Электронная библиотека » Ольга Грейгъ » » онлайн чтение - страница 2


  • Текст добавлен: 23 октября 2020, 09:40


Автор книги: Ольга Грейгъ


Жанр: Публицистика: прочее, Публицистика


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 27 страниц) [доступный отрывок для чтения: 9 страниц]

Шрифт:
- 100% +

История 2
«Одна без другой в совершенстве быть не могут»

Для доказательства справедливости своих научных взглядов М.В. Ломоносов использовал физические и химические опыты, проводимые им в своей химической лаборатории. Можно сказать, что его лаборатория явилась прообразом всех научно-исследовательских учреждений будущего. Ее основание означало начало нового этапа в изучении самой Природы и ее составляющих. Аналогичная лаборатория была построена лишь спустя 75 лет (!) в Гессене немецким профессором химии Ю. Либихом.

Дом с домашней лабораторией в Санкт-Петербурге, на Мойке Михаил Васильевич Ломоносов выстроил в 1756 году. Тут же разместилась оптическая мастерская, где по его проектам мастера изготовляли разные приборы, телескопы, микроскопы, перископы, мореходные и другие инструменты. А за два года до того, в 1753 г. М.В. Ломоносов в дар от дочери Петра I, Императрицы Елизаветы Петровны получает поместье в Усть-Рудицах, что в 64 верстах от северной столицы. Там расположатся стекольная фабрика для изготовления цветных мозаичных стекол, бисера и стекляруса. Причем все станки для изготовления сих изделий великий ученый придумает сам, составляя подробные чертежи. Любопытно, что ряд машин и приспособлений станут приводиться в движение водяной мельницей.


Императрица Екатерина II у М.В. Ломоносова. Художник Иван Федоров


Михаил Васильевич Ломоносов был величайшим новатором в истории химии. И он же впервые стал называть химию наукой, в то время как западноевропейские химики еще определяли ее как «искусство разложения тел смешанных на их составные части или искусство соединения составных частей в тела», – как писал Георг Шталь в своих «Основаниях химии» (1723). В то время Ломоносов последовательно и плодотворно внедрял в науку анатомические представления, и, перестраивая физику, создавал и закладывал основы новой науки – физической химии.

Для М.В. Ломоносова химия – «наука изменений» – учение о процессах, происходящих в телах. В отличие от своих предшественников – философов-атомистов, гений отечественной науки создает методы химического исследования; проводит проверку химических опытов своих коллег; рассуждает о важности проведения опытов в вакууме; стремится еще и «сверх сего к химическим опытам присовокуплять, где возможно, оптические, магнитные и электрические опыты». Русский ученый в буквальном смысле наметил план работ на десятки лет вперед!

Как известно, именно в химической лаборатории впервые стали изготовляться стекла, окрашенные в множество оттенков цветовой гаммы, предназначенные для уникальных мозаичных картин. Там же, в лаборатории, «трудясь многими опытами, кроме других исследований, изобрели фарфоровую массу» (в совместном проекте с химиком Виноградовым). Там же исследовались образцы пород, присылаемых со всех концов необъятной Российской Империи, в том числе – с Урала, Севера и Дальнего Востока.

В те годы самой разработанной частью естествознания была механика. И М.В. Ломоносов впервые внедрил в химию метод точных количественных измерений, служивший прекрасной основой для многих разработок механики.

Для успешных исследований Ломоносов использовал весы; в 1745 г. он писал: «При всех помянутых опытах буду я примечать и записывать не токмо самые действия, вес или меру употребляемых к тому материй и сосудов, но и все окрестности, которые надобно быть покажутся». Формулируя тем самым принципы весового и объемного анализа. Известно, что лаборатория Ломоносова располагала целым набором различных весов. Здесь были большие «пробные весы в стеклянном футляре», пробирные весы серебряные, несколько ручных аптекарских весов с медными чашками, обычные торговые весы для больших тяжестей, однако отличавшиеся большой точностью. Точность, с какой страстный новатор производил взвешивания при своих опытах, достигала 0,0003 грамма.

Для развития химической науки введение, казалось бы, простого и всем нам понятного метода количественных измерений, явилось огромным и успешным шагом.

* * *

Зарубежная наука приписывает создание метода количественных измерений в химии Лавуазье и Гей-Люссаку, хотя Ломоносов опередил этих ученых на многие и многие годы!

* * *

О французском химике, члене Парижской Академии наук Антуане Лоране Лавуазье нами уже упоминалось. Можно лишь добавить, что судьба его незавидна: за умение зарабатывать деньги (которые по большей части ученый вкладывал в создание своей лаборатории и проведение научных исследований), сей адъюнкт и обладатель Золотой медали Парижской Академии наук был в 1794 году… казнен французскими недоумками-революционерами. Подобная судьба через столетия постигнет многих русских ученых, растерзанных революционными большевистскими и чекистскими бандами.


Полет пилотируемого воздушного шара, наполненного водородом. Шар был запущен в саду Тюильри в Париже 1 декабря 1783 г. Пассажирами были Жак Шарль и его помощник М.-Н. Робер


Что касается другого французского физика и химика, профессора Жозефа Луи Гей-Люссака (1778–1850) и также члена Парижской академии наук (1806), то его судьба много счастливее предшественника. Он даже был членом палаты депутатов (1831–1839), успел поработать профессором химии в Парижском ботаническом саду (с 1832) и проделать несколько полетов на воздушном шаре (два – в 1804), но после полетов нашего соотечественника Я.Д. Захарова – русского химика, академика Русской Императорской Академии наук в Санкт-Петербурге. К слову сказать, Яков Дмитриевич Захаров (1765–1836), разделяя взгляды Ломоносова, одним из первых в Российской Империи начал читать курс химии с позиций, отрицающих существование флогистона. Он всего на два месяца опередил Гей-Люссака, поднявшись в воздушное пространство на шаре для научных наблюдений и экспериментов в высоких слоях атмосферы, и тем самым показал пример. Полёт выдающегося русского химика Захарова положил начало научному воздухоплаванию!


Русский химик, воздухоплаватель Яков Дмитриевич Захаров


Уже говорилось, что Михаил Васильевич Ломоносов создавал и закладывал основы новой науки – физической химии. «Химик, – писал он, – без знания физики подобен человеку, который всего искать должен ощупом. И эти две науки так соединены между собою, что одна без другой в совершенстве быть не могут». «Физическая химия есть наука, объединяющая на основании положений и опытов физических причину того, что происходит через химические операции в сложных телах», – так в 1752 г. Ломоносов дал четкое определение важнейшего раздела химии.

* * *

В 1887 г. в Лейпциге начинают читать курс физической химии. Этот год считается… датой возникновения данной науки!

* * *

Хотя в подтверждение своих слов незаурядный гений Ломоносов вплоть до 1753 г. читал студентам лекции по физической химии, на которых проводил многочисленные опыты! Программой опытов ученого было предусмотрено подробное исследование кристаллизации; определение удельных весов; сил сцепления твердых и жидких тел; изучение разнообразных растворов, а именно: «застудневание растворов, сцепление студней», т. е. по нынешнему определению – коллоидных состояний.

В программе опытов ученый предусмотрел также и электрохимические и термохимические исследования. Важно указать, что учение о тепловых эффектах при химических превращениях, проведенное в стенах химической лаборатории Ломоносова, переросло затем в самостоятельную отрасль науки – термохимию. Подталкиваемый гением Ломоносова, ее проработал и обосновал русский ученый первой половины XIX в. академик Г.И. Гесс. Химик и член Академии наук Санкт-Петербурга Герман Иванович Гесс (1802–1850) открыл основной закон термохимии (1840), носящий его имя, согласно которому тепловой эффект реакции зависит лишь от начального и конечного состояний системы и не зависит от промежуточных состояний и путей перехода.

Через более чем 100 лет после зачина Ломоносова относительно новой науки, курс физической химии стал читать в Харьковском университете профессор и будущий академик великий Н.Н. Бекетов (1827–1911), организовав отделение физико-химических наук и физико-химический практикум (1859–1887). Чтобы затем переехать в Санкт-Петербург (1886), работать в химической лаборатории и отдавать свои знания, преподавая на Высших женских курсах (!).

А еще через год его практический опыт повторили в Лейпциге…

Николай Николаевич Бекетов на годы опередил иностранных коллег.

Но мысль Михаила Васильевича Ломоносова, как всегда, опередила Пространство и Время.

История 3
Фотоэффект и «атомы электричества»

Крупнейшего физика А.Г. Столетова называют организатором школы русских физиков и одним из основателей электротехники. Его работы стали фундаментом для построения целых областей науки, благодаря его открытиям появилось телевидение, без которого мы не уже представляем свою жизнь.

Александр Григорьевич Столетов(1839–1896); родился в небогатой купеческой семье в городе Владимире на Клязьме. Его отец – Григорий Михайлович – был владельцем бакалейной лавки и мастерской по выделке кож. Мать – Александра Васильевна – была образованной женщиной и сама обучала своих детей, подготавливая к поступлению в гимназию. Уже в пять лет Саша научился читать и писать, в девять он вел дневник, куда записывал не только наблюдения, но и стихи собственного сочинения.


Александр Григорьевич Столетов


Во время учебы во Владимирской гимназии он особо полюбил физические опыты, и не раз демонстрировал их дома. Саша был одним из шести детей в их дружной и веселой семье. В 1856 г. юноша заканчивает гимназию с золотой медалью, и осенью того же года его зачисляют студентом на физико-математический факультет Московского университета, с предоставлением государственной стипендии. В 1860 г. Столетов с отличием закончил университет. Благодаря ходатайству профессора физики Н.А. Любимова, талантливого молодого ученого оставили при университете для подготовки к профессорскому званию. Так как он учился за государственный счет, он обязан был после окончания университета отработать шесть лет «по учебной части Министерства народного просвещения», но его таланты сыграли решающую роль в дальнейшей судьбе этого молодого человека. В середине октября 1861 г. Столетов сдал магистерский экзамен, но защиту диссертации пришлось отложить: летом 1862 г. Александр Григорьевич был отправлен в заграничную командировку как наиболее достойный кандидат.

Три с половиной года Столетов изучал физику в университетах Гейдельберга, Геттингена и Берлина. Известный в то время немецкий ученый Кирхгоф называл его своим самым талантливым учеником. Там же, за границей, молодой физик провел и свое первое научное исследование, в результате которого установил, что диэлектрические свойства среды не влияют на электромагнитное взаимодействие проводников электрического тока. В Гёттингене Столетов работал у немецкого физика В. Вебера. Русский ученый побывал и в Париже, знакомясь с постановкой преподавания физики в Сорбонне.

В конце 1865 г. А.Г. Столетов возвращается в Россию, где получает место преподавателя в Московском университете, и сразу заявляет два курса: математической физики и физической географии. Его блестящие лекции зачастую заканчивались овациями. В то же время он работал над магистерской диссертацией, посвященной проблеме «Общей задачи электростатики и приведению ее к простейшему виду» – о том, как распределяются заряды в проводниках в произвольном случае. Эта задача была решена только для двух проводников английским физиком Томпсоном и геометром Морфии. Показав свои исключительные математические способности, Столетов обобщил эти результаты на произвольное число проводников. После защитил магистерскую диссертацию в мае 1869 г. А.Г. Столетов был утвержден в звании доцента по кафедре физики.


Московский университет на открытке начала ХХ века


Александр Григорьевич предпринимает попытки создания собственной физической лаборатории при университете (будет открыта в 1872-м). А у себя дома он организует физический кружок (не путать с революционными кружками! – такой подтекст зачастую наблюдается в работах советских агитпроповцев, тем самым закладывается мысль о причастности русских ученых, других деятелей к «желаемым всеми прогрессивными людьми» революционным переменам в обществе), который посещают ученые Н.А. Умов, Н.Е. Жуковский, астроном Ф.А. Бредихин, механик Ф.А. Слудский и другие. В 1881 г. этот кружок пополнился математиками и вскоре слился с физическим отделением Общества любителей естествознания, который тогда же возглавил сам Столетов.

Великие русские ученые всегда были великими просветителями – такова была их божественная миссия на родной земле.

В 1872 г. ученый защитил докторскую диссертацию «Исследование о функции намагничения мягкого железа», посвященную изучению магнитных свойств железа. И уже в следующем году был утвержден в должности ординарного профессора Московского университета.

Следует сказать, что тогда электротехники как науки еще не было. Вот почему очень важно было разработать теорию работы электрических машин, установить закономерности в намагничивании железа и его сплавов. Во время работы над диссертацией для выполнения исследований Столетов уезжал на полгода за границу в лабораторию профессора Кирхгофа (как легко, скажете вы, было пополнять знания маститым иностранным коллегам за счет неустанной работы молодых коллег из других стран, проводимой под присмотром хозяев). В те времена для проведения экспериментальных исследований физики часто уезжали за границу. Оттого и хлопотал Александр Григорьевич, чтобы дома наконец появилась своя лаборатория, и его настойчивые просьбы увенчаются успехом в том же значимом для ученого 1872 году.

В лаборатории немецкого физика русский ученый на опыте установил, что коэффициент, характеризующий способность железа намагничиваться, постоянен. По мере возрастания магнитного поля быстро растет коэффициент, однако в определенный момент, когда железо «насыщается», намагничивание железа перестает нарастать. В конце этой своей работы Столетов писал: «…изучение функции намагничения железа может иметь практическую важность при устройстве и употреблении, как электромагнитных двигателей, так и тех магнитноэлектрических машин нового рода, в которых временное намагничение железа играет главную роль (снаряды Н. Уайльда, Сименса, Ладда и др.). Знание свойств железа относительно временного намагничения так же необходимо здесь, как необходимо знакомство со свойствами пара для теории паровых машин. Только при таком знании мы получим возможность обсудить a priori наивыгоднейшую конструкцию подобного снаряда и наперед рассчитать его полезное действие».

Работа по измерению соотношения электромагнитной единицы количества электричества по отношению к электростатической, которая согласно теории английского физика Максвелла, должна быть равна скорости света, была предложена Столетовым по новому методу. Метод получил одобрение Максвелла и даже, по его словам, был признан как самый надежный способ для определения этой величины.


Генрих Рудольф Герц


Результаты исследования Столетова и методика изучения магнитных свойств, созданная им, повлияли на развитие электротехники.


Вильгельм Гальвакс


Диссертационная работа, распахнувшая широкие горизонты и перед наукой, и перед техникой, сделала ее автора всемирно известным ученым. В 1874 г. Столетова пригласили на торжества по поводу открытия физической лаборатории при Кембриджском университете; в 1881 г. он представлял Русскую Науку на I Всемирном конгрессе электриков в Париже. На конгрессе по его предложению была утверждена единица электрического сопротивления – ом, а также эталон сопротивления. Тогда же, на электрической выставке в Париже физическая лаборатория Столетова удостоилась «Диплома сотрудничества». Постепенно росла и ширилась слава о русском физике; и, к слову, в 1889 г. А.Г. Столетова изберут вице-президентом международного конгресса.

В 1988 г. Столетов приступил к исследованию фотоэффекта, открытого за год до этого немецким физиком, одним из основателей электродинамики Генрихом Рудольфом Герцем (1857–1894). Эти исследования, продолжавшиеся два года, принесли Александру Григорьевичу мировую славу и явились вершиной его научного творчества.

26 февраля того же года в лаборатории Московского университета Столетов осуществляет свой знаменитый опыт – заставляет свет порождать электрический ток.

Установка Столетова выглядела следующим образом: цинковый диск, присоединенный к отрицательному полюсу батареи, стоял напротив диска металлической сетки, от которой шел провод к положительному полюсу. Цепь была разомкнута воздушным промежутком между диском и сеткой. Ток не шел; светлый зайчик, отбрасываемый зеркальцем гальванометра, включенного в цепь батареи, стоял на нулевой отметке шкалы. Но когда экспериментатором свет был брошен на диск электрической дуги, зайчик тотчас же пробежал по шкале. Так в цепи возник электрический ток! Эта установка явилась первым фотоэлементом – прибором, отзывающимся на свет появлением электрического тока.

Исследуя явление порождения светом электрического тока, А.Г. Столетов установил все его основные законы. К примеру, закон о пропорциональности между фототоком и интенсивностью падающего света.

* * *

Открытие этого закона на Западе приписывают немецкому физику Гальваксу.

* * *

Вильгельм Гальвакс (Хальвакс; 1850–1922) безусловно, талантливый ученый, он впервые показал, что металлы под воздействием ультрафиолетового излучения теряют отрицательный заряд. Однако первенство в открытии закона о пропорциональности между фототоком и интенсивностью падающего света принадлежит уму и таланту А.Г. Столетова.

Исследования русского ученого примечательны и тем, что в физике того времени еще не были известны электроны, поток которых и создавал ток между диском и сеткой. Электроны, названные ученым «атомами электричества», были официально открыты уже после его смерти.

* * *

Теоретическое объяснение законов фотоэффекта, экспериментально полученных Столетовым еще в конце 80-х гг. XIX в., будет дано А. Эйнштейном в ХХ в., в 1905 г.

* * *

Следует сказать, что на основе фотоэффекта были созданы фотоэлементы, нашедшие большое практическое применение. К примеру, вакуумная установка Столетова была прообразом электронных приборов, которые впоследствии работали в радиоприемниках, радиопередатчиках, в автоматических и телемеханических устройствах, в локаторах.

Как напишут современные авторы, популяризирующие открытия отечественных ученых, «крохотный фотоэлемент вдруг неожиданно превратился в могучего богатыря, спасающего от электрической гибели космические корабли и протягивающего руку помощи большой земной энергетике… /Применяемые фотоэлементы реагируют на видимый свет и даже на инфракрасные лучи. На заводе фотоэлемент почти мгновенно останавливает мощный пресс, если рука человека оказывается в опасной зоне. С помощью фотоэлементов осуществляется воспроизведение звука, записанного на кинопленке. /Кроме фотоэффекта, называемого внешним фотоэффектом, разнообразные применения находит внутренний фотоэффект в полупроводниках. Это явление используется в фоторезисторах-приборах, сопротивление которых зависит от освещенности. Пока же полупроводниковые фотоэлементы применяются в основном для измерения интенсивности света, а также для целей автоматики, сигнализации и телеуправления. А также это кремневые солнечные батареи используются, в частности, для обеспечения энергией искусственных спутников земли и космических кораблей».

Разработанный Александром Григорьевичем Столетовым метод исследования электрических явлений в разреженных газах помог супругам Кюри открыть радиоактивные элементы.



Музей братьев Столетовых в городе Владимире расположился во флигеле их бывшего дома. Здесь жили Николай Григорьевич и Александр Григорьевич Столетовы, первый из них стал генералом, освободившим Болгарию от Османского ига, а второй – физиком с мировым именем


Именно эти исследования русского ученого повлекли за собой грандиозные открытия: открытие электронов, радиоактивности, рентгеновских лучей. Переосмысление законов фотоэффектов привело к созданию квантовой теории, согласно которой свет может вести себя как поток особых частиц – фотонов. Квантовая и электронная теории стали, в свою очередь, основой для исследования мира атомов и элементарных частиц (электронов, протонов, фотонов).

Как и многие его коллеги из рядов русских ученых-педагогов, Столетов читал искуснейшие лекции, привлекая в ряды почитателей и искренних приверженцев науки все новые молодые кадры. Его лекции по опытной физике отличались обилием материала и красочностью изложения. Он всегда успевал ознакомить студентов с последними научными новостями. Александр Григорьевич даже вел отдельные вечерние лекции для любознательных.

Кроме занятия наукой Столетов интересовался литературой, искусством; состоял членом очень многих ученых обществ, как русских, так и иностранных. Был директором отдела прикладной физики при Политехническом музее и за эту работу в 1884 г. ему от имени Общества любителей естествознания, антропологии и этнографии присудили золотую медаль, а в 1886 г. приняли в ряды своих членов. Где он председательствовал на физическом отделении этого весьма уважаемого общества с 1881 по 1889 гг. Важный нюанс: в работах советских историков и писателей это общество чаще всего звучит в усеченном варианте, как «Общество любителей естествознания», тогда как две другие составляющие также очень важны; в особенности антропология, которая после захвата власти большевиками была поставлена в разряд сверхзкрытой науки, все научные труды по антропологии были изъяты (во времена Российской Империи труды по антропологии печатались открыто; и, к слову, современный человек даже не представляет всю важность этой уникальной науки).

19 мая 1896 г. у Александра Григорьевича обнаружилось воспаление легких и ослабление сердечной деятельности; а в ночь с 26 на 27 мая он скончался.

Обширная библиотека, согласно завещанию великого ученого, была передана в физическую лабораторию (впоследствии попала в состав библиотеки Физического института Московского университета имени Столетова). Работы Александра Григорьевича Столетова – одаренного ученого, мыслителя, обладавшего обширной эрудицией, – открыли в физике новую эпоху.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 | Следующая
  • 4.7 Оценок: 6

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации