Электронная библиотека » Ольга Елисеева » » онлайн чтение - страница 3


  • Текст добавлен: 28 июня 2023, 12:40


Автор книги: Ольга Елисеева


Жанр: Медицина, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 41 страниц) [доступный отрывок для чтения: 13 страниц]

Шрифт:
- 100% +
Молекулярная основа рака

Открытие резонаторов в крови человека дало нам в руки ключ к пониманию истоков зарождающейся болезни, позволило рассмотреть на уровне микро– и наномира отличие ракового заболевания от других, выяснить особенности этой болезни, ее механизм и молекулярную основу, а также понять, почему она зачастую является неизлечимым недугом.

Механизм раковой болезни – это энергетический механизм взаимодействия мазерного космического излучения возбужденных молекул гидроксила OH с идентичными молекулами в плазме крови человека, обладающими способностью к слабому мазерному эффекту.

Свойством слабого мазерного эффекта, или способностью усиливать внешнюю электромагнитную волну, обладают многие молекулы. Работать «слабеньким» квантовым усилителем может и возбужденная молекула гидроксила в плазме крови человека. Она воспринимает мазерное солнечное излучение от однотипных молекул и за счет резонанса усиливает электромагнитную волну.

Но каким образом возбужденная молекула гидроксила может быть встроена в материю плазмы крови? Есть несколько вариантов такого ее «обустройства»: например, она может входить в молекулу в виде функциональной группы; или в качестве иона возникать в материи плазмы при диссоциации молекул воды; или просто быть составной частью молекулы и пр.

О молекулярной основе рака, или молекуле, способной создать код раковой болезни, мы можем пока говорить только гипотетически. Молекулярной основой рака может быть назван нанокомплекс, состоящий из четырех молекул арахидоновой кислоты – жирной кислоты с короткой молекулярной цепочкой. Известно, что жирными кислотами были насыщены первичные воды Мирового океана, в которых со временем зародилась жизнь. Ученые предполагают, что именно короткоцепочечные жирные кислоты могли стать основой для первородной жизни. Мы же рассматриваем нанокомплекс как первооснову будущей раковой клетки, или праматерию ДНК. Клетки, которая синтезируется непосредственно в материи плазмы крови. Арахидоновая кислота, как известно, входит в состав липидов клеточных мембран. Рассмотрим, как синтезируется праматерия ДНК. Что она включает в себя, как образуется?

О свойствах арахидоновой кислоты известно достаточно много. Но для того, чтобы стать кодом раковой болезни, необходимо одновременное объединение сразу четырех молекул арахидоновой кислоты, которые создают при этом голографический «ажур», показанный на микрофотографии 19. Данный «ажур» был обнаружен в крови больной раком женщины средних лет при помощи обычного светового микроскопа. По сравнению с эритроцитом, наблюдаемым на переднем плане, он просто огромен. При фиксации наличия в крови подобных объектов у врачей появляется возможность ранней диагностики раковых заболеваний. Однако подобная методика сопряжена с необходимостью частого просмотра анализов крови, так как вследствие выбросов из тонкого кишечника (в соответствии с суточными ритмами) голограмма может быть уничтожена. Но отчаиваться не стоит, поскольку микрофлора и фауна крови в этом случае будет уже настолько развитой, что «угомониться» сможет только спустя три недели после прохождения пика своей активной фазы. Затем все повторится, и исследователь получит шанс продолжить изучать болезнь века.


Микрофотография 19. Нанокомплекс рака, состоит из четырех однотипных молекул. Согласно сложной картине интерференции, четыре абсолютно идентичных луча собирают красивый «ажур». Он имеет более крупные размеры по сравнению с эритроцитом, показанным на переднем плане, и хорошо наблюдается даже в обычный световой микроскоп. На одном мазке крови могут быть выделены сразу несколько подобных нанокомплексов, и все они в дальнейшем способны послужить основой для развития раковой болезни


Собираются нанокомплексы из четырех однотипных молекул. Размеры нанокомплексов составляют менее десять в минус девятой степени метра. Методология сборки одиночных молекул арахидоновой кислоты придает нанокомплексу новые свойства, отличные от свойств одиночных молекул арахидоновой кислоты. Поэтому свойства арахидоновой кислоты мы рассматривать здесь не будем.

Здесь все совсем иное – наномир и наноструктуры. Они редко встречаются в природе, и потому изучение их свойств всегда вызывает интерес исследователя. Некоторые наноструктуры можно воспроизвести искусственно и воспользоваться их необычными свойствами, но есть и такие – содержащиеся в хорошо изученных телах или растворах, – которые таят в себе еще много загадок.

Например, хорошо известны три твердые модификации чистого углерода: аморфная сажа, черно-серый маслянистый графит и абсолютно прозрачный сверхтвердый алмаз. Несмотря на то, что внешне они совершенно не похожи друг на друга, все эти модификации состоят из чистого углерода, однако обладающего разной кристаллической организацией. Четвертая твердая модификация углерода, фуллерен, состоит из 60 атомов углерода, собранных в виде пустотелой сферы.

Но, кроме того, например, в печной саже были обнаружены углеродные нанотрубки, что является необычным соединением однотипных молекул углерода. Свойства и легкость нанотрубок оказались настолько уникальными, что их стали применять не только в быту, но и в технике.

Многим известны имена нобелевских лауреатов 2010 года по физике Константина Новоселого и Андрея Гейма, которые удостоены этого высокого звания за создание уникального углеродного наноматериала – графена. Графен представляет собой сверхтонкие (толщиной в один атом) слои из атомов углерода, связанные в гексагональную (состоящую из шестиугольников с общими сторонами) структуру. Как материал – новый и современный – он является самым тонким и одновременно самым прочным. Кроме того, он обладает проводящими свойствами, характерными, например, для таких металлов, как медь. По теплопроводности он превосходит все известные на сегодняшний день материалы. Слои графена почти прозрачные, однако настолько плотные, что даже самые маленькие молекулы (например, одноатомные молекулы благородного газа гелия) не могут пройти сквозь слой графена. Ученые получили этот материал, отрывая липкой лентой слои обычного карандашного графита. Получается, что монослои графита обладают новыми свойствами, не присущими одиночным атомам углерода. В скором будущем из графена будут получены приборы для микроэлектроники с высоким быстродействием, что может на порядки ускорить работу компьютеров.

Ученые используют оригинальные находки. Например, они обнаружили микроскопические вкрапления в кристаллической структуре алмаза, выделяющиеся необычным голубоватым светом. Эти вкрапления в природе возникли под воздействием высоких давлений и температур в момент формирования нашей планеты. Выделив их, исследователи обнаружили необычные свойства проводимости голубых вкраплений, которые позволят создавать приборы с более высокой разрешающей способностью экранов и другие приборы. Теперь такой абсолютно новый материал стали производить искусственно, что позволит применять его в разных областях науки и техники. Методология наносборки однотипных атомов или молекул, например, вроде приведенного здесь примера с углеродом, предоставляет возможности для производства материалов, обладающих различными уникальными свойствами. Подобно химической таблице Д. И. Менделеева, можно уже говорить о составлении «таблицы углерода». Каких еще открытий в этой сфере ожидать в будущем, может показать только время. Все зависит от того, насколько быстро будут развиваться технические средства, способные выявлять или создавать в лаборатории уникальные природные условия, характерные для ранней Земли.

Одни и те же сложные органические молекулы тоже могут иметь методологию сборки «нано», то есть сборку однотипных молекул, свойства которых отличаются от свойств «первородной» органической молекулы. Поскольку расшифровка органических молекул трудоемка и сложна, точное определение молекулы, посредством которой материализуется голограмма, или код болезни, трудно. Но можно обойти эти сложности, зная механизм и физику процессов, сопутствующих заболеванию. Этого будет вполне достаточно для того, чтобы сдержать развитие болезни и подавлять бурное размножение микроорганизмов. А при чем тут микроорганизмы, спросит читатель?

