Автор книги: Рагувир Партасарати
Жанр: Очерки, Малая форма
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 5 (всего у книги 21 страниц) [доступный отрывок для чтения: 7 страниц]
Глава 4. Хореография генов
В третьей главе мы сформулировали основную загадку наследственной информации: как какие-то 20 тысяч генов кодируют вас во всей вашей сложности? Как всего 20 тысяч белков – 20 тысяч инструментов или 20 тысяч компонентов – выполняют головокружительное количество задач, решаемых вами: от роста и дыхания до чтения и воспроизводства? Разумеется, это антропоцентричная формулировка вопросов, и точно так же мы могли бы спросить, как это 20 тысяч генов делают лошадь лошадью, а 30 тысяч создают дафнию.
Мы далеки от исчерпывающего ответа на любой из этих вопросов, и ученым будет чем заняться еще десятки, если не сотни лет. Однако мы открыли любопытные общие принципы и закономерности кодирования жизни во всей ее сложности и даже начали применять их для конструирования организмов неслыханными способами. В предыдущей главе мы рассматривали гены в относительной статике – упакованными в пространство клетки и потенциально способными руководить сборкой белков. Теперь мы вводим фактор времени – стимуляцию и подавление преобразования генетической информации в физическую активность в зависимости от нужд динамичных живых существ. Этой хореографией генов в значительной степени управляют сами гены. Прежде мы рассматривали самосборку в вещественном, структурном смысле. Здесь мы встретимся с более абстрактным ее проявлением, в рамках которого молекулярные функции вплетаются в регуляторные сети, превращающие любой организм в биологический компьютер. Чтобы понять все это, начнем с рассмотрения включения и выключения генов.
Регуляция работы генов
И клетка, и целый организм могут контролировать, когда и нужно ли вообще активировать любой из их генов – иными словами, стоит ли в тот или иной момент переводить его последовательность A, Ц, Г и T в последовательность нуклеотидов РНК, а затем в белок. Механизмы контроля подвергаются влиянию условий среды, в которой пребывает клетка или организм, и могут отвечать активацией или инактивацией соответствующих генов. Даже не понимая пока деталей регуляции, вы можете догадываться, что избирательность здесь просто необходима, ведь ваше тело состоит из очень разных клеток, обладающих одинаковыми копиями ДНК. Геномы нейронов, клеток кожи и, скажем, секреторных клеток выстилки вашего кишечника идентичны. Но эти клетки выглядят по-разному, выполняют разные функции и производят разные наборы белков. Гены белков, участвующих в выработке слизи, не должны работать в нейронах; гены белков, прочно скрепляющих соседние клетки, должны быть активны в коже; секреторные клетки должны игнорировать гены, отвечающие за отправку электрических сигналов на большие расстояния. Следовательно, нам необходимы механизмы избирательного «включения» и «выключения» генов. Давайте узнаем, как реализуется такой контроль.
Вспомним, как происходит транскрипция. Фермент РНК-полимераза движется по ДНК, как поезд по рельсам, и копирует нуклеотидную последовательность гена с ее начала до стоп-сигнала, формируя нить РНК. Но РНК-полимераза не привязана к ДНК. Значительную времени она плавает в жидкой среде поблизости и прицепляется к ДНК, только если случайно натыкается на специфическое сочетание нуклеотидов. Как мы узнали из третьей главы, такие сочетания – промоторы – примыкают к генам или группам генов. ДНК обладает полярностью, и РНК-полимераза, считывающая одну из нитей двойной спирали ДНК, движется в заданном направлении. Ген (его кодирующая часть) расположен ниже своего промотора по ходу транскрипции, и полимераза, «севшая» на промоторную последовательность, в итоге транскрибирует примыкающие к ней гены. Управление посадкой РНК-полимеразы обеспечивает регуляцию транскрипции генов – один из самых действенных способов контролировать их активность.
Раньше всего мы изучили механизмы регуляции транскрипции у бактерий. Представьте, что вы бактерия. Вам нравится питаться сахарами, но для этого нужны расщепляющие сахар белки. Вы предпочли бы вырабатывать больше таких белков, только когда встречаете сахар, и не расходовать энергию впустую, когда сахара рядом нет. Как этого добиться? В качестве примера рассмотрим реальный сахар, лактозу, и регуляторный механизм бактерии Escherichia coli, довольно типичный для живой природы[26]26
Автор рассматривает в сокращенном виде прокариотический лактозный оперон из трех структурных генов: lacZ, lacY, lacA. У эукариот регуляция метаболических путей схожа по сути, однако реже базируется на оперонной организации – когда несколько генов, кодирующих функционально связанные белки, стоят друг за другом под общим промотором и считываются вместе, единой РНК, подчиняясь общим регуляторным сигналам.
[Закрыть].
Ген lacZ (см. рисунок) кодирует часть механизма усвоения лактозы. Выше по ходу транскрипции от него (грубо говоря, перед ним), как всегда, находится его промотор. РНК-полимераза, которую я изобразил в виде серой фигуры, вот-вот продвинется вперед и считает ген lacZ.
(Рисунок выполнен без соблюдения масштаба; в реальности ген lacZ состоит примерно из 3 тысяч п. н., а РНК-полимераза покрывает лишь 30–40.) E. coli производит белок, называемый lac-репрессором, который связывается с оператором – другим участком ДНК выше по ходу транскрипции от lacZ. Когда lac-репрессор (темная фигура) связан с ДНК, РНК-полимераза не может нормально прикрепиться к ДНК1 и ген lacZ не экспрессируется.
Как мы знаем, ДНК и белки – это физические тела со специфической структурой, которая определяет характер их работы. Lac-репрессор связывается с ДНК поразительно хитроумным способом. Расстояние между последовательностями нуклеотидов, которые он распознает, превышает его собственную ширину. Следовательно, репрессор должен сворачивать ДНК в тугое кольцо диаметром около 10 нанометров2.
Мы помним, однако, что ДНК – молекула жесткая. Если дать ей свободу, она останется относительно прямой на 100-нанометровых отрезках. Подобно цирковому силачу, гнущему железный прут, lac-репрессор изгибает ДНК. Свернутая в петлю ДНК мешает РНК-полимеразе считывать гены белков, которые участвуют в расщеплении лактозы3.
У lac-репрессора есть еще одно удивительное свойство: он может связываться с молекулярным двойником лактозы, аллолактозой (черный кружок на следующем рисунке), из-за чего слегка меняет форму и теряет способность удерживаться на операторе. Набредая на лактозу в среде, бактерия поглощает какое-то ее количество и преобразует в аллолактозу, lac-репрессор перестает работать, и синтезируются расщепляющие лактозу белки – теперь бактерия может насытиться находкой.
Регуляторы, подобные lac-репрессору, характерны для всех организмов, не только для бактерий. Мешать РНК-полимеразе должным образом взаимодействовать с ДНК или хотя бы конкурентной борьбой снижать вероятность такого взаимодействия – одна из излюбленных природой тактик регуляции активности генов. Подавление экспрессии может быть сопряжено с внешними стимулами, как в случае с lac-репрессором, либо с внутренними, как мы увидим далее.
В регуляторном арсенале клетки припасены и противоположно действующие инструменты – активирующие экспрессию. Особенно часто они работают в районе промоторов, с которыми РНК-полимераза связывается слабо. Белки-активаторы, имеющие сродство с полимеразой, распознают и занимают прилегающие к промотору участки ДНК, повышая шансы РНК-полимеразы удержаться и начать транскрипцию.
Активаторам нашлось место и в истории с лактозой. Бактерии вроде E. coli действительно любят лактозу, но еще больше они любят другой сахар, глюкозу. Будь у бактерий глюкоза, они ни за что не стали бы тратить силы на расщепление даже доступной лактозы. Этот феномен в 1940-х открыл Жак Моно4, который во время Второй мировой войны совмещал исследования в области фундаментальной биологии с участием во французском Сопротивлении. Бактерия должна экспрессировать гены расщепления лактозы, только если в среде есть лактоза и нет глюкозы. Задачу регулятора здесь выполняет белок, активирующий катаболизм (CAP; г-образная фигура на рисунке). Связь РНК-полимеразы с lac-промотором слаба, поэтому даже без lac-репрессора транскрипция генов катаболизма лактозы маловероятна. Бактерия производит белок-активатор, который садится на ДНК, только если связан с молекулой под названием циклический аденозинмонофосфат, или цАМФ. Эту молекулу бактерии производят лишь при низком уровне глюкозы, и ее даже называют «сигналом голода». Следовательно, в присутствии глюкозы цАМФ мало, активатор не связывается с ДНК, и гены расщепления лактозы не экспрессируются, даже если она доступна. Когда глюкозы нет, цАМФ много, активатор связывается с ДНК и гены экспрессируются – при условии, что полимераза не блокируется lac-репрессором. Это очень хитроумная система, особенно для безмозглого существа размером в тысячную долю миллиметра.
Репрессоры и активаторы в совокупности называют факторами транскрипции, поскольку они управляют транскрипцией генетической информации. Факторы транскрипции представляют собой белки, а значит, сами кодируются генами. В нашем геноме таких генов очень много – точное число неизвестно, но считается, что их не меньше 16005. И это при том, что у нас всего около 20 тысяч белок-кодирующих генов. Иными словами, существенная часть наших генетических инструкций приходится на тормозящие и инициирующие механизмы считывания самих инструкций.
Факторы транскрипции и решения, которые они обеспечивают, характерны для всей живой природы и незаменимы при кодировании сложного поведения простыми генами. Регуляторным областям – посадочным площадкам для факторов транскрипции в геноме – даже не обязательно примыкать к подконтрольным генам. Поскольку геном изгибается и перекручивается, транскрипционный фактор, связанный с участком ДНК, может влиять на экспрессию гена, который пространственно приближен, хотя на распрямленной ДНК находился бы далеко (см. рисунок)6.
Такие взаимоотношения генетического и физического расстояний открывают дополнительные возможности для регуляции генов и активно исследуются в современной биофизике.
Все механизмы, которые мы рассматривали, относились к регуляции транскрипции, то есть первого шага в экспрессии гена, когда закодированная в ДНК информация переписывается языком РНК. Клетки также могут регулировать трансляцию, или синтез белка по матрице РНК. Способов такой регуляции множество, включая управление скоростью деградации матричной РНК, изоляцию мРНК в особых зонах клетки и даже синтез молекул РНК, комплементарных мРНК, чтобы образовавшийся дуплекс не смог транслироваться в белок. Мы могли бы посвятить еще множество страниц изучению разнообразия инструментов генетической регуляции, но лучше сделаем шаг назад и оценим универсальность этих механизмов и некоторых структур, созданных природой для объединения отдельных инструментов в машины.
Портативный генетический контроль
Мы увидели, как lac-система применяет факторы транскрипции, чтобы включать или выключать гены в зависимости от стимулов окружающей среды, в частности от актуального выбора сахаров. E. coli и другие бактерии используют эту систему, чтобы привести свою биохимическую активность в соответствие с доступностью той или иной пищи. Ученый может без труда добавить лактозу в колбу с изголодавшимися по глюкозе бактериями, и это подтолкнет их к активации гена lacZ. Однако можно поступить похитрее, добавив в колбу реагент ИПТГ, который очень похож на аллолактозу, но при этом устойчив к расщеплению. Связавшись с ИПТГ, lac-репрессор не сможет удерживаться на операторе и подавлять транскрипцию, поэтому клетка начнет производить ферменты катаболизма лактозы, даже когда ее нет. Смысл этих странных манипуляций в том, чтобы создать управляемую систему для экспрессии нужных генов. Возможно, ученый заменил гены расщепления лактозы другими, сохранив те же регуляторные элементы, включая lac-промотор. Эти новые гены могут кодировать флуоресцентные белки, позволяющие наблюдать за бактерией, или какие-то полезные вещества вплоть до лекарств. Теперь ученый может контролировать экспрессию встроенных генов с помощью внешнего индуктора, ИПТГ.
Поразительный пример такого генетического контроля описан Хайди Скрабл и ее коллегами из Университета Вирджинии в статье 2001 года с бесхитростным названием «Система lac-оператор – lac-репрессор работает у мыши»7. Ученые использовали мышей-альбиносов с мутантным геном тирозиназы, необходимой для производства пигмента. Внедряя в мышиную ДНК рабочий ген тирозиназы и его промотор (см. рисунок), авторы получали животных с типичной для вида пигментацией – с коричневой шерстью и карими глазами. Одной из любопытнейших частей эксперимента была организация управления генами пигментации. Хотя у животных немало регуляторных систем, свойственной бактериям lac-системы они лишены. Тем не менее ученые создали мышь с сайтом связывания lac-репрессора между промотором и кодирующей частью гена тирозиназы. Поскольку у млекопитающих нет гена lac-репрессора, а значит, и белка, синтез тирозиназы не подавлялся, и пигментация у таких мышей оказывалась нормальной (второй ряд на рисунке).
Другой линии мышей, тоже несущей ген тирозиназы под контролем lac-оператора, внедрили и ген lac-репрессора с собственным промотором. Эти мыши производили белок-репрессор (темная фигура), подавлявший экспрессию гена тирозиназы и лишавший их пигментации (третий ряд). Когда таких мышей поили водой с примесью ИПТГ, у них появлялась коричневая окраска (четвертый ряд). Как и в случае с бактериями, ИПТГ не позволял lac-репрессору блокировать считывание зависимого гена.
Наряду с нашей почти непостижимой способностью менять цвет шерсти и глаз животного с помощью сахароподобной молекулы в питьевой воде, этот эксперимент подчеркнул универсальность механизмов жизни. Последний общий предок мышей и бактерий сгинул более 3 миллиардов лет назад. С тех пор эволюция его потомков шла разными путями, выдав нам два непохожих существа: одноклеточный микроорганизм и мохнатого зверька размером с ладонь. Тем не менее, если вставить регуляторный аппарат одного из них в геном другого, он работает без нареканий[27]27
Как правило, нужна небольшая оптимизация – подгонка кодонного состава (триплетов ДНК, кодирующих ту или иную аминокислоту) под предпочтения нового хозяина (https://biomolecula.ru/articles/takie-raznye-sinonimy).
[Закрыть]. Как за полвека до этого прозорливо и емко отметил сам Моно, «что истинно для E. coli, истинно и для слонов»[28]28
Это высказывание традиционно приписывают Моно, хотя происхождение его достоверно неизвестно (см., например, Friedmann H. C. From Butyribacterium to E. Coli. Perspectives in Biology and Medicine. 2004; 47 (1): 47–66).
[Закрыть].
Помимо lac-системы существует множество других, позволяющих организмам – или ученым – регулировать экспрессию генов. Подобные конструкции в ходу и в моей лаборатории. Только мы не меняем цвет мышиной шерсти, а включаем и отключаем способность некоторых бактерий плавать: добавляя в воду простой реагент, мы побуждаем их собирать или разбирать свои микроскопические моторы. Этот инструмент дает нам возможность оценить, насколько плавание помогает бактериям преуспевать в их среде. Всего за несколько десятилетий такая работа перетекла из области научной фантастики в реальность и продолжает упрощаться дальше.
Генетическая память
Если вы нажмете на выключатель, чтобы зажечь свет, вам не нужно будет удерживать палец на кнопке, чтобы лампа не погасла. Выключатель зафиксируется в новом стабильном положении и останется в нем, пока его не зафиксируют в другом, тоже стабильном. Природа и ученые тоже часто прибегают к подобным рубильникам: они направляют клетки на определенный путь при получении сигнала и не дают им свернуть с него, даже если сигнал пропал. У растений и животных это особенно важно для развития клеток разных типов. Так, и нейроны, и глия, которая помогает нейронам функционировать, берут начало от общей клетки-предшественницы. Специфические сигналы направляют ее на путь формирования нейрона, после чего она обречена экспрессировать соответствующий набор генов, создавать синапсы с другими клетками и выполнять все остальные задачи, возложенные на нейрон. Наверняка вам не хотелось бы постоянно уведомлять нейрон, что не стоит ему возвращаться к предковой форме, равно как и обращаться в глию либо нейронно-глиальную несуразицу. Чтобы тип клетки не менялся, генам нужны тумблеры. Иными словами, клеткам нужна память: они должны запоминать воспринятые когда-то стимулы, перекодируя их в схемы экспрессии генов, стабильные в настоящем и будущем.
Способов создать воспоминание много. Есть и такой, который основан на знакомом нам действии факторов транскрипции. Представьте два гена, A и B. Как и в случае с lac, у гена А есть репрессор. Теперь допустим, что ген этого репрессора находится сразу за геном B по ходу транскрипции, поэтому, если экспрессируется B, то экспрессируется и он. Представьте, что ниже A по ходу транскрипции, подобно гену репрессора А, находится ген репрессора B, и если экспрессируется А, экспрессируется и этот ген. Такая взаимная репрессия обеспечивает работу памяти. Допустим, A экспрессируется сильно. Клетка производит много репрессора гена B, поэтому B подавляется, в отличие от А (репрессор гена А не считывается из-за совместной с В репрессии), что соответствует сильной экспрессии А. Клетка продолжает существовать в состоянии А. С другой стороны, если сильно экспрессируется B, события развиваются противоположным образом и клетка продолжает существовать в состоянии B. У этой клетки два стабильных типа поведения. Мы можем переключиться между ними, например, наводнив клетку множеством сигналов активации или репрессии какого-то из этих генов. Если в регуляторном аппарате задействован lac-репрессор, то таким сигналом может быть ИПТГ. С этого момента клетка будет хранить воспоминание о произошедшем событии.
Здесь проиллюстрирован общий принцип, который заключается в том, что гены регулируют экспрессию генов. Иными словами, обратная связь между генами формирует те или иные паттерны активности. В нашем примере тумблером служили два варианта репрессии (отрицательная обратная связь). И это не гипотетическая история: такая схема часто работает в живой природе: например, заразившие бактерию вирусы вынуждены выбирать между состояниями активного размножения и «спячки». Но немало и других эффективных схем. Мы можем, например, совместно экспрессировать ген А и ген его активатора, усиливая результат стимуляции, изначально направившей клетку на путь А (положительная обратная связь).
Часы и схемы
Мы узнаем время по часам. В основе конструкции любых часов лежит какой-то периодический, ритмический феномен вроде колебаний маятника или частых вибраций кварцевого кристалла. Все живые организмы и даже отдельные клетки используют часы, чтобы контролировать активность, которая должна усиливаться и ослабевать с определенной периодичностью. Прекрасный пример – циркадные ритмы8. У многих растений выработка хлорофилла организована примерно в 24-часовом цикле, что соответствует длительности суток. Растение ориентируется не только на внешние сигналы, которые непостоянны из-за теней и облаков, но и на внутренний механизм отсчета времени с 24-часовым периодом. Он есть и у людей: температура тела, кровяное давление и, разумеется, сонливость повышаются и снижаются у вас примерно раз в сутки, даже если вы неделями сидите в комнате с неизменной освещенностью. Циркадные часы есть у животных, грибов и даже некоторых бактерий. Восприятие света помогает поддерживать ритм и сдвигает моменты пиков и минимумов, но сама периодичность обусловлена внутренними осцилляторами.
Регуляция активности генов позволяет отдельной клетке создать осциллятор исключительно из ее собственных компонентов. Здесь мы вынуждены уйти в некоторую абстракцию, поскольку реальные клеточные осцилляторы устроены сложно и задействуют множество генов. Для иллюстрации общего принципа можно обойтись и одним.
Простейший осциллятор состоит из гена, который репрессирует сам себя, – точнее, гена, кодирующего белок, который подавляет экспрессию своего же гена. На первый взгляд это кажется нелепым: как такой ген вообще будет работать? Разгадка здесь в том, что и на экспрессию, и на репрессию нужно время. Как мы помним, экспрессия гена предполагает транскрипцию участка ДНК в молекулу РНК, а затем (для белок-кодирующих генов) трансляцию этой РНК в цепочку аминокислот – белок. Если формируется белок-репрессор, то ему предстоит какое-то время поблуждать, прежде чем он наткнется на промоторную область подавляемого гена. Даже после того, как репрессор свяжется с ДНК и блокирует работу РНК-полимеразы, ген инактивируется не сразу. Уже произведенные копии РНК могут и дальше транслироваться, а синтезированные белки могут и дальше заниматься своими делами. Суть в том, что экспрессия может какое-то время нарастать, и ген еще остается активным, хотя и репрессирует сам себя. Чтобы лучше понять, как колеблется его активность, нам нужно привлечь еще один факт о белках: все белки со временем деградируют, то есть разрушаются.
Распад факторов транскрипции сильно влияет на генетическую регуляцию. Фундаментальная истина физики молекулярного взаимодействия состоит в том, что повышение концентрации молекул – например, нашего репрессора – приводит к повышению вероятности их связывания с чем-либо, к чему у них есть сродство, – например, с нашим промотором. Верно и обратное: когда свободные белки-репрессоры деградируют и их концентрация снижается, растет вероятность того, что связанных с ДНК репрессоров будет все меньше и они перестанут подавлять транскрипцию. Тогда ген сможет экспрессироваться.
Сложив все факты воедино, получим вот что. В нашей схеме ген изначально экспрессировался, медленно наращивая концентрацию собственных белков-репрессоров и подавляя тем самым дальнейший их синтез. Но готовые белки деградируют, и в конце концов их остается так мало, что экспрессия гена возобновляется – начинается новый цикл. Так мы получаем простейший осциллятор.
Впрочем, этот осциллятор не слишком хорош, и мне не известен ни один организм, который пользуется часами на базе единственного гена. Настроить хронометраж в такой системе очень сложно, и ее периодичность не будет точна. Оба свойства зависят от скорости деградации белков, которая в клетке определяется множеством факторов за рамками полномочий этого гена и его саморепрессии.
В более удачном механизме работают три гена – A, B и C: A репрессирует B, B репрессирует C, а C репрессирует А. Я не стану описывать схему детально, но она тоже осциллирующая. Количество каждого из белков периодически увеличивается и уменьшается. Частота колебаний зависит от сродства репрессоров к ДНК. Мы или клетки способны настраивать периодичность циклов с помощью репрессоров, которые сильнее или слабее связываются с ДНК. В природе эта схема A-B-C, называемая репрессилятором, как обособленная единица не встречается, зато ее одной из первых искусственно ввели в живые клетки и проверили: к началу XXI века с этой задачей справились биофизики Майкл Эловиц и Станислас Лейблер9. Ученые внедрили такой осциллятор в геном бактерии E. coli и сопрягли его с геном зеленого флуоресцентного белка, получив в результате клетки, которые ритмично переключались между флуоресцирующим и обычным состояниями. С тех пор в клетках испробовали множество других точных и тонко настраиваемых осцилляторов10.
Хотя автономного природного репрессилятора пока не нашли, в составе разных регуляторных аппаратов подобные схемы встречаются часто. Так, 24-часовой осциллятор, контролирующий циркадный ритм человека, состоит из нескольких генов, связанных пересекающимися петлями обратной связи, в том числе репрессиляторного типа. Часы на основе такого механизма отличаются надежностью, но при этом поддаются обучению с помощью внешних стимулов вроде солнечного света, провоцирующих химические изменения в нашем организме. Обучение происходит не сразу – об этом вам скажет любой, кто испытывал джетлаг[29]29
Джетлаг – комплекс разноплановых физиологических нарушений, обусловленных сбоем циркадных ритмов из-за быстрой смены нескольких часовых поясов.
[Закрыть]. Порой нам хочется перевести свои часы быстрее, чем позволяет организм. Но наш циркадный ритм сформировался в мире, где не было высокоскоростных воздушных путешествий.
Регуляторные инструменты не ограничиваются созданием генетической памяти и осцилляторов, они способны выстраивать бесчисленное множество вариантов межгенных взаимодействий. Представьте абстрактное трио генов A-B-C, в котором и A, и B кодируют активаторы гена C. Если не синтезируется ни один из активаторов, экспрессия С будет слабой. Она резко возрастет, если появятся индукторы экспрессии A или B. Можно сконструировать набор генов, который активирует C только при индукции экспрессии A и B либо А, но не B и так далее. (Мы даже встречали пример последней конфигурации – у бактерий, экспрессирующих lacZ, когда поглощают лактозу, но не глюкозу.)
Устройство, способное производить логические вычисления на основе входящих сигналов – принимать решения, обрабатывая операторы типа «и», «или», «не» и их комбинации, – это компьютер. Привычные нам компьютеры ориентируются на электрическое напряжение – есть оно или нет, высокое оно или низкое, – а не на биохимические факторы транскрипции, но концептуально эти типы вычислительных машин не различаются. Более того, они работают на основе общих принципов. Подходящая комбинация логических элементов – хоть электрических сигналов, хоть генов – позволяет выполнять любые вычислительные операции, будь то сжатие цифрового видеофайла или оценка условий для прорастания семени.
Логика и память позволяют природе строить всевозможные генетические схемы для решения всевозможных задач. Следовательно, гены способны определять гораздо более сложную деятельность, чем можно предполагать, исходя из простого их подсчета.
Гены на чердаке
Еще один способ контролировать экспрессию генов основан на уже знакомом нам феномене – упаковке ДНК. Как мы узнали, от расположения гена относительно нуклеосом зависит, насколько сложно РНК-полимеразе его считывать. В последние десятилетия мы сумели оценить по достоинству всю мощь генетической регуляции, связанной с упаковкой ДНК. Инструменты модификации белков присоединяют к гистонам определенные наборы атомов или, наоборот, удаляют их, оказывая влияние на способность гистонов формировать с ДНК плотные волокна. Модификация гистонов особенно важна на ранних стадиях развития зародыша, когда потомки нескольких клеток навсегда обретают уникальную клеточную идентичность, а также в канцерогенезе, когда клетки переходят к стремительному делению и миграции11. Гены, невостребованные тем или иным типом клеток, остаются плотно упакованными, будто заваленными на чердаке: они никуда не пропадают, но доступ к ним затруднен.
Клетки также могут контролировать доступность генома для прочтения, химически изменяя саму ДНК. Так, особые ферменты способны заменять атом водорода в нуклеотидах A и Ц на атом углерода с тремя атомами водорода, то есть на метильную группу. Метилирование нуклеотидов в составе гена может подавлять его экспрессию. Эта крошечная метка на ДНК способна застопоривать транскрипционную машину и привлекать белки – модификаторы гистонов.
Как ни удивительно, эти элементы генетической регуляции – упаковка и метилирование ДНК, – похоже, могут передаваться от родителей детям. Очевидно, мы наследуем не только характерную последовательность «букв» генома, но и некоторые элементы его организации, влияющие на интерпретацию генетической информации. Этот феномен, называемый эпигенетикой12, придает дополнительный уровень сложности связям между нашей генетической компонентой, окружающей средой и работой нашего организма. Например, у голландцев, переживших «голодную зиму» 1944–1945 годов, в дальнейшем фиксировали повышенную предрасположенность к ожирению и сердечно-сосудистым заболеваниям