Текст книги "Практика восстановления зрения при помощи света и цвета. Уникальный метод профессора Олега Панкова"
![](/books_files/covers/thumbs_240/praktika-vosstanovleniya-zreniya-pri-pomoschi-sveta-i-cveta-unikalnyy-metod-professora-olega-pankova-60106.jpg)
Автор книги: Олег Панков
Жанр: Здоровье, Дом и Семья
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 8 (всего у книги 9 страниц) [доступный отрывок для чтения: 2 страниц]
Подушечки для глаз
Хорошее расслабляющее воздействие оказывают так называемые успокаивающие подушечки для глаз. Их изготавливают, как правило, из шелка или бархата и набивают природным наполнителем – просяной шелухой. Особенность их состоит в том, что они как бы стягивают на себя статичную, не пульсирующую жизненную энергию и тем самым способствуют снятию напряжения в области глаз.
Отдыхая, расслабьтесь и займите удобное положение – лучше всего лежа.
Удобно положите подушечку на лоб и закройте глаза. Темнота и мягкое давление подушечки снимут напряжение глаз и нервное напряжение.
Подушечки для глаз можно купить, но можно и изготовить самостоятельно. Из шелка или бархата сшейте мешочек размером 10–20 см, затем набейте его просяной шелухой (ее потребуется от 50 до 100 г).
Утренняя гимнастика для глазных мышц
Выполняйте гимнастику ежедневно перед завтраком.
В вытянутой руке – карандаш. По широкой дуге он многократно двигается влево, вправо, вниз. Надо неотрывно следить за ним глазами. Выполнять упражнение в течение 1 минуты (рис. 36).
![](_35.png)
Рис. 36
Встать у стены большой комнаты и, не поворачивая головы, быстро переводить взгляд из правого верхнего угла комнаты в левый нижний, из левого верхнего – в правый нижний. Повторить не менее 50 раз (рис. 37).
![](_37.png)
Рис. 37
Ноги на ширине плеч, руки на поясе. Резкие повороты головы вправо и влево, взгляд по ходу движения. Выполнить 50 поворотов (рис. 38).
![](_38.png)
Рис. 38
В течение 3 секунд смотреть на яркий свет, потом закрыть глаза рукой и дать им отдых. Повторить 15 раз (рис. 39, 40).
![](_39.png)
Рис. 39
![](_40.png)
Рис. 40
Широко открыть глаза, сильно прищуриться, закрыть глаза. Повторить 40 раз.
Взглянуть в окно на очень отдаленный предмет и пристально рассматривать его в течение 10 секунд. Перевести взгляд на свои наручные часы. Повторить 15 раз (рис. 41, 42).
![](_41.png)
Рис. 41
![](_42.png)
Рис. 42
Эти упражнения я рекомендую выполнять 2–3 раза в день. Спустя месяц сделайте паузу на 2–3 недели, а потом начните все сначала. Такой режим укрепляет глазные мышцы, тренирует и массирует хрусталики, улучшает кровообращение и питание глаз.
Приложение. Энергетика света
В этом разделе мы предлагаем вниманию читателя адаптированные для широкой аудитории научные материалы профессора О. П. Панкова, ранее публиковавшиеся лишь в специальных медицинских изданиях. В фокусе научных интересов О. П. Панкова всегда было применение низкоинтенсивного лазерного излучения в лечении и профилактике заболеваний органа зрения. Мы надеемся, что эти уникальные публикации помогут читателю не только узнать много нового о необычной роли света в жизни человека. С их помощью внимательный читатель сможет почерпнуть ценную прикладную информацию и сохранить хорошее зрение до глубокой старости.
Функции радужки
Фотоэнергетическая функция радужкиЭта функция ориентирована на регуляцию уровня энергетического потенциала ретикулярной формации – главной энергетической подстанции головного мозга. Регуляция осуществляется, с одной стороны, путем коррекции величины светового потока (изменением диаметра зрачка), оказывающего на нее стимулирующее действие, а с другой – путем изменения пороговой чувствительности фоторецепторов самой радужной оболочки.
Принято считать, что изменение диаметра зрачка в зависимости от интенсивности светового потока направлено главным образом на предохранение рецепторного аппарата сетчатки. Полагаю, это не совсем так. Дело в том, что глаз человека испытывает в естественных условиях действие перепада интенсивности светового потока более чем в 100 000 раз – от 90 000 люкс при прямом наблюдении солнца до долей люкса в сумерках. В то же время максимальное изменение диаметра зрачка – от 8 до 1 мм – обеспечивает изменение светового потока только в 60–70 раз.
Светозащитная функция радужкиСветозащитная функция радужки обусловлена цветом радужной оболочки и является отражением количества пигментных клеток и состоянием адаптационных систем организма. Чем меньше пигментных клеток в радужке, тем она светлее. Цвет радужки у разных людей различный – от голубого, зеленого, до серого, коричневого с множеством оттенков. В условиях патологии (заболевания внутренних органов) в зоне проекции больного органа появляются дополнительные темные или цветные пятна. На этом основана иридодиагностика.
Исследованиями установлено, что эффективность поглощения света пигментными клетками радужки увеличивается, если в этом процессе участвует большое их количество. При высокой интенсивности света зрачок сужается, сосудистый тракт, растягиваясь, увеличивается в размерах, раскрываются многочисленные крипты, из глубины которых на поверхность выходят резервные меланоциты и их плотность в радужной оболочке и в самой сосудистой оболочке возрастает. Увеличивается также и освещенная площадь радужной оболочки и, соответственно, число ее активных пигментных клеток, что увеличивает светозащитную эффективность радужки.
При слабой освещенности зрачок расширяется, сосудистый тракт уменьшается в размерах, появляются многочисленные борозды и крипты. Резервные меланоциты скрываются в глубине складок, и на поверхности борозд остаются лишь единичные рабочие меланоциты. Светозащитные возможности радужки уменьшаются. Врожденное отсутствие пигмента меланина уже от рождения приводит к частичной слепоте, светобоязни и восприимчивости ко многим болезням. Альбиносы плохо видят и болезненно переносят дневной свет, поэтому днем их веки обычно полузакрыты, прищурены, и лишь в сумерках они видят несколько лучше. Характерным признаком альбиносов является наличие нистагма (который можно рассматривать как защитную реакцию глаз от прямого попадания света на сетчатку и радужку), несколько реже глухота и дефекты интеллекта.
Недостаточное содержание в организме меланина и его производного – тирозина – наблюдается при фенилпировиноградной олигофрении, или болезни Феллинга. Для больных с этой формой олигофрении характерны тонкая белая кожа, светлые волосы и глаза, микроцефалия, глубокое психическое недоразвитие, судорожные припадки и вспышки гнева.
Известно, что возникновение опухолей глаз у рогатого скота находится в прямой связи с врожденной депигментацией век, экзофтальмом и сверхинтенсивным ультрафиолетовым облучением.
Экстраполяция анатомических и функциональных основ пигментации глаз на другие системы и функции организма, в частности на кожные покровы, позволяет лучше понять универсальность функции пигментирования. Рассмотрим некоторые факты.
У человека и многих животных защиту от интенсивного облучения светом обеспечивают экранирующий слой пигмента меланина и кератин рогового слоя кожи, которые либо поглощают свет всех длин волн, либо отфильтровывают особо опасные ультрафиолетовые лучи. В ответ на продолжительное воздействие солнечного света у человека со светлой кожей образуется загар за счет усиленного образования кератина и особенно меланина. У людей с темной кожей почти все ультрафиолетовые лучи поглощаются меланином, который имеется у них в большом количестве. Это является защитой от больших доз лучистой энергии, характерной для мест их обитания.
По современным представлениям, светозащитной, а значит и энергозащитной функцией обладает не только меланин наружных рецепторов, но и внутренний меланин. Последний расположен, и, видимо, неслучайно, в самой главной магистрали центральной нервной системы – стволе головного мозга. Здесь различают три значительные пигментные группировки: черное вещество, голубоватое место и серое крыло (треугольник блуждающего нерва). В дополнение к пигментным зернистым шарам – «ситуационным гасителям», появляющимся в очагах поражения при тяжелых истощающих заболеваниях – эти три образования являются как бы стационарными биоэнергетическими фильтрами-гасителями. От их функционирования, а также от деятельности наружных пигментных слоев в области сетчатки, радужки и кожи зависит уровень общей биоэнергетики организма.
Терморегуляторная функция радужкиИз всех структур глаза радужка, пожалуй, в наибольшей степени находится под атакующим влиянием света, так как она всей своей площадью первой поглощает большую часть световой энергии. Последнюю первоначально улавливают пигментные клетки стромальной части радужки – первого эшелона ее пигментной системы. Вслед за ними после сосудистого слоя и эластической кутикулярной дилататорной мембраны располагается эшелон пигментных клеток – эпителиальный. Поглощая фотоны света, эти клетки, естественно, должны нагреваться. И если бы в радужке не существовала своя система отвода тепла, то пигментные клетки, конечно, не смогли бы адаптироваться к воздействию на них больших перепадов интенсивности света. Роль такой теплоотводящей системы в радужной оболочке выполняет ее сосудистая система. Кроме того, она же обеспечивает питанием пигментные и мышечные клетки радужки. Аналогичную роль играет и хориоидальная часть сосудистой системы. Таким образом, накапливаемое в пигментных клетках радужки под действием тепло непрерывно отводится частично путем излучения, частично с помощью циркулирующей камерной влаги и кровотока в сосудах радужки. Вместе с тем окружающая глазное яблоко пигментная оболочка в виде стромальных пигментов и эндотелиального слоя радужки создает внешний тепловой экран, предохраняющий внутренние среды глаза, главным образом сетчатку, от перегрева. В результате температура глазного яблока сохраняется стабильной.
Цитолизосомная функция радужкиЦитолизосомная функция радужки заключается в способности пигментных клеток радужки – меланоцитов – нейтрализовывать действие микробов и опухолевых клеток путем растворения их с помощью специальных ферментов. На большом клиническом материале установлена интересная закономерность: удельный вес осложнений инфекцией при травме карих глаз в 7 раз меньше, чем у светлых глаз.
Меланопротеиды радужки обладают антибиотической и противоопухолевой активностью, увеличивают выживаемость организма в условиях повышенного и пониженного содержания кислорода в атмосфере, защищают белки и некоторые ферменты от деградации, а ткани пигментного эпителия – от повреждающего действия продуктов перекисного окисления липидов. Возможно, противомикробная защита меланопротеидов связана с их высокой метаболической активностью и способностью связывать воду в количестве до 30 % от собственной массы.
Высказано предположение, что недостаточность меланин-синтезирующей системы организма в сочетании с определенными неблагоприятными факторами способствует развитию рассеянного склероза и системной красной волчанки.
Выделенный из виноградной кожуры новый препарат эномеланин является эффективным ингибитором процессов повреждения клеточных мембран. Он обладает антиоксидантными свойствами, а также способностью катализировать реакцию переноса электронов, активизировать энергетический гомеостаз клетки, избирательно связывать и транспортировать ионы металлов, выполнять в организме функции фото– и радиопротектора. Эномеланин с успехом применяют при лечении эпилепсии и различных стрессовых состояний.
Человек – электрохимический генератор
В современном понимании каждое животное или растение есть открытая система, обменивающаяся с окружающей средой веществом, информацией и энергией. Характерной чертой этой системы у человека служит общий энергетический гомеостаз, основанный на двух синергичных источниках потребления: классическом – дигестивном (расщепление и ассимиляция пищевых веществ в желудочно-кишечном тракте с образованием двух энергетических видов «топлива» – глюкозы и жирных кислот) и гипотетическом – световом. По мнению ряда авторов, энергетическая константа и ее световая составляющая поддерживаются за счет поступления в организм световых потоков, их утилизации и выброса избытка в окружающую среду.
Помимо этого существуют энергетические потоки, индуцированные самим организмом. Так что человека можно представить постоянно действующим электрохимическим генератором, в котором возникают токи, а значит и электромагнитные поля. Только слишком уж малы магнитные излучения живых организмов. О том, что световые потоки выходят из организма и при этом характеризуются определенной локализацией, свидетельствует наличие физических световых и, в частности, инфракрасных полей вокруг биологических объектов, установленных в 1984 году Ю. В. Гуляевым и Э. Э. Годиком. Измерения такого рода полей проводятся сейчас в различных лабораториях с помощью сверхчувствительных и сверхпроводниковых квантовых интерферометров. По данным группы Б. Н. Тарусова (МГУ), поверхность внутренних органов животных, в том числе и человека, излучает слабый, невидимый глазу, но все же самый настоящий свет. Светятся изнутри печень, сердце, другие органы и ткани, возможно, для того, чтобы сбросить лишнюю энергию и устранить перевозбуждение. Пока это всего лишь гипотеза, не претендующая на истину в последней инстанции.
Действие света на живые организмы
Очень сложным и многосторонним представляется действие света на живые организмы. Говоря кратко, ультрафиолетовые лучи вызывают фотоэлектрический эффект, лучи видимого света – стимулирующий и корригирующий, инфракрасные лучи – фотохимический и т. д. По установившимся взглядам, входными воротами света являются сетчатка глаза и кожа, на территории которых разыгрываются светоэнергетические превращения – происходят отражение, поглощение и проникновение вглубь лучистой энергии.
Отражение части видимых и ультрафиолетовых лучей от белой кожи составляет 13 %, от загоревшей (пигментированной) – 8 %. Аналогичные явления наблюдаются в глазах, которые при хорошем отражении света выглядят блестящими и сияющими. Блестящий вид кожи и глаз, являющийся признаком молодости и здоровья, обусловлен деятельностью белых пигментов гуанофоров, запасы которых по мере старения организма все более и более истощаются.
Однако большая часть света поглощается меланином и кератином кожи и целой группой пигментных клеток сосудистого тракта глаз: желтых – ксантофоров, красных – эритрофоров, черных – меланоцитов. Процесс поглощения световой энергии очень непростой и до конца невыясненный. Считается, что биологическое действие оказывает только поглощенная энергия. Из всех пигментов наиболее высокой поглощающей способностью обладают универсальные ловушки света – меланоциты. Они образуют очень сложные по строению и функциям пигментно-белковые комплексы, которые действуют как аккумуляторы энергии, накапливающие электроны и переносящие их по туннельным переходам между фотоиндуцированными парамагнитными центрами (Мележик А. В.). В последнее время открыты парамагнетические, полупроводниковые и ионообменные свойства меланина, позволяющие предположить, что меланопротеитоиды в коже и глазах действуют не только как пассивный экран, но и путем активного химического «тушения» возбужденных состояний, возникающих под влиянием света любой длины волны (Сакина Н. Л.). Являясь стабильными радикалами, они выполняют роль ловушки короткоживущих свободных радикалов, 160 оказывают фотопротекторное и радиопротекторное действие (Ковалев И. Е.). Помимо этого, меланопротеиды обладают антибиотической, антиокислительной и противоопухолевой активностью. Они служат своеобразными световыми теплорегулирующими батареями, обеспечивающими постоянство температурной среды организма. Благодаря им осуществляется частичная защита человека от ультрафиолетовых, рентгеновских и гамма лучей и в меньшей степени от других фракций света. Причем поглощающая способность меланоцитов в десятки раз больше, чем непигментированных поверхностных участков.
Так, известно, что незагоревшая белая кожа пропускает, не поглотив в своей толще, 25 % ультрафиолетовых лучей, тогда как загоревшая кожа – только 5 %. Следовательно, даже правильно проведенная процедура загорания на солнце в полной мере не предохраняет человека от ультрафиолетовых излучений. Особенно опасны ультрафиолетовые лучи в 260 нм, приводящие к фотоокислительным процессам в клетках и повреждению цепей ДНК.
Влияние света на обмен веществ
Менее изученным, но не менее интересным представляется процесс проникновения света вглубь организма. Информация, касающаяся этой области, самая скудная и разноречивая. С относительной долей полноты раскрыты функции зрительного анализатора и механизмы зрения. Однако мало что известно в отношении внутриорганной деятельности света.
Как будто бы принята версия, по которой различные спектры световой энергии проникают в ткани на глубину от 2 до 30 мм, наиболее глубоко – красные лучи, и очень поверхностно – ультрафиолетовые. Ранее предполагалось, что внутри организма по многочисленным нервным волокнам проходит не световая, а преформированная биоэлектрическая энергия. Учеными также была высказана альтернативная идея о прохождении световых волн внутри организма по системе специальных световодов (или оптических волокон), совпадающих с ходом 14 акупунктурных меридианов. Эксперименты сибирских, а вслед за ними и американских ученых показали, что при облучении дистальных точек меридианов белый, красный и отчасти синий свет могут проходить по избранным «маршрутам» аномально большие расстояния, намного превышающие 30 мм. Допускается, что в человеческом организме система световодов служит одним из наиболее древних механизмов регуляции, который сохранился с ранних ступеней эволюции, с тех пор, когда у животных организмов еще не было нервной системы. Поэтому пока неясно, какую роль – атавистическую или дублирующую (подстраховочную) – играют гипотетические носители эндогенной энергии – световоды у современного человека. Индуцированные светом биоэнергетические силы вызывают в организме целый каскад превращений. Они воздействуют на центральную нервную систему, эндокринные железы, гуморальную среду и многие другие жизненно важные образования. Ультрафиолетовые лучи стимулируют выработку в коже активных биологических веществ, отрывают и переносят электроны, изменяют «ионную конъюнктуру» и электрические свойства коллоидов, повышают проницаемость клеточных мембран и обмен веществ, влияют на половую функцию и так называемые биологические часы. Применительно к человеку это означает, что у южан, по сравнению с жителями севера, быстрее происходит рост, половое созревание и общее развитие организма.
Интенсификация обмена веществ, деления и роста клеток под влиянием световых облучений признается сейчас все большим числом исследователей. Небезынтересно напомнить, что еще в 1923 году А. Г. Гурвич открыл митогенетические лучи, активирующие метаболические процессы и представляющие из себя ультрафиолетовые волны очень малой интенсивности и длиной 290–180 нм. Они испускаются растительными и животными тканями и стимулируют на расстоянии клеточное деление. На основании этих исследований немецкие ученые J. Deck и D. Рорр высказались в пользу того, что адаптационные знаки на радужке, используемые в иридодиагностике, являются ничем иным, как голографией когерентных полей излучения.
Исходя из эффекта А. Г. Гурвича, они установили следующие три положения:
1. Интенсивность митогенетического излучения возрастает по мере отмирания клеток, при этом количество фотонов соответствует числу гибнущих клеток. В связи с чем авторы считают, что в каждой клетке работает молекула или атом, отвечающий за фотон.
2. Излучение живых систем клеток отличается от мертвых систем своим спектральным распределением.
3. В отличие от мертвых систем клеток, дающих спонтанное митогенетическое излучение, живые клетки продуцируют слитные лучи в течение длительного времени – от нескольких минут до нескольких дней. Это уникальное обстоятельство, которое можно было бы использовать для ранней экспресс-диагностики рака.
В дальнейшем В. П. Казначеев и Л. П. Михайлова экспериментально доказали существование межклеточного ультрафиолетового кода, с помощью которого мельчайшие частицы живого – клетки – информируют и воздействуют друг на друга. Влияние света на обмен веществ можно объяснить «доказательством от обратного». Такого рода опыты проводил известный физиолог X. Дельгадо, который выращивал детенышей шимпанзе в полной темноте. В результате длительного дефицита света у подопытных уменьшался вес головного мозга, ослаблялась условно-рефлекторная деятельность, снижалось количество белка и РНК в соответствующих нейронах. Все это говорило об ухудшении процесса биосинтеза белка.
Таким образом, был выдвинут тезис о том, что биоэнергетическим корректором метаболических изменений в организме является свет и прежде всего его ультрафиолетовая часть.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?