Микроорганизмы крови всегда как бы сопровождают ход течения болезни. Мы не видели ни одного образца крови, в котором бы они отсутствовали. Это могла быть необычно развитая эволюционно закрепленная микрофлора и фауна крови, многие из форм размножения которой оказывались нам уже знакомыми, или же микроорганизмы, внедрившиеся в кровь.

Не исключено, что внедрение в кровь микроорганизмов или опережающее развитие даже одного микроорганизма эволюционно закрепленной микрофлоры влияет на появление в крови молекул, способных образовать необычную «наносборку» со свойствами, которые соответствуют резонирующим устройствам и которые становятся – при помощи голограммы – накопителями резонаторов крови. При этом с высокой долей вероятности изменится частотный режим крови, что может негативным образом повлиять на весь организм в целом или оказать губительное воздействие на работу конкретного органа. Сбой же в работе единственной клеточки одного органа может спровоцировать возникновение болезнетворного очага в другом органе, даже непосредственно не связанном с источником заболевания. Продукты жизнедеятельности микроорганизмов, синтетические молекулы, используемые в пище и фармакологии, продукты загрязнения вод – все это может приводить к возникновению необычных наносборок органических и неорганических молекул. Они могут объединяться по две, три или четыре молекулы, что и демонстрируют опубликованные нами микрофотографии.

Исследование материи плазмы крови у одних и тех же больных и выздоровевших людей методом просмотра ее образцов через краткие временные промежутки привело нас к определенным открытиям, но непосредственно сам этот метод просмотра объектов в движущейся материи плазмы крови человека оказался гораздо более значимым научным достижением. Он позволил заглянуть в доселе неведомый и невидимый квантовый мир, где функционируют сложные кантовые устройства связи, создаваемые природой непосредственно в крови человека. Плазма крови человека оказалась удобной для записи и считывания информации на квантовом уровне. Там же создаются коды болезней, записывающиеся в виде голограмм.

Носитель квантовой гравитации по сей день остается «неуловимым» для физиков, пытающихся создать Единую теорию поля, но и квантовую гравитацию можно наблюдать в плазме крови больного раком. Квантовая физика позволяет отслеживать единство всего сущего. Именно она перекидывает мостик в видимый мир, где уже не нужны сложные приборы, где глаз человека способен подсказать, предопределить развитие болезни. Эффекты квантовой гравитации и других физических полей на квантовом уровне имеют макроскопические последствия, проявлением которых служит заболевание.

Только на начальной стадии ракового заболевания можно наблюдать «ажур», создаваемый нанокомплексом. Большая сфера рассеивания энергии позволяет голограмме накапливать в материи плазмы крови объемные резонаторы энергии (предвестников ракового заболевания), а также частицы материи, свойства которых подверглись изменениям вследствие воздействия внешнего излучения. Материя плазмы становится магнитоактивной, но со временем сфера рассеивания электромагнитных волн сокращается. Мазерный луч не может полностью рассеяться в материи плазмы, он тормозится, и тогда проявляются новые физические эффекты, соответствующие нелинейным свойствам материи. Привычная голограмма начинает складываться из волновых «портретов» более крупных объектов – фрактальных кристаллов, сохраняя при этом характерные максимумы и минимумы энергии.

Напомним читателям, что такое фрактал, а затем рассмотрим на микрофотографии процесс формирования фрактальных кристаллов, которые лежат в основе кода раковой болезни, и узнаем, почему именно нанокомплекс из четырех однотипных молекул сделал эту болезнь столь отличной от множества других.

Фрактально-голографическое устройство в эволюции материи

Слово «фрактал» происходит от латинского прилагательного «fractus», что в переводе означает «состоящий из фрагментов». Математические формы, известные как фрактал, являются следствием научного творчества выдающегося ученого Бенуа Мандельброта. Он разбивал на первый взгляд случайные математические формы на составляющие их элементы, оказывающиеся при ближайшем рассмотрении повторяющимися, что, в свою очередь, и доказывало наличие некоего образца для копирования. Открытие Мандельброта дало весомый толчок дальнейшему развитию физики, астрономии и биологии. Фрактал представляет собой сложную геометрическую фигуру, которая состоит из бесконечной последовательности частей, каждая из которых подобна всей фигуре целиком и повторяется при уменьшении масштаба.

В природе фрактальными свойствами обладают все живые объекты, например: цветная капуста, кроны деревьев, кровеносная и альвеолярная системы человека и животных. Также встречаются и неживые объекты, в основе построения которых обнаруживаются фрактальные признаки, – это некоторые кристаллы, снежинки, облака и т. д.

В качестве наглядного примера можно рассмотреть фрактальное строение цветной капусты. Если разрезать цветок капусты, то легко убедиться, что обе части разрезанного цветка останутся структурно неизменными, хотя и меньших размеров. Можно продолжать резать их снова и снова, и вроде бы тогда фрактальность объектов будет уже не столь явной, однако под микроскопом мы опять увидим крошечные копии первоначальной структуры.

Именно в сохранении базового алгоритма фрактала (точного набора инструкций, описывающих порядок развития организма) заключается устойчивость состояния здоровья человека. Алгоритм фрактала не должен изменяться и дополняться. Любое внедрение в живую систему дополнительных резонансных устройств сбивает алгоритм сохранности здоровья человека.

В течение длительного времени человек противопоставлял себя природе: не учитывал свою зависимость от окружающей среды, влияния космоса, природных циклов, различных излучений и многого другого. Он и до сих пор полностью не пришел к ясному пониманию своего места в природе. Однако такое понимание достигается лишь с познанием первооснов материи. Так что же такое материя? Можно сказать, что материя – это триединая субстанция, состоящая из энергии, информации и вещества. Энергия материи плазмы крови включает в себя не только энергию биохимических реакций, но и энергию внешнего источника излучения, его информационный посыл, а кроме того – новое вещество, образующееся в результате электромагнитного взаимодействия с внешним источником излучения. Можно утверждать, что вследствие влияния космоса плазма крови эволюционирует во времени. Причем каждое такое воздействие (новые условия) характеризуется определенным типом излучения, что приводит к накоплению частиц материи, обладающих новыми свойствами. В материи плазмы крови происходит образование единого электромагнитного поля, имеющего сложную конфигурацию. В этом поле появляются структуры (энергоинформационные матрицы), способные удерживать энергию, то есть создаются условия для накопления уже не только элементарных частиц. В дальнейшем начинают образовываться все новые и новые формы, в основу которых закладывается все более усложняющаяся информация. Именно эта информация – сложноструктурированное электромагнитное поле в сочетании с окружающей материй – становится «энергоинформационной матрицей», которая определяет степень готовности материи к возникновению вещества различного уровня сложности и дальнейшего его слияния с окружающей средой. Эта среда, в свою очередь, также подчиняется единым законам развития и эволюции. Таким образом, развитие материи в виде вещества включает в себя формирование энергоинформационных матриц. Данные процессы находят свое отражение в интерференционной картине, или голограмме.


Микрофотография 20. Энергетический вихрь. Начало формирования материальной опоры фрактальной голограммы. Она складывается из отдельных фрагментов под воздействием электромагнитного и гравитационного полей


Приток космической энергии вызывает нарушение динамического равновесия в материи плазмы, что приводит к установлению нового энергетического порядка. В областях материи плазмы, подвергшихся облучению, происходит организация нового вида материи. На микрофотографии 20 мы видим, как начинает собираться голограмма в самом начале ее формирования.

Нанокомплекс и мазерное излучение дают начало динамическому развитию болезни. Читателю материал данного исследования может показаться чересчур сложным для понимания. Но так ведь и описываемая болезнь – сложный во всех отношениях феномен. Если б было все просто, то человечество от нее давно бы избавилось.

Такое распространенное заболевание, как, например, рак молочной железы, дает возможность обнаружить рост опухоли быстрее, чем это удается сделать в других органах. Но даже при ее быстром обнаружении отмечаются огромные изменения, уже произошедшие в плазме крови этого человека. По сложному «ажуру» можно судить, что резонансную волну создает композиция из четырех однотипных молекул, называемая нами нанокомплексом, и это является первоначальным усилением электромагнитной волны нанокомплекса. Он может присутствовать в плазме крови и в единственном экземпляре. Но свойство голограммы «печатать», размножать или копировать нанокомплексы способствует насыщению материи плазмы объемными резонаторами крови, столь характерными для раковой болезни. В таком случае частота вибраций крови изменится и создадутся условия, при которых кроветворная ткань будет производить недостаточное количество эритроцитов. Произойдут резкие изменения в крови, которые человек начнет ощущать спустя годы от начала развития болезни.

Природе понадобились формы, через которые она может кодировать различные болезни. Для этого ей требуется перестроить материю плазмы. Посмотрим, как происходит подобное перестроение.

Обратимся к микрофотографии 21, на которой зафиксирован момент формирования пирамид и их соединения между собой. Пирамиды складываются из треугольных форм в кристаллы-пирамиды. Это энергонапряженные кристаллы. Для их построения требуется приток внешней энергии – энергии мазерного излучения.


Микрофотография 21. Формирование материальной опоры фрактальной голограммы из пирамид


Так в наше евклидово пространство вписываются неевклидовы треугольники (сумма углов которых отлична от 180 градусов, а стороны треугольников не прямые, а изогнутые). Пирамиды, собранные из таких треугольников, будут упругонапряженными. Отсюда вывод: в плазму крови встраивается абсолютно новое вещество с новыми свойствами.

Конечно, в сборке пирамид участвуют и квантовые гравитационные поля. Они работают на всех размерностях, включая и мельчайшие частицы материи. Таким образом, квантовая гравитация треугольных форм и ее эволюция в более крупные формы наглядно демонстрирует ученым-физикам возможность осуществления экспериментальных исследований в области квантовой гравитации.

Если мы приглядимся к фрактальной голограмме, то увидим, что она сложена из пирамид разного размера, но подобных друг другу. Голограмма, сложенная из несоразмерных, но подобных друг другу фигур, именуется «фракталом». Следовательно, свойства мазерного излучения позволяют наблюдать не тривиальную интерференцию двух волн, а объемное фрактально-голографическое изображение, состоящее из кристаллов-пирамид. Таков природный метод записи и считывания информации. Фракталы являются геометрическими объектами, обладающими дробной размерностью. Другими словами, размерность фракталов может выражаться не только в целых числах, таких как ноль и единица, но и в дробных. Можно утверждать, что фракталы являются основой для построения квантового компьютера жизни, и мы в дальнейшем постараемся разъяснить принципы его устройства и работы в материи плазмы крови человека.

Кристаллы знакомы людям с древнейших времен. Но кристаллы, которые материализуют голограмму больного раком, являются нелинейными и имеют форму подобных друг другу пирамид. Они уменьшаются в размерах при отдалении от места резонанса, но продолжают сохранять подобие своих форм. На микрофотографии 21, зафиксировавшей процесс сборки самой голограммы, можно наблюдать постепенный рост этих пирамид, сопровождающийся обретением ими своих характерных форм. В процессе своего роста они сближаются друг с другом определенными гранями, образуя линию интерференции, но не сплошную, а разъединенную, то есть с частично остающимися пустотами между пирамидами. Это и есть фрактальная сборка голограммы. В отличие от классических кристаллов, нелинейные кристаллы при своем росте не выделяют энергию, а, наоборот, потребляют ее, поскольку являются энергонапряженными кристаллами. Для своего построения они используют энергию мазерного излучения, усиленную мазерным эффектом самого нанокомплекса. Можно сказать, что нанокомплекс работает в материи плазмы крови не только как наноантенное устройство, но и как усилитель космического сигнала. В точке резонанса образуется более крупный кристаллический модуль – пирамида, внутреннее устройство которой составляют подобные ей же пирамиды. В итоге образуется мощный резонатор крови, или приемно-передающее устройство связи (ППУ).

С помощью голограммы можно наблюдать структуры фрактальных кристаллов в организме человека, в материи плазмы крови. Но весь организм человека представляет собой совокупность фрактальных компонентов. Фрактальную конструкцию имеет кровеносная система, легкие и другие органы. Думается, что если человек сможет создать приборы, улавливающие самые незначительные колебания такой фрактальной телесной компоненты, например сердца, то ранняя диагностика заболевания соответствующего органа станет повседневной реальностью.

Рост фрактальных структур сопровождается обязательным поглощением ими энергии, то есть они обладают энергонакопительными свойствами. Следовательно, при частичном или полном разрушении фрактальных структур – энергия, затраченная на их образование, будет высвобождаться, подпитывая тем самым плазму крови вещественно и энергетически. Голограмма состоит из одного вида нелинейных модулей и собирается согласно одному алгоритму сплетений групп. Слабые связи, объединяющие части фрактального кристалла, позволяют ему реагировать на внешние воздействия без существенного изменения строения частей системы. Кроме того, из-за слабости этих связей при сборке фрактального кристалла происходит изменение строения уже сложившихся уровней под влиянием вновь возникающих. На каждом уровне иерархического соединения могут возникнуть новые возможные варианты сплетения групп, определяющие свойства и строение, отличные от исходных частей системы. Далее эти фрактальные структуры становятся основой для эволюционного развития последующих уровней, обладающих уже новыми возможностями и т. д. Подобным же образом происходит эволюционное усложнение и наноантенных устройств.

Фрактальный пирамидальный модуль вполне может претендовать на предбиологическую основу жизни, то есть именно такой кристалл являлся базисом для праматерии ДНК. Посмотрим, как это могло случиться.

Механизм ракового заболевания запущен. Он усиливается новыми квантовыми эффектами. Причем сам процесс не исчезает, не заменяется каким-то другим, а лишь усложняется и ускоряется. Интерференционная картина постепенно сжимается, мазерное излучение уже не в состоянии глубоко проникать в материю плазмы крови. Материя плазмы крови человека исподволь становится непрозрачной для мазерного излучения, приобретая нелинейные свойства.

Мазерное излучение Солнца возбужденных молекул гидроксила взаимодействует с идентичной молекулой в материи плазмы крови, но дальнейшего расширения волнового фронта не происходит. Это наблюдается по сдвигу распространения волнового фронта в материи плазмы крови. Волновой фронт сжимается.

При раковом заболевании путь, который проходит мазерный луч в материи плазмы крови, настолько короток, что наблюдается его отражение. Уже на небольшом расстоянии от точки взаимодействия волновых фронтов он сильно сжимается и самофокусируется.

Это квантовое явление придает механизму ракового заболевания принципиально иной характер по сравнению с другими болезнями. Появляется точка бифуркации, точка невозврата болезни. В этом случае особенности рассеивания интенсивного мазерного излучения обусловлены большой напряженностью электромагнитного поля волны. Сильное электромагнитное поле самовозбуждает внутреннее движение среды, через которую проходит мазерный луч. А проходит он через нелинейный кристалл-пирамиду, состоящую из подобных же ей пирамид, образованных, в свою очередь, из неевклидовых треугольников. Именно такой кристаллический модуль способствует рассеиванию интенсивной и сфокусированной мазерной волны.

При рассеивании интенсивного мазерного излучения в пирамиде, кроме боковых спектральных компонент, могут обнаруживаться и другие компоненты, называемые гармониками, с частотами, кратными частоте приходящего излучения.

Интенсивность гармоник в пирамиде может быть весьма значительной и составлять от 30 до 50 % мощности рассеянного излучения.

Степень прозрачности плазмы напрямую зависит от значений мощности излучения. Некоторые среды, прозрачные для слабого излучения, становятся непрозрачными для мощного излучения и наоборот. То есть существенное увеличение интенсивности мазерного излучения за счет нелинейных эффектов позволяет мазерному лучу проходить сквозь пирамиду и полностью рассеиваться в ней. Эффекты, характер которых зависит от интенсивности излучения, называются нелинейными.

Так что же происходит уже внутри пирамиды, внутри этого нелинейного кристалла, собранного из подобных же нелинейных кристаллов, то есть пирамид меньшего размера, вписанных в кристалл? Как в евклидово пространство материи плазмы крови сумел встроиться объект, обладающий неевклидовыми свойствами – пирамида, базовым элементом которой является неевклидов треугольник?


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 | Следующая
  • 4.6 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации