Автор книги: Приямвада Натараджан
Жанр: Физика, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 6 (всего у книги 17 страниц) [доступный отрывок для чтения: 6 страниц]
Тем не менее сам Эйнштейн не верил, что для предложенных им полевых уравнений, описывающих гравитацию, может быть найдено хоть какое-то простое решение. Однако уже в 1915 г. немецкий физик Карл Шварцшильд получил точное решение для специального случая пространства-времени, создаваемого крошечным, но очень массивным объектом. Предложенное Шварцшильдом решение описывает искажение или модификацию формы пространства, гравитационный колодец в окрестности точечной массы – черной дыры. Другим физикам также удалось получить еще несколько точных решений системы полевых уравнений Эйнштейна. Например, как уже рассказывалось в предыдущей главе, Александр Фридман и Жорж Леметр получили решение, соответствующее пространству-времени в расширяющейся Вселенной, а ближе к нашим дням специалист по релятивистской физике Рой Керр нашел решение для поля, создаваемого вращающейся черной дырой[61]61
Karl Schwarzschild, “Uber das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie,” Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften 7 (1916): 189–96, translated by Salvatore Antoci and Angelo Loinger as “On the Gravitational Field of a Mass Point According to Einstein’s Theory,” submitted May 12, 1999, http://arxiv.org/abs/physics/9905030; and Roy P. Kerr, “Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics,” Physical Review Letters 11, no. 5 (1963): 237.
[Закрыть]. Решение Шварцшильда для черной дыры не приближенное, а математически точное, что было для физиков довольно необычно и интуитивно непонятно. Для них было странным в этом решении, что черная дыра содержит в себе сингулярность, точку, где законы физики ломаются и больше не работают. Кроме того, решение Шварцшильда имело другую весьма необычную особенность, так как подразумевало и включало в себя наличие еще одного параметра – границу между видимой и невидимой частями черной дыры. Она получила название горизонта событий, или радиуса Шварцшильда. Горизонт событий можно назвать точкой невозвращения. Любые физические объекты (включая лучи света), перешедшие эту границу, навсегда теряются для внешнего наблюдателя и перестают обнаруживать себя какими-либо проявлениями вообще. Более того, радиус горизонта событий оказался пропорциональным утроенной массе черной дыры, то есть он возрастает с увеличением ее массы. Поэтому физики воспринимали полученное Шварцшильдом решение (включая содержащееся в нем представление о горизонте событий и скрытую сингулярность) в качестве математического курьеза, поскольку оно явно не описывало реальные объекты. Одной из главных причин неприятия физиками понятия черных дыр стала именно проблема, тесно связанная с природой сингулярности. Сингулярности всегда представляли собой некий вызов, поскольку их существование подвергает испытанию пределы применимости наших теорий, а также указывают границы мира, где перестает работать интуиция. Физикам приходится терпеть наличие этих неприятных понятий, поскольку они понимают, что им неизбежно придется столкнуться с ними при рассмотрении искривления пространства-времени в окрестности черной дыры. При этом возникают сложности и ограничения, которые физики-теоретики давно мечтают преодолеть за счет создания новой объединяющей теории, которая позволила бы осуществить слияние физики мельчайших масштабов (квантовой механики) и теории гравитации. Несколько поколений физиков, включая Эйнштейна и Эддингтона, мечтали о такой финальной теории, так называемой теории всего, однако она оставалась неуловимой. Важным прорывом в данном направлении стало понимание того факта, что сингулярность лежит не на горизонте событий, а заключена внутри самой черной дыры, что позволяет понять, как реально формируются черные дыры, на примере конечной стадии коллапса обычной звезды.
Процесс превращения «умирающей» звезды в черную дыру требует более подробного описания. Представьте себе типичную среднюю звезду класса нашего Солнца (относящуюся к так называемым звездам главной последовательности). Температура ядра такой звезды очень высока (15 млн °С) и существенно превосходит температуру ее поверхности. При этом субатомные частицы (электроны и атомные ядра) внутри звезды непрерывно сталкиваются и отскакивают друг от друга в результате ядерных реакций. Такие столкновения создают внутри ядра очень высокое давление, которое, в свою очередь, компенсирует мощные силы гравитации и предотвращает естественный коллапс звезды.
Понятно, что такое равновесие, основанное на тонком балансе сил, не может сохраняться бесконечно долго. Наличие источника энергии в центре Солнца, термоядерного реактора, который превращает водород в гелий, сохраняет баланс сил с самого начала. Но по мере выгорания водорода в ядре звезды силы гравитации выигрывают гонку и сжимают ядро. В этот период может начаться синтез более тяжелых химических элементов, однако постепенно, по мере потери своего ядерного горючего, звезда начинает охлаждаться. Например, из расчетов известно, что наше Солнце примерно через 5 млрд лет, когда баланс сил сместится в сторону гравитации, начнет остывать и превратится в белого карлика. Более экзотичной оказывается судьба звезд, масса которых заметно превышает массу Солнца. Такие объекты могут сжиматься и дальше, превращаясь в конечном счете в нейтронные звезды либо в черные дыры.
Дополнительный интерес к черным дырам возник благодаря работам известного теоретика Субраманьяна Чандрасекара (Чандра), трудившегося над своей теорией в Кембридже (Англия). Он прибыл туда из Индии в 1930 г. во время первого выезда из Мадраса в Кембридж в Англию и поступил в Тринити-колледж. Чандра сумел показать, что при некоторых специальных условиях в конце своей эволюции (то есть к моменту, когда все ядерное топливо выгорит) звезда может превратиться в исключительно плотный объект. Расчеты Чандры убедительно свидетельствовали о том, что некоторые из звезд могут заканчивать свое существование именно таким необычным образом, формируя бесконечно малые и бесконечно плотные объекты (сингулярности), которые мы сейчас называем черными дырами. Чандра сумел объединить две фундаментальные физические теории (ОТО и квантовую механику) и вычислить ту критическую массу звезды, при которой она взрывается и схлопывается, превращаясь в черную дыру. Предложенная Чандрой модель гибели звезды вызвала сильное сопротивление научного сообщества, причем не только из-за удивительного механизма формирования черных дыр. Дальнейшие расчеты расширили модель и показали, что звезды, масса которых превышает массу Солнца в 1,4–3 раза, превращаются в нейтронные звезды, в то время как более тяжелые звезды (чья масса в 10–25 раз больше массы Солнца) после гибели формируют черные дыры.
По иронии судьбы одним из самых яростных и интеллектуальных противников Чандры стал его коллега Эддингтон, который ранее активно способствовал продвижению ОТО Эйнштейна. На первый взгляд, именно он – тот, кто был так открыт радикальным идеям ОТО и ее экспериментальному доказательству, должен был проявить интерес к выводам Чандры, однако в данном случае между ними возник очень серьезный конфликт интересов. Дело в том, что Эддингтон уже давно разрабатывал собственную теорию (и тоже синтеза ОТО и квантовой механики), описывающую процесс коллапса звезд под воздействием собственных сил тяготения. Эддингтон считал свою теорию не только новой и смелой, но и полагал, что она наилучшим образом объединяет законы Вселенной как на самых малых масштабах – в субатомном мире, так и на самых больших масштабах космоса. Его концепция не включала черные дыры. Эддингтон не думал, что подобные очень маленькие и очень плотные тела могут искажать ткань окружающего пространства-времени настолько сильно, что свет не будет их покидать, однако он предполагал, что такие странные объекты должны исчезать, по его словам, «в никуда». Представление о сингулярности казалось физикам настолько диким, что даже сам Эйнштейн ошибочно считал, что черные дыры не могут формироваться, и полагал, что должен существовать некий физический механизм, стабилизирующий состояние звезды в процессе коллапса еще до прохождения точки невозврата. Эйнштейн и Эддингтон были уверены, что природа не может допустить столь «извращенную» форму гибели звезд[62]62
The conflict between Chandra and Eddington is described in Kameshwar C. Wali, Chandra: A Biography of S. Chandrasekhar (Chicago: University of Chicago Press, 1992), 123–46. Arthur I. Miller’s Empire of the Stars: Obsession, Friendship, and Betrayal in the Quest for Black Holes (Boston: Houghton Mifflin, 2005) is entirely about the controversy surrounding black holes.
[Закрыть]. Они считали модель черной дыры несовершенством, которое необходимо удалить из теории, а не неизбежным и проверяемым следствием.
На заседании Королевского астрономического общества в 1935 г. произошел знаменитый конфликт, когда Эддингтон в очень резкой и грубой форме обрушился на Чандру, хотя был осведомлен о характере расчетов последнего, поскольку они вместе работали в Тринити-колледже Кембриджа и много беседовали. Эддингтон даже не потрудился обосновать свои возражения. Он использовал интеллектуальное превосходство как директор обсерватории в Кембридже для публичной ссоры, в которую позднее оказались втянуты все выдающиеся астрономы Англии. В этот судьбоносный день, 11 января 1935 г., Чандра собирался докладывать на ежемесячном собрании Общества о своих результатах расчета судьбы звезд, которые, по его мнению, после некоторых необычных изменений должны были превратиться в черные дыры. После доклада Чандра ожидал, что Эддингтон поддержит и разовьет его выводы, поскольку они обсуждали эту теорию до заседания. Кроме того, Эддингтон был одним из двух профессоров в комиссии (вторым был Фаулер) на защите докторской диссертации Чандры и у них были хорошие отношения. К удивлению Чандры, Эддингтон (с присущими ему убедительностью и авторитарностью) буквально обрушился с критикой его выступления, заявив, что доклад содержит весьма сомнительную и скользкую математику и не имеет никакого отношения к реальности. Хотя все доводы Эддингтона были необоснованными, Чандра не мог ответить на критику по формальным правилам проведения данного собрания. Хотя его поддерживали многие присутствовавшие на описываемом заседании Королевского общества выдающиеся физики Англии (среди них руководитель его докторантуры Ральф Говард Фаулер, Вольфганг Паули, Поль Дирак и Билл Маккри), но никто из них не рискнул или не захотел противоречить весьма влиятельному и авторитетному Эддингтону на таком публичном мероприятии. Для Чандры это стало моментом предательства (особенно со стороны Фаулера и большинства физического сообщества Англии), он был шокирован и чувствовал себя униженным и беззащитным. Позднее, в 1942 г., трое из самых выдающихся физиков этого времени (Дирак, Рудольф Пайерлс и Морис Прайс) написали важную статью в поддержку позиции и идей Чандры[63]63
Miller, Empire of the Stars, 3–15, 96–119, 135.
[Закрыть].
Артур Миллер изложил эту драматическую историю (включая эпизод на собрании, ссору и борьбу Чандры против научного английского истеблишмента) в своей книге «Империя звезд» (Empire of the Stars). Он привел ее в качестве примера того, как столкновение мнений может повлиять на судьбу науки. В подробной биографии Чандрасекара (охватывающей всю его жизнь с раннего детства и научную карьеру), написанной Камешваром Вали, этому эпизоду и его влиянию на личность Чандры также уделено большое внимание. Для нас этот случай может служить важным примером роли сложных личных отношений (а не интеллектуальной борьбы точек зрения) в истории науки. Возражения Эддингтона вытекали из его неприязненного отношения к сингулярностям вообще, а также из опасения, что теория Чандры создаст проблемы для его собственной модели, которую Эддингтон считал своим «завещанием» и главным научным достижением жизни. Несмотря на сложные и длительные последствия этого столкновения для Чандры, его личные отношения с Эддингтоном оставались в дальнейшем внешне вполне добросердечными (разумеется, со всеми оговорками).
Миллер в своей книге откровенно характеризует поведение Эддингтона как подлое и двуличное. Из писем Чандры он узнал, что и тому приходилось прибегать к ухищрениям, чтобы печатать статьи, противоречащие теории Эддингтона. Чандра просил одного из главных соперников Эддингтона, известного физика сэра Джеймса Джинса, о положительной рецензии на свои работы[64]64
Ibid., 125–50.
[Закрыть]. Эддингтон оставался непреклонным и не изменял своего отношения. Можно сказать, что оба ученых были ослеплены личными привязанностями к соответствующим идеям.
Как часто бывало в истории науки, новые данные и доказательства все расставили по местам. Эту ситуацию хорошо описывает известная фраза знаменитого физика Макса Планка, который сетовал на то, что «…научные истины никогда не побеждают убеждением противников в своих доводах и правильности. Скорее, истина торжествует просто из-за того, что оппоненты умирают и вырастает новое поколение, для которого новое знание уже является привычным»[65]65
Max Planck, Scientific Autobiography and Other Papers, translated by F. Gaynor (New York: Philosophical Library, 1949), 33–34.
[Закрыть].
В конечном счете важность и ценность идей Чандры была установлена в результате странных сочетаний последующих событий и открытий. После Второй мировой войны началась гонка вооружений, в которой стали применять и вычислительные машины. При расчетах, проводимых для создания водородной бомбы, ученые заметили, что изучаемые процессы очень похожи на те, которые должны происходить внутри взрывающихся звезд, что стало окончательным доказательством правильности расчетов Чандры. Он получил широкое признание, а в 1983 г. – Нобелевскую премию после того, как астрономы обнаружили сначала нейтронные звезды, а затем – в 1967 г. – и пульсары, ставшие для астрофизиков звездными маяками. Через два года после их обнаружения выяснилось, что пульсары представляют собой быстро вращающиеся нейтронные звезды, соизмеримые по массе с нашим Солнцем, но вещество в них «упаковано» до плотности материи в атомных ядрах. Такая плотность близка к тому критическому значению, при котором (в описанном выше равновесии сил тяготения и внутреннего давления) начнут преобладать силы гравитации, приводящие звезду к гравитационному коллапсу и превращающие в черную дыру. Это открытие обострило внимание астрономического сообщества к поиску в космосе особо плотных объектов, возникающих при гравитационном коллапсе вообще. Очень интересными в этом смысле оказались нейтронные звезды, которые можно образно назвать двоюродными сестрами черных дыр.
Как уже отмечалось, черные дыры не испускают свет и поэтому не могут наблюдаться непосредственно. Однако, как отмечал еще Мичелл, они могут обнаруживать себя по воздействию на окружающие их объекты. Поэтому, когда орбита движения черной дыры приближается к какой-либо другой звезде, она начинает вытягивать газ из последней своим чудовищным гравитационным воздействием. При этом газ, захваченный черной дырой, очень быстро нагревается и начинает светиться в диапазоне рентгеновского излучения. Астрономы часто наблюдают такие комбинации из черной дыры и звезды-компаньона, и поведение этих систем позволило перевести черные дыры в реальный мир наблюдаемых объектов.
Когда астрономы обнаружили квазары, им стало ясно, что это гигантские, сверхмассивные черные дыры, которые светятся, поглощая газ из своего окружения. Квазары оказались самыми яркими объектами во Вселенной. Мы уже обнаружили большое число таких сверхмассивных черных дыр, и сейчас считается, что каждая галактика, по-видимому, однажды проходит в своем развитии фазу существования в виде такого сияющего объекта[66]66
Сама галактика как целый объект не проходит стадию квазара. Но многие галактики проходят стадию активности, когда в их центре зажигается активное ядро. И если его излучение доминирует над излучением звездного населения галактики, то говорят о наблюдении квазара. – Прим. науч. ред.
[Закрыть], что означает период, когда черная дыра активно поглощает газ, черпая его из доступных источников.
Еще один непрямой (косвенный) метод исследования поведения черных дыр в центрах нашей и соседних галактик основан на количественной оценке их гравитационного воздействия на орбиты близко расположенных к центрам звезд, что позволяет оценивать массу этих черных дыр. Астрономы уже составили карты орбит некоторых звезд, находящихся близко к черной дыре в центре Млечного Пути, и эти орбиты действительно свидетельствуют о присутствии «чудовища» в центре нашей собственной Галактики. К сожалению, из-за огромных расстояний даже до ближайших галактик мы не можем проследить за поведением звезд в их внутренних областях.
Каждый год приносит новые открытия в этой области исследований. В начале 2014 г. мы наблюдали прохождение газового облака вблизи черной дыры в центре нашей Галактики и ожидали увидеть, как черная дыра рассеет и «проглотит» облако, что должно было, по расчетам, привести к драматической, яркой и очень заметной вспышке, сопровождающей процесс «пожирания», однако вопреки ожиданиям облако просто ускользнуло от дыры. Ученые ожидали, что эта уникальная ситуация даст им редкий шанс прямого наблюдения очень сильного гравитационного воздействия черной дыры, однако неожиданно оно оказалось слабее, чем предполагали теоретики, так что сейчас полученные данные используются для уточнения характеристик самого облака. Хотя эта попытка прямого наблюдения оказалась безуспешной, астрономы продолжают изыскивать и другие варианты сбора информации и непосредственного наблюдения за черными дырами. Например, изучаются возможности реализации перспективного и очень интересного проекта изучения черной дыры в центре нашей Галактики с использованием нового инструмента радиоастрономии, получившего название «Телескоп горизонта событий» (Event Horizon Telescope, EHT). Проект основан на следующей научной идее: черные дыры настолько сильно искажают окружающее их пространство-время, что меняют течение времени и процессы распространения света в прилегающей к ним зоне. Из-за этой сильнейшей деформации ткани пространства-времени свет, проходящий мимо дыры, рассеивается случайным образом, создавая уникальные так называемые «тени» на границе горизонта событий. Инструмент проекта представляет собой сочетание нескольких радиотелескопов, расположенных в разных странах (в Мексике, Чили и Германии), которые должны зарегистрировать в радиочастотном диапазоне упомянутые «тени», соответствующие черной дыре в центре нашей Галактики. Такие далеко разнесенные, но объединенные в единую сеть телескопы, по замыслу проектировщиков, будут работать вместе подобно единому радиотелескопу с площадью принимающей антенны, близкой к площади поверхности Земли[67]67
Точнее говорить не о площади радиоинтерферометрического телескопа, а о размере – максимальном расстоянии между антеннами системы. Увеличение расстояния между отдельными антеннами пропорционально улучшает разрешающую способность телескопа. – Прим. науч. ред.
[Закрыть]. Это остроумное инженерное решение обещает получить самые четкие изображения «теней» черных дыр с включением так называемых элементов асимметрии и удлиненности, а также выяснить, в частности, вращаются дыры или нет, что имеет большое значение, поскольку скорость вращения (спин) черных дыр является (наряду с массой) одной из их важнейших характеристик. Проект EHT является новейшим и самым продвинутым методом косвенного наблюдения и картографирования черных дыр, однако стоит отметить, что такие непрямые методы наблюдения имеют очень длительную историю.
К настоящему времени наиболее достоверные и убедительные данные относительно черных дыр получают и описывают с использованием рентгеновского излучения. История его применений начинается в 1895 г., когда весьма известный и авторитетный физик-экспериментатор Вильгельм Рентген, возглавлявший Институт физики в Университете Вюрцбурга (Бавария), обнаружил существование рентгеновских лучей. Рентген занимался исследованием катодных лучей (пучков электронов) и, в частности, пытался выяснить, являются они волнами или частицами. Сейчас из квантовой механики нам известно, что электроны могут обладать свойствами и частиц, и волн, но Рентген жил в доквантовом мире. Как-то поздно вечером в пятницу, работая в своей лаборатории, Рентген изучал свечение флуоресцентного экрана под воздействием катодных лучей и обнаружил, что на экране, располагавшемся недалеко от источника лучей, появляется светящееся пятно даже в полностью затемненной комнате и при полной изоляции трубки с экраном. Он тщательно проверил изоляцию установки от внешних источников света. Поместив свинцовый лист на пути пучка электронов, он вдруг увидел четкое изображение костей своей руки рядом с тенью листа. В этот вечер, 8 ноября 1895 г., Рентген начал экспериментировать с обнаруженным им источником излучения. Он назвал новый тип излучения Х-лучами (сейчас мы называем их рентгеновскими), и они возникают при бомбардировке катодными лучами (электронами) стеклянной поверхности электронных трубок. Рентген сразу обнаружил, что излучение является очень мощным и легко проникает через кожу и ткани человеческого организма, создавая изображение костей скелета. Возбужденный этим открытием, он сделал первую в истории рентгенограмму и получил снимок левой руки своей супруги Анны Берты Рентген (урожденной Людвиг), где хорошо видна структура костей кисти руки и тень от обручального кольца.
Проведя тщательное изучение открытого им явления, Рентген опубликовал в начале 1896 г. работу, сразу ставшую мировой сенсацией. Один из ведущих физиков этой эпохи, Вильям Томсон (лорд Кельвин), даже посчитал статью Рентгена шуткой или розыгрышем и поменял свое мнение лишь после ее многократной проверки в разных лабораториях. В 1901 г. за открытие Х-лучей Рентген стал первым лауреатом по физике только что утвержденной Нобелевской премии. Со временем именно это открытие стало ключом к разгадке тайн черных дыр во Вселенной.
Рентгеновские лучи представляют собой высокоэнергетическое электромагнитное излучение с очень малыми длинами волн, лежащими в диапазоне от 0,1 до 1 нм[68]68
1 нанометр – 1 миллиардная часть метра, или 10–9 м.
[Закрыть] (для сравнения можно указать, что область видимого света простирается от 390 до 700 нм). Область радиоволн характеризуется самыми большими длинами волн (от 1 мм до 100 км). Человек никак не воспринимает рентгеновское излучение (сетчатка нашего глаза просто не имеет соответствующих рецепторов), и поэтому мы можем видеть его, только пользуясь специальными детекторами.
Открытие нейтронных звезд и пульсаров показало, что предсказанная теорией звездной эволюции смерть звезд была верной и что черные дыры – неизбежный результат эволюции звезд при определенных условиях. В конечном итоге это стимулировало охоту за черными дырами. Оказалось, что природа дала нам критический ключ к разгадке ранней стадии: огненный, смертельный вздох звезды в 1054 г., когда в средневековом Китае наблюдался взрыв сверхновой и это было записано усердными китайцами. Событие описал придворный астроном Янг Вэй-Тэ, который даже докладывал императору о рождении новой и яркой звезды-гостьи в созвездии Тельца. Послесвечение этого взрыва до сих пор можно наблюдать в Крабовидной туманности, где взорвавшаяся звезда существует в виде пульсара, окруженного светящимися и разлетающимися остатками ее оболочки.
Звезды с массой меньше Солнца сразу после выгорания внутреннего ядерного топлива превращаются в белых карликов – звездный труп. Звезды, весящие больше Солнца, слишком массивны, чтобы стать белыми карликами после выгорания всего их ядерного топлива[69]69
Белыми карликами могут стать звезды с исходными массами до 7–10 масс Солнца, при этом, сжигая в термоядерных реакциях водород, гелий и углерод, они могут превратиться в богатые кислородом белые карлики. И такие объекты наблюдаются. – Прим. науч. ред.
[Закрыть]. Это и выглядит для внешнего наблюдателя эффектным взрывом сверхновой. При этом звездные «осколки» взрывов (то есть оболочки звезд, бывших изначально массивнее нашего Солнца) содержат все химические элементы, из которых состоим мы сами. Например, весь кальций в наших организмах был когда-то синтезирован внутри звезд упомянутого типа, а затем развеян в пространстве космоса после чудовищных взрывов сверхновых. Описанная выше теоретическая цепочка процессов рождения, развития и гибели звезд предполагает, что более массивные звезды после взрыва превращаются либо в нейтронные звезды, либо в черные дыры. Переход от этих теоретических построений к практическим астрономическим наблюдениям осуществили в 1968 г. студентка-выпускница Кембриджа Джоселин Белл и ее научный руководитель Энтони Хьюиш, которым удалось первыми обнаружить пульсары. Во время наблюдений за звездами при помощи нового радиотелескопа, предоставленного Маллардовской радиоастрономической обсерваторией (Mullard Radio Astronomy Observatory), в окрестностях Кембриджа им посчастливилось зарегистрировать источник, излучающий импульсы с частотой 1,3 с, а позднее и много других высокоточных источников, которые можно назвать условно таймерами. Они напоминают космические часы, «тикающие» с высокой точностью. Франко Пачини и Томас Голд (один из известных сторонников теории стационарного состояния Вселенной) предположили, что обнаруженные объекты представляют собой вращающиеся черные дыры, однако в этом случае они должны были иметь исключительно высокую плотность. К настоящему времени уже известно, что пульсары действительно быстро вращаются и «тикают», причем не только в радиочастотном диапазоне, но и в рентгеновском. Вскоре после обнаружения Беллом пульсаров астрономы выяснили, что звезда в центре Крабовидной туманности тоже пульсирует (с частотой около 30 раз в секунду), а затем был зарегистрирован еще один, новый тип таких объектов, которые можно назвать «трупами» звезд.
Потребовалось еще некоторое время, прежде чем астрономы обнаружили наиболее экзотические виды звездных «осколков». Особую остроту поиски черных дыр приобрели только после того, как астрономы в конце 1960-х гг. окончательно объединили свои усилия с физиками-теоретиками, занятыми разработкой идей в области ОТО. И вновь сочетание наблюдений и теории помогло катализировать ход исследований. Расчеты двух известных теоретиков (Якова Зельдовича и Эдвина Салпетера) показали, что черные дыры при своем движении должны поглощать газовые и пылевые облака, заполняющие межзвездное пространство. Основываясь на этом предположении, они предсказали существование некоторой новой и необычной формы «света» с длиной волны ниже границы видимого диапазона, который и должны излучать нагретые газы и пыль, засасываемые внутрь черной дыры сильнейшим гравитационным полем. Процесс захвата газа и пыли из окружающего пространства черной дыры был назван аккрецией[70]70
Фактически к первым работам по дисковой аккреции относят труды Горбацкого В. Г. в 1965 г., Новикова И. Д. и Торна К. в 1973 г., Шакуры Н. И. и Сюняева Р. А. в 1973 г. – Прим. науч. ред.
[Закрыть]. Вскоре астрономы поняли, что оптимальное сочетание для наблюдения процесса аккреции представляет собой двойную звездную систему из массивной черной дыры, которая медленно «отрывает» вещество от своего партнера в виде нейтронной звезды. Вытягиваемый черной дырой газ при этом разогревается до исключительно высоких температур, порядка 100 млн °С. Теоретически уже было известно, что при таких температурах газ должен излучать в рентгеновском диапазоне, а быстрое и случайное «мерцание» регистрируемых сигналов служит явным свидетельством наличия активно поглощающего этот газ очень плотного объекта типа нейтронной звезды или черной дыры.
Рентгеновское излучение от вихревых потоков газа, ускоряемых гравитационным воздействием черной дыры почти до скорости света, является специфическим признаком наличия черных дыр. Поэтому для регистрации таких высокоэнергетических явлений возникла необходимость разработки новых детекторов и телескопов с рентгеновскими «глазами», открывающими экстремально энергичные явления, невидимые человеку. Создание таких приборов само по себе представляет непростую техническую задачу, поскольку мощность космического рентгеновского излучения мала, хотя само по себе оно и является достаточно мощным, чтобы проникать сквозь кожу и ткани человека. Этой мощности недостаточно для того, чтобы космическое излучение рентгеновского диапазона пробило атмосферу Земли и достигло ее поверхности, вследствие чего мы просто не можем устанавливать такие детекторы на наземные телескопы. Когда-то Хаббл, например, использовал фотопластинки для регистрации видимого света от далеких звезд, но этот прием по указанной причине нельзя было использовать для рентгеновских лучей. Детекторы было необходимо «поднять» выше, то есть вынести за пределы атмосферы, и для этой цели подходили ракеты, которые к этому моменту уже были сконструированы и созданы в результате гонки вооружений, связанной со Второй мировой войной.
После войны некоторое количество немецких ракет типа «Фау-2» попало в распоряжении отдела по развитию науки и техники (American Science and Engineering Group). Поместив рентгеновские детекторы в носовую часть ракеты и осуществив запуск, ученые смогли впервые взглянуть на картину неба в рентгеновском диапазоне. Первым объектом исследования была выбрана двойная звездная система Скорпион X-1 c нейтронной звездой, обращающейся вокруг звезды обычного типа[71]71
Массы компонент в системе X-1 по последним оценкам: порядка 1,4 солнечной массы у нейтронной звезды и 0,42 солнечной массы у второй обычной звезды. Поэтому, несмотря на то что они обращаются вокруг общего центра масс, корректнее говорить, что обычная звезда обращается вокруг нейтронной звезды. – Прим. науч. ред.
[Закрыть]. Интенсивность рентгеновского излучения этого источника превышает соответствующую интенсивность излучения нашего Солнца в 100 млн раз. Новое окно во Вселенную было полностью открыто. В 1970 г. НАСА осуществило запуск первого спутника, специально сконструированного для проведения измерений рентгеновского излучения. Запуск бы проведен недалеко от кенийского города Момбаса, и в благодарность за помощь со стороны правительства Кении спутник получил название «Ухуру» (в переводе с суахили означает «Свобода»). Спутник позволил получить важную информацию о высокоэнергетическом излучении Вселенной и обнаружить более 300 источников излучения, включающих множество рентгеновских двойных, состоящих из потенциальной черной дыры и нейтронной звезды-партнера, так же как и рентгеновских пульсаров, которые располагались достаточно близко к нам, а некоторые – на достаточно больших расстояниях.
Исследования черных дыр с использованием рентгеновского излучения позволили ученым окончательно убедиться в правильности предлагаемой теории жизненного цикла звезд. За свои пионерские работы, приведшие к обнаружению космических источников рентгеновского излучения, Риккардо Джаккони (США) получил Нобелевскую премию по физике в 2002 г.[72]72
“Riccardo Giacconi – Facts,” fact sheet for the Nobel Prize in Physics 2002, www.nobelprize.org/nobel_prizes/physics/ laureates/2002/giacconi-facts.html
[Закрыть] Большое число космических миссий с аппаратурой разнообразного типа – оптическими камерами (космический телескоп «Хаббл»); инфракрасной техникой (инфракрасная орбитальная обсерватория IRAS; космический телескоп «Спитцер»; телескоп «Гершель»); детекторами рентгеновского излучения (германская космическая рентгеновская обсерватория ROSAT; телескоп Эйнштейна; спутник ASCA; рентгеновская многозеркальная миссия XMM-Newton) – позволяют нам глубже понять процессы роста и развития черных дыр, а также расширить познания о Вселенной, совершенствуя и повышая чувствительность используемых приборов.
* * *
Открытие и изучение нейтронных звезд, пульсаров и квазаров привело к полному признанию научной общественностью идеи реального существования черных дыр. Еще совсем недавно она казалась излишне радикальной, однако в наши дни множество представителей астрономического сообщества активно участвуют в изучении этих объектов и той роли, которую они играют в формировании галактик. Некоторые из моих исследований направлены на понимание образования черных дыр и их роста во Вселенной. В частности, меня лично очень интересует проблема возникновения самых первых черных дыр, а также механизмы, благодаря которым они позднее превращаются в «бегемотов», которых мы вдруг обнаруживаем «прячущимися» в центрах ближайших галактик. Идея, которую Чандрасекар когда-то предложил научному сообществу, сейчас стала общеизвестной научной парадигмой: самые первые черные дыры представляли собой подобие «трупов» самых первых звезд, которые сформировались во Вселенной. Эти черные дыры, образовавшиеся из остатков звезд (размеры некоторых из них в 10–50 раз превосходили наше Солнце), не должны были становиться столь огромными. Вопреки расчетам сейчас, через миллиарды лет после Большого взрыва, мы обнаруживаем множество квазаров, активно питающихся черных дыр, которые по массе превышают наше Солнце в миллиарды раз.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?