибольшей степени соответствовали их возможностям существования.

Чтобы обеспечивать свой гомеостазис, живое существо должно обладать целым рядом свойств. Во-первых, оно должно быть способным оценивать свое положение по отношению к границе гомеостазиса. Но для этого необходимы специальные устройства. В физиологии они называются рецепторами. Если использовать терминологию теории управления, то мы должны будем сказать, что для сохранения своего гомеостазиса живое существо должно обладать специальной информационной системой. В простейшем случае рецепторы – это датчики (как гироскоп у автопилота) информирующие организм о его состоянии и состоянии окружающей среды. Далее, полученная информация должна перерабатываться и оцениваться. Наконец, на основе проведенного анализа должно приниматься определенное решение. Все эти функции и реализует нервная система, которую мы с полным правом может назвать системой управления организма, ибо все перечисленные функции присущи любой системе управления.

Примечание. Следует заметить, что нервная система – это не единственная управляющая система, которой обладает организм. Функции управления в достаточной степени рассредоточены. К числу управляющих относится, например, эндокринная система. Но нервная система, конечно, занимает в жизнедеятельности организма совершенно особое место.

Самая трудная для понимания функция системы управления – это акт принятия решений. Именно он ответствен за образование обратных связей, существующих в организме и связывающих организм и среду. Благодаря этой функции нервной системы организм способен не только оценивать свое положение по отношению к границе гомеостазиса, но и вырабатывать определенную. совокупность действий, компенсирующих нежелательные отклонения.

Хотя природа сформировала цепочки обратных связей еще на заре истории жизни, люди поняли их принципиальное значение и начали сознательно использовать относительно недавно – при проектировании технических систем. Наверное, интуитивно люди уже давно прибегали к принципу обратной связи – вспомним поведение рулевого на любом судне. Но первой технической системой, в которой принцип обратной связи был не только реализован, но и послужил источником специальной теории, стал регулятор Уатта. Создателями этой теории принято считать И. А. Вышнеградского (бывшего при Александре II министром финансов Российской империи) и Дж. К. Максвелла. Они разработали теорию регулятора независимо друг от друга в конце 40-х годов прошлого века. Теорию управления техническими системами можно было бы назвать, не делая большой ошибки, теорией отрицательной обратной связи. Главные задачи, которые она долгое время решала, так или иначе были связаны с отысканием такой обратной связи, которая позволила бы компенсировать возникающие помехи и обеспечивать устойчивость некоторых избранных состояний или движений системы. Лишь в последние десятилетия возникли новые разделы теории управления, значительно расширившие область ее применения.

Н. Винер еще в 40-х годах нашего века утверждал, что существование отрицательных обратных связей у живых существ является одной из основных (может быть, и главной) особенностей, отличающих живую природу от неживой, если исключить технические системы, обладающие обратной связью по воле их создателя – человека. Это утверждение Н. Винера получило широкую известность. И в литературе нередко высказывается убеждение, будто факт существования отрицательных обратных связей как основное отличие живых существ от неживых предметов является открытием Н. Винера. Более того, Н. Винера иногда называют «отцом биокибернетики». Однако, несмотря на все заслуги этого выдающегося ученого в области кибернетики, подобное утверждение вряд ли оправданно. Еще за 15 лет до Винера П. К. Анохин также утверждал, что наличие отрицательных обрвтных связей, обеспечивающих устойчивость организмов, – это то самое главное, что присуще жизни, что создает у живых существ целеполагание – стремление к сохранению гомеостазиса, что отличает жизнь от процессов, протекающих в неодушевленной природе. Ученики П. К. Анохина считают именно его зачинателем современной биокибернетики. Но, по-видимому, ни П. К. Анохин, ни Н. Винер не были правы. Правильную точку зрения первым высказал, скорее всего, А. А. Богданов, который еще в 1911 г. занимался проблемами организационных структур. Его книга «Всеобщая организационная наука, или Тектология» написана довольно архаичным языком, и, конечно, самого термина «обратная связь» у автора просто нет, да и не могло быть, поскольку он появился лишь в 20-х годах в лексиконе технических специальностей. Однако, если перевести рассуждения А. А. Богданова на современный язык, можно будет сказать, что он утверждал, что для развития организации любой природы необходимы не только отрицательные, но и положительные обратные связи. Любая организованная система, любое живое существо в частности, если присмотреться внимательно к его деятельности, проявляет способности реализовывать оба типа обратных связей. Ведь одни только отрицательные обратные связи, доведенные до своего логического конца, приводят к застою, к деградации организации, к прекращению всякого развития и к исчезновению той вариабельности, без которой никакая эволюция живого невозможна. Прекращение эволюционного процесса вовсе не означает потерн живой системой устойчивости и способности сохранять гомеостазис. Природа демонстрирует удивительные примеры стабильности, когда на протяжении десятков, а то и сотен миллионов лет организмы того или другого вида – как растительного, так и животного царств – остаются практически неизменными. Поэтому для «прогрессивной» эволюции, т. е. такого процесса, который ведет к появлению новых качеств, к росту сложности организмов, к повышению уровня разнообразия, необходимы и положительные обратные связи. Они позволяют расширить поиск, полностью использовать потенциальные возможности изменчивости. В частности, тенденция к повышению эффективности использования внешней энергии вряд ли может быть реализована без использования положительных обратных связей.

В последующем изложении наряду с термином «организованная система» мы будем использовать в большей степени понятие «организм». Под организмом, следуя терминологии теории управления, будем понимать любую систему, которая не только имеет собственные цели, но и обладает определенными возможностями следовать им. Живое существо всегда является организмом, поскольку оно не только имеет цель – сохранение гомеостазиса, но и обладает определенными возможностями ее достижения. Организмами являются и многие сообщества живых существ. Используя эту терминологию, мы можем сказать, что любой организм обладает способностью реализовывать как отрицательные, так и положительные обратные связи.

Редупликация, метаболизм, возникновение и устойчивость неравновесных с точки зрения термодинамики структур – все это укладывается в более или менее понятные схемы, и мы сталкиваемся с этими процессами уже на предбиологическом уровне развития вещества. Работы М. Эйгена и его последователей уже наметили определенные пути их математического моделирования. Что же касается механизмов обратных связей обоих типов (которые необходимо присущи всему живому), то их возникновение пока остается для нас «тайной за семью печатями». Это ведь такое изобретение природы, для понимания которого у нас еще нет никаких аналогий. Мы пока еще очень далеки от того, чтобы представить себе модель процесса, который мог бы привести к появлению какого-либо подобного механизма. Следуя терминологии В. И. Вернадского, факт существования сложных механизмов обратной связи следовало бы назвать главным «эмпирическим обобщением» в той науке, которая занимается изучением развития Земли и жизни на Земле. В процессе естественной эволюции планеты на ней возникли живые структуры, обладающие механизмами обратной связи, – это мы можем только констатировать!

Сегодня часто употребляют выражение теоретическая биология». В попытках расшифровать его говорят о необходимости создания теоретической биологии (на манер теоретической физики) и нередко сходятся на том, что такой науки пока еще нет. И это справедливо. Объем накопленного эмпирического материала действительно требует создания стройной теоретической системы, связанной единым становым хребтом, который подобен законам Ньютона в классической механике. Но такой фундаментальной основы в биологии пока еще нет. Поэтому мне представляется, что альтернативой царствующей эмпирии и разрозненным концепциям и теориям, являющимся результатом озарения гениев (а не следствиями дедуктивного анализа), суждено будет сделаться модели, описывающей возникновение обратных связей.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации