Электронная библиотека » Р. Романова » » онлайн чтение - страница 2


  • Текст добавлен: 23 марта 2018, 19:20


Автор книги: Р. Романова


Жанр: Биология, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 11 страниц) [доступный отрывок для чтения: 3 страниц]

Шрифт:
- 100% +

Лёгкие в зависимости от глубины вдоха и выдоха заполняются воздухом различно. Содержащийся в них воздух после максимального выдоха называется остаточным. Объём вдоха и выдоха при спокойном дыхании составляет около 500 миллилитров и называется дыхательным воздухом. Разница между дыхательным воздухом и остаточным, который выдыхается только при максимальном выдохе, называется резервным воздухом. И, наконец, то количество воздуха, которое человек может вдохнуть сверх среднего вдоха при максимальном, называется дополнительным. Воздух, не участвующий в газообмене, но находящийся в воздухоносных путях, называется вредным пространством. Его объём примерно равен 150 миллилитрам. Сумма дыхательного, резервного и дополнительного воздуха называется жизненной ёмкостью лёгких.

Вдыхаемый воздух является смесью альвеолярного и атмосферного воздуха, имеющегося в воздухоносных путях. Если собирать выдыхаемый воздух последовательными порциями за один выдох, то получается следующее: вначале выходит воздух, состав которого такой же, как и атмосферного, далее процент углекислого газа растёт, а кислорода снижается. В самом конце выдоха в воздухе содержится 5,5 % углекислого газа, а кислорода только 14 %. Разница в составе объясняется тем, что выдыхаемый воздух содержит не только воздух, заполнивший альвеолы и участвующий в газообмене с кровью, но и воздух вредного пространства. В зависимости от степени вентиляции лёгких различают поверхностное и глубокое дыхание. При поверхностном используется только дыхательный объём воздуха, при глубоком, помимо дыхательного, используется еще дополнительный и резервный. В зависимости от этого меняется и частота дыхания. При поверхностном она составляет 16–18 раз в минуту, при глубоком и медленном (растянутом) – 4–8.

Очень важно, что глубокое и быстрое дыхание вымывает, а вернее сказать выветривает из организма углекислый газ, дефицит которого в организме вызывает сужение бронхов и сосудов, что приводит к кислородному голоданию клеток мозга, сердца, почек и других органов, поднимает артериальное давление, нарушает обмен веществ. Поэтому все лечебные дыхательные аппараты и тренажёры устроены так, чтобы уменьшить глубину и частоту дыхания (подробно об этом смотри в разделе 3.2. книги).

Дыхание человека в течение жизни меняется. Так, в раннем детском возрасте оно поверхностное. Пропорции тела и внутренних органов ограничивают полное развёртывание лёгких во время вдоха. Выдыхаемый воздух у детей раннего возраста содержит больше кислорода и меньше углекислого газа, чем у детей более старшего возраста. Поэтому частота дыхания тем выше, чем моложе ребёнок: у новорожденного – от 40 до 50–55 раз в минуту; у ребёнка 1–2 лет – 30–40 раз в минуту; 6 лет – 20 раз в минуту; 10 лет -18 – 20 раз в минуту.

Тип дыхания у новорождённого и грудного ребёнка – диафрагмальный (нижний), с 2 лет – смешанный рёберно-диафрагмальный, а с 8 – 10 лет у мальчиков вырабатывается по преимуществу дыхание диафрагменного типа, у девочек – ключичное (верхнее).

После достижения половой зрелости и до 40 лет дыхательная функция находится в наивысшем состоянии. Но после сорока лет в лёгких наблюдаются деструктивные процессы. Так, в бронхах начинается атрофия слизистой и подслизистой оболочек тканей с замещением их жировой и склерозированной соединительной тканью, обызвествление хрящей. Это ведёт к уменьшению эластичности бронхиальных путей и к потере тонуса. В самой лёгочной ткани начинается атрофия, которая выражается в истончении альвеолярных перегородок и уменьшении их упругости; следствием этого является расширение альвеол в результате уменьшения сопротивления их стенок атмосферному давлению. Так например, если у новорождённых диаметр альвеол составляет 0,05 миллиметра, то у взрослого человека уже 0,2–0,25 миллиметра, а в старости он увеличивается до 0,34 миллиметра. Естественно, всё это отражается на дыхании, – оно становится все более и более углублённым при той же частоте. И по мере приближения смерти человека оно все более и более углубляется.

Укажем, что лёгкие являются одновременно не только органом дыхания, но и выделения, регуляции температуры тела и даже принимают участие в выработке физиологически активных веществ, участвующих в регуляции свертывания крови, обмена белков, жиров и углеводов. Поэтому, чем чище организм, тем лучше лёгкие выполняют свои обязанности, в противном случае они заняты в основном выделительной функцией в ущерб остальным.

Завершая этот раздел, можно отметить, что дыхание является самым наглядным и убедительным проявлением жизни. «Не дышит!», «Перестал дышать!» – общепринятые во всём мире выражения, обозначающие прекращение жизни, смерть. Благодаря дыханию организм получает кислород и освобождается от излишков углекислого газа, образующегося в результате обмена веществ. Дыхание и кровообращение обеспечивают все органы и ткани нашего тела необходимой для жизни энергией. Освобождение энергии, необходимой для жизнедеятельности организма, происходит на уровне клеток и тканей в результате биологического окисления. При недостатке кислорода в крови в первую очередь страдают такие жизненно важные органы, как сердце и центральная нервная система. Кислородное голодание сердечной мышцы сопровождается угнетением синтеза аденозинтрифосфорной кислоты (АТФ), являющейся основным источником энергии, необходимой для работы сердца. Мозг человека потребляет больше кислорода, чем непрерывно работающее сердце, поэтому даже незначительный недостаток кислорода в крови отражается на состоянии и работоспособности мозга.

Поддержание дыхательной функции на достаточно высоком уровне является необходимым условием сохранения здоровья и предупреждения развития преждевременного старения.

1.2. Роль газообмена в здоровье организма

Практически все живые существа на нашей планете, за исключением анаэробных бактерий, живут и развиваются в воздушной среде, представляющей собой смесь газов – в основном азота, кислорода, паров воды, оксидов и диоксидов углерода, азота и в незначительных количествах других газов.

Основными газами, обеспечивающими жизненно важные процессы окисления, являются кислород и двуокись углерода – СО2. Этими газами живые организмы буквально «напичканы», но их содержание не всегда является оптимальным. Между тем, – как недостаток кислорода, так и недостаток углекислого газа в крови организмов может повлечь тяжёлые последствия. Содержание углекислого газа в крови регулирует возбудимость нервной системы, влияет на активность ферментных, гормональных и пищеварительных процессов. Углекислый газ крови участвует в синтезе белка, регенерации повреждённых тканей и др. Кислород необходим для извлечения энергии из пищи, причём умеренное кислородное голодание вызывает заметный оздоровительный эффект и является действенным методом торможения процессов старения.

Потребность организмов в углекислом газе возникла «исторически» ещё много миллионов лет назад, когда углекислый газ в атмосфере составлял основную часть её объёма. Зарождавшийся на планете фотосинтез заключался в поглощении углекислого газа клетками растений, выбросе в атмосферу кислорода и накоплении углерода. Постепенное обогащение атмосферы кислородом послужило одной из основ для возникновения животной жизни. Но законы обмена веществ в клетке, нуждающейся для жизни не только в кислороде, но и в углекислом газе, сохранились.

Между тем следует помнить, что углекислый газ является вазодилятатором (вазодилятация – это расширение сосудов). Повышенное содержание СО2 расширяет кровеносные сосуды, что позволяет большему количеству растворённых газов проходить через кровеносную систему, достигая мозга. Таким образом, чрезмерное повышение уровня СО2 в крови увеличивает риск кислородного отравления, азотного наркоза, декомпрессионной болезни и гипотермии.

Сейчас в атмосферном воздухе присутствуют только сотые доли процента углекислого газа, а в крови его содержится несколько процентов. С таким газовым дисбалансом организм не всегда способен успешно справиться и ему надо помогать. Оптимальным балансом между кислородом и углекислым газом в артериальной крови можно управлять подбором дыхательных упражнений (об этом в разделе 4.3 книги). Это сделать непросто, так как механизмы насыщения крови О2 и СО2 противоречивы, и нужно искать компромиссное решение. При выполнении дыхательных упражнений главной заботой является накопление в крови именно углекислого газа.

Отмечается [10], что в реальном газообмене участвует только часть объёма вдыхаемого воздуха, достигающая альвеол лёгких. Она составляет около 70 % от минутного объёма и называется альвеолярной вентиляцией, или альвеолярным объёмом, и измеряется в литрах в минуту. В свою очередь газообмен кислорода и углекислого газа в артериальной крови определяется парциальными давлениями (напряжениями) в ней этих газов.

На рисунке 1 показаны зависимости этих давлений от альвеолярной вентиляции лёгких. В нормальных условиях давление кислорода в артериальной крови составляет около 95 мм рт. ст., а углекислого газа – 40 мм рт. ст. Отмечается [10], что парциальное давление углекислого газа мало меняется с возрастом, а парциальное давление кислорода снижается примерно на 25 %. Этот параметр можно рассматривать как один из объективных показателей старения организма. Увеличение парциального давления кислорода сопровождается уменьшением парциального давления углекислого газа. Избыток кислорода как бы вымывает из крови углекислый газ; уровень же углекислого газа, превышающий норму, приводит к кислородному голоданию. Такая сложная взаимная зависимость концентраций углекислого газа и кислорода для нормальной работы живого организма диктует ему тактику поведения.


Рис. 1. Зависимость парциальных давлений кислорода РО2 и углекислого газа РСО2 от альвеолярной вентиляции в артериальной крови [10].


По современным представлениям, газообмен в лёгких происходит меньше чем за 1 секунду. Углекислый газ в растворённом виде выходит из плазмы через стенки лёгочного капилляра в мельчайшее пространство между капилляром и стенкой альвеолы. Затем он проходит сквозь стенки альвеолы в тонкую влажную плёнку, выстилающую каждую альвеолу. Как углекислый газ, так и кислород, растворяются в этом влажном слое на своем пути в кровь и из неё. Газы переносятся путем диффузии – движения из области высокого в область низкого давления. Кислород проходит в противоположном направлении относительно углекислого газа – из альвеолы в кровь – и соединяется с гемоглобином эритроцитов, образуя оксигемоглобин. Лёгочные капилляры настолько узки, что эритроциты движутся по ним «гуськом» один за другим.

Насыщенная кислородом кровь возвращается в левое предсердие через лёгочные вены, которые проходят вдоль бронхиол и бронхов. Вдыхаемый воздух содержит около 20 % кислорода, ~0,03 % углекислого газа, остальную часть составляет азот и следовые концентрации других газов. Выдыхаемый воздух содержит около 16 % кислорода, а количество углекислого газа возрастает примерно в 100 раз и составляет ~4 %. Выдыхаемый воздух насыщен водными парами; эта невидимая потеря воды из организма составляет примерно 1 л в сутки.

Для реализации газообмена кровь должна доставлять к альвеолам кислород и уносить углекислый газ. Поэтому газообмен зависит также от объёма крови, проходящей через альвеолы за единицу времени. Отношение альвеолярного объёма воздуха к этому объёму крови характеризует состояние воздушно-кровяного обмена, которое в норме равно 0,9÷1,0.

Статистическая «норма» для среднего человека составляет 12 дыханий в минуту. При этом лёгкие сильно вентилируются с избыточной потерей углекислого газа. Поверхностное и более медленное – хотя бы в полтора-два раза – дыхание приведёт, по мнению Ю.Гущо [10], к увеличению продолжительности жизни, так как позволит улучшить газообмен в крови и отодвинуть наступление болезней. Недостаток же углекислого газа, вызванный глубоким частым дыханием ртом, приводит к спазмам сосудов, сокращению стенок бронхов. Сужение сосудов уменьшает потребление кислорода почками, сердцем, мозгом, печенью и другими органами, повышает артериальное давление и уменьшает венозный кровоток. Застой крови в венах, в свою очередь, приводит к сосудистым нарушениям и, как следствие, ко многим болезням.

Азот и углекислый газ также играют важную роль в газообмене организма, являясь незаменимыми в синтезе белков. При правильном газообмене молекулы кислорода соединяются с гемоглобином, а дальше доносятся кровью до каждой клетки. При недостатке СО2 кислород не усваивается в полной мере, организм испытывает его дефицит. И для того чтобы молекула азота закрепилась в кишечнике для синтеза белков, также необходим углекислый газ, в противном случае синтез белков не осуществляется [11]. В результате углекислый газ, растворяясь в воде, увеличивает количество ионов водорода Н+ в растворе, то есть создаётся кислая среда. Именно в кислой среде ускоряются процессы связывания кислорода с гемоглобином, т. е. лучше усваивается вдыхаемый кислород. Научными исследованиями установлено, что дыхание йогов в наибольшей степени соответствует этому требованию.

Между тем дыхание обычных людей – глубокое и частое – приводит к избыточному выведению углекислого газа из организма. В результате происходит перевозбуждение центральной нервной системы, сдвиг кислотно-щелочного равновесия в сторону щелочной среды. Следствием этого нарушается обмен веществ и постоянство внутренней среды. Это выражается в снижении иммунитета, склонности к аллергиям, воспалительным заболеваниям, отложению солей, ожирению или похуданию. Кроме того, нарушается работа желез внутренней секреции, развиваются опухоли и т. д. При чрезмерной потере СО2 включаются защитные механизмы организма, пытающиеся остановить этот разрушительный для организма процесс. К ним относятся [11]:

• спазм сосудов бронхов;

• сужение кровеносных сосудов;

• увеличение секреции слизи в бронхах, носовых ходах, развитие аденоидов, полипов;

• отложение холестерина, что способствует развитию склероза тканей и, как следствие, преждевременного старения, развития инфарктов и инсультов.

При нормализации дыхания количество углекислого газа, водорода и азота в организме достигает должного уровня, и восстанавливается энергообмен, при котором естественным образом ликвидируются все перечисленные выше патофизиологические состояния. А если ещё больше уменьшить дыхание, как советуют йоги, то у человека развиваются предпосылки к сверхвыносливости, высокому потенциалу здоровья и долголетию.

Если научиться дышать с частотой 1÷3 дыхания в минуту, как это делают опытные йоги, то можно действительно есть низкобелковую пищу, используя для синтеза белка углекислый газ [10,3]. Процедуры нравственного и физического очищения, провозглашаемые йогой, голодание, диета, физические упражнения замедляют дыхание, улучшают общее состояние организма, состояние нервной и сосудистой систем и качество газообмена между атмосферным воздухом и кровью.

Одним из первых, кто обнаружил негативные эффекты на организм человека глубокого неконтролируемого дыхания был Бутейко К.П. До него в медицинской практике считалось, что при глубоком дыхании организм полнее насыщается кислородом, а значит обменные процессы в клетках протекают мобильнее и энергетический уровень в них возрастает. Оказалось, что это не так.

Бутейко К.П с помощью приборов описал, так называемый, вентиляционный эффект [12]. Лабораторные приборы зафиксировали, что содержание кислорода в крови при глубоком дыхании не увеличивается, а наоборот, человек испытывает …кислородное голодание. Сущность вентиляционного эффекта состоит в том, что после глубокого вдоха и выдоха из организма уходит значительное количество углекислого газа. Казалось бы это хорошо – ведь углекислый газ является отходом дыхания и в больших концентрациях ядовит! Это заблуждение опроверг в 1911 году наш соотечественник Альбицкий И.М. [13], обнаруживший, что в здоровом организме подлежит удалению лишь часть СО2, а другая часть необходима ему как одна из важнейших компонентов.

Более поздние исследования Бутейко К.П. и других учёных подтвердили это предположение [14]. Оказалось, что живая клетка функционирует в оптимальном режиме, если в ней присутствует 1÷2 % кислорода и 7÷8 % углекислого газа. При глубоком дыхании СО2 «выветривается», что приводит к нарушению деятельности нервной системы, усилению щелочной реакции, изменению активности ферментов. Сбой в работе ферментов вызывает нарушение обменных процессов всех видов и во всех клетках организма – он заболевает. Многочисленные опыты на животных с подключёнными дыхательными аппаратами при глубоком дыхании в течение нескольких десятков минут приводили их к гибели. Ещё одной важной ролью в организме СО2 является её необходимость для синтеза аминокислот.

К сожалению концентрация углекислого газа в атмосфере 0,03 %, что в сотни раз ниже естественных потребностей клеток организма, и поэтому приходится путём задержек дыхания компенсировать эту недостачу.

Имя доктора Бутейко К.П. – автора метода, позволяющего людям избавиться от многих хронических болезней без применения лекарств широко известно в нашей стране. Те, кому довелось близко познакомиться с его "Методом волевой ликвидации глубокого дыхания", знают, какая важная, можно сказать ключевая роль отводится в нём углекислому газу (CО2). К.П. Бутейко и его последователи за почти 40 лет практического применения метода, доказали, что от многих хронических болезней, в том числе от гипертонической болезни, человек может избавиться, увеличив содержание в организме углекислого газа.

Сегодня роль дефицита СО2 в развитии многих болезней изучена достаточно хорошо, и один из способов их лечения, созданный на основе этих знаний, воплощён в методе ВЛГД (волевой ликвидации глубокого дыхания) и дозированной физической нагрузки. В частности, при лечении бронхиальной астмы методом Бутейко, результатом применения комплекса будет то, что постепенное повышение процентного содержания СО2 в воздухе лёгких будет способствовать быстрому устранению гиперсекреции и отёка слизистой оболочки бронхов и снижению повышенного тонуса гладких мышц стенки бронхов.

Более того, по словам создателя метода ВЛГД и его многочисленных последователей, через некоторое время повышение СО2 до определённой величины приводит к стиханию аллергического воспалительного процесса в бронхах и практически полному устранению клинических проявлений астмы. Причём поддержание нормального уровня СО2 в среднем около полугода приводит к полному завершению аллергического воспалительного процесса в бронхах, разрушению рефлекторного механизма развития спазма бронхов, что делает невозможным развитие приступов удушья ни при каких условиях, даже при условии искусственного создания дефицита СО2 в лёгких. Для повторного формирования рефлекторного механизма спазма бронхов, по их мнению, потребуется в среднем 10÷15 лет, что является гарантированным сроком клинической ремиссии.

Следует иметь в виду, что альвеолярная гипокапния (снижение парциального давления СО2) является результатом не только лёгочной гипервентиляции, но в большей степени – следствием гиподинамии и снижения активности общего обмена веществ. Задержки дыхания позволяют не только устранить избыточность общей вентиляции лёгких, но и повысить активность метаболизма, что значительно ускоряет процесс устранения дефицита альвеолярного СО2.

Похожие выводы о целебном воздействии углекислого газа на живой организм сделаны и в других работах [15–22], среди которых можно отметить книгу Мишустина Ю.Н. [23], посвящённую, в основном, излечению заболеваний сердечно-сосудистой системы. Приведём некоторые положения этой книги ввиду важного обобщающего их характера.

«…Известно, что сужение микрососудов тела приводит к уменьшению кровотока в органах (нарушению регионарного кровообращения), то есть к нарушению нормального кровоснабжения их тканей – ишемии. А на уровне клеток ишемия ведёт к их кислородному голоданию (гипоксии тканей). Из-за нехватки кислорода клетки перестают выполнять свои функции в полном объёме. Острый же дефицит кислорода приводит к массовой гибели клеток – инфарктам органов, причём не только сердца (инфаркт миокарда) или головного мозга (ишемический инсульт), но и других органов. У здорового (как правило, относительно молодого) человека нормальный просвет микрососудов постоянно поддерживается за счёт поддержания организмом нормальной концентрации растворенного в крови углекислого газа. Это вещество постоянно вырабатывается в каждой клетке организма как конечный продукт (наряду с водой Н20) окисления углеводородов (в основном глюкозы). CО2 в конце концов выделяется из организма через лёгкие. Но на пути к лёким углекислый газ некоторое время находится в крови, играя при этом роль естественного регулятора просвета микрососудов, то есть сдерживая их сужение. Таким образом, можно считать установленным, что нормальная концентрация CО2 в артериальной крови – залог отсутствия стойкого повышенного артериального давления (АД), нередко сопровождающегося кардионарушениями.

Простой способ снятия приступов головной или сердечной боли заключается всего лишь в искусственном, волевом сдерживании дыхания в течение нескольких минут. Головная или сердечная боль снимается вследствие расширения микрососудов, поскольку их расширение приводит к снижению нагрузки на сердце и артериального давления.

Извне в организм ничего не вводится, значит, на стенки артериол аналогично папаверину подействовало вещество, производимое самим организмом. Это вещество – углекислый газ.

Стоило увеличить содержание в крови CО2 – артериолы расширились. А пока углекислого газа в крови было «мало», артериолы были сужены – имели хронический повышенный тонус.

Есть ещё один простой опыт, подтверждающий этот результат [11]. Делаем несколько очень глубоких вдохов и выдохов до тех пор, пока…"не закружится голова". Избыточное дыхание приводит к уменьшению концентрации в артериальной крови CО2. Вследствие этого происходит сужение артериол головного мозга, вызывающее ишемию мозга. Головокружение – результат нехватки кислорода».

Что касается газообмена, то он не ограничивается только кислородом и углекислым газом, а касается обмена и других газов между организмом и внешней средой. Из окружающей среды в организм непрерывно поступают, кроме кислорода, потребляемого всеми клетками, органами и тканями, – азот, небольшое количество СО2 и других атмосферных газов. Из организма выделяются образующийся в нём углекислый газ, парообразная вода, некоторое количество кислорода и газообразные продукты обмена веществ.

Кроме лёгких в газообмене организма участвуют внутренние органы (в основном – пищеварительный тракт) и кожные покровы (кожа). Поступающие внутрь газы имеют разные источника. Есть два источника газа, который скапливается в просвете пищеварительного тракта – это атмосферный воздух и кишечные газы. Рассмотрим их кратко [24].

Заглатывание воздуха с последующими переходом его в желудок

Атмосферный воздух попадает в пищеварительную систему организма путём его заглатывания. Глотание определяется как нейромышечная реакция с произвольным и непроизвольным компонентами. В среднем человек глотает около 600 раз в сутки (200 раз во время еды, 50 раз во время сна, 350 раз в остальное время), преимущественно бессознательно [24]. Небольшие порции воздуха (2–3 мл) попадают в желудок при каждом акте глотания. Физиологическая роль проглоченного воздуха заключается в стимуляции моторики желудка. Часть воздуха проходит через привратник в кишечник. При избыточном скоплении воздуха и повышении внутриполостного давления возникает отрыжка вследствие рефлекторного сокращения мышц желудка, диафрагмы и мускулатуры брюшного пресса при открытом входном отделе и спазме привратника. Воздух верхней части кишечника состоит из азота (78 объемных %) и кислорода (21 %), один процент приходится на благородные газы и углекислоту; растворимость воздуха в воде 29 см3/л.

Продукция газов бактериями кишечника.

Большинство поступающих в пищеварительный тракт с пищей углеводов перевариваются и всасываются в тонкой кишке при участии специфических ферментов. Содержащиеся же преимущественно в овощах, фруктах сахараолигосахариды вербаскоза, раффиноза и стахиоза не усваиваются и захватываются толстокишечной флорой. С участием бактериальных ферментов – амилаз и дисахаридаз – происходит расщепление (гидролиз) этих неперевариваемых углеводов до органических кислот и газов – водорода (Н2) и углекислоты (СО2), а у части лиц и до метана (СН4). Такие сложные полисахариды, как ксиланы, пектин, микрополисахариды, гликопротеин, также расщепляются преимущественно микрофлорой толстой кишки. Кроме того, часть микроорганизмов расщепляют протеазами и уреазами пищевой белок до аминов, фенолов, индолов, аммиака (NH3) и других продуктов. Есть мнение, что состав кишечной флоры устанавливается в течение первых 8 лет жизни под влиянием пищевых продуктов, употребляемых семьёй.

Рассмотрим теперь газовый состав содержимого нижней части кишечника. Его представляют:

Водород. Присутствие Н2 в кишечнике и, следовательно, в выделяемом воздухе человека – результат только жизнедеятельности бактерий, потребляющих углеводы. Он легко попадает через стенку кишечника в кровь и затем выдыхается лёгкими.

Метан образуется облигатными анаэробами – архебактериями, берущими энергию в результате преобразования Н2, СО2, формиата, ацетата и метанола в СН4; важным источником образования СН4 в кишечнике является индол. Метанобактерии обнаруживаются в фекалиях у 90 % людей, у 30–40 % СН4 обнаруживается в выдыхаемом воздухе. Отмечена положительная корреляция между концентрациями в кишечнике метана и водорода. Больше метана вырабатывается у лиц, страдающих запорами.

Углекислый газ образуется в результате микробной ферментации углеводов, в том числе входящих в состав растительных волокон.

Аммиак образуется вследствие микробной деградации мочевины и аминокислот. В результате гидролитических процессов в NH3 превращается до 30 % мочевины, образующейся в печени.

Сероводород образуется преимущественно при преобразовании серосодержащих аминокислот белков анаэробными сульфатредуцирующими бактериями.

Таким образом, основными компонентами газа в пищеварительном тракте человека являются: углекислый газ, водород, метан, азот и кислород, аммиак, сероводород. Азот и кислород имеют внешнее происхождение, а углекислый газ, водород и метан образуются в результате бактериальной ферментации. Эти газы не имеют запаха. Запах кишечного газа частично обусловлен сероводородом и аммиаком, но значительную роль играют так называемые следовые газы, содержащиеся в концентрациях ниже 1 части на миллион. Это серосодержащие вещества, такие как метанэтиол и диметилсульфид.

Отметим, что газообмен необходим для всех живых организмов, без него невозможен нормальный обмен веществ и энергии, а следовательно и сама жизнь. Кислород, поступающий в ткани, используется для окисления продуктов, образующихся в итоге длинной цепи химических превращений углеводов, жиров и белков. При этом образуются СО2, вода, азотистые соединения и освобождается энергия, используемая для поддержания температуры тела и выполнения работы. Количество образующегося в организме и в конечном итоге выделяющегося из него СО2 зависит не только от количества потребляемого О2, но и от того, что преимущественно окисляется: углеводы, жиры или белки. Другие газообразные выделяемые человеком продукты, в основном, токсичны. Они называются антропотоксинами [25,26].

Исследования показали [27,28], что воздушная среда помещений ухудшается пропорционально числу лиц и времени их пребывания в помещении. Анализ воздуха помещений позволил идентифицировать в них ряд токсических веществ, которые можно распределить пo классам опасности следующим образом:

высокоопасные вещества (2-й класс опасности)

диметиламин, сероводород, двуокись aзотa, окись этилена, бензол;

умеренно опасные вещества (3-й класс опасности)

уксусная кислотa, фенол, метилстирол, толуол, метанол, винилацетат;

малоопасные вещества (4-й класс опасности)

ацетон, метилэтилкетон, бутилацетат, бутан, метилацетат.

Пятая часть выявленных антропотоксинов относится к числу высокоопасных веществ. Концентрации остальных веществ, хотя и составляли десятые и меньшие доли oт ПДК, однако, вместе взятые свидетельствовали о неблагополучии воздушной среды. Даже двух-четырехчасовое пребывание в этих условиях отрицательно сказывалось нa показателях умственной работоспособности исследуемых.

Кстати, человек дышит не только лёгкими, но и кожей, хотя кожное дыхание незначительно (1÷2 % общего объёма дыхания) и выделяет при этом множество газообразных токсикантов. Их концентрации незначительны, но при большом скоплении людей и продолжительном времени экспозиции дозы ядовитых выделений могут вызвать признаки отравления: головную боль, тошноту и вялость, снижение работоспособности и иммунитета. Хочется скорее вырваться на свежий воздух.

У некоторых млекопитающих, например, лошади, кожное дыхание имеет большее значение и его доля может возрастать до 8 % [111]. Хотя перейти полностью на кожный тип дыхания, как это могут делать земноводные, звери, конечно, неспособны. У насекомых тело покрыто хитиновым панцирем, и кожное дыхание для них невозможно. Дышат они совершенно особым способом – трахейным. Трахеи насекомых это сеть тончайших разветвлённых трубочек, пронизывающих всё их тело. Почти в каждом сегменте тела у насекомых есть пара дыхалец – отверстий, ведущих в систему трахей. Крупные насекомые, двигая мускулами брюшка активно вентилируют свои трахеи. Всё-таки трахейный тип дыхания – не самый совершенный, и чем крупнее насекомое, тем труднее воздуху поступать в глубину его тела. Это одна из причин, почему размеры насекомых имеют жёстко заданный «потолок». Большинство водных животных избрали жаберный тип дыхания. Жабры – это особые разветвленные выросты тела – наружные (как, скажем, у аксолотлей) или внутренние (как у костных рыб или многих ракообразных). Чтобы не задохнуться, таким животным приходится постоянно омывать их свежей водой. Рыбы делают это так: набирают воду в рот, а затем, закрыв рот, выталкивают её через жаберные щели. Жабры густо пронизаны кровеносными сосудами: кровь разносит кислород по всему телу. Более подробно о кожном дыхании можно прочитать в разделе 3.4. нашей книги.


Страницы книги >> Предыдущая | 1 2 3 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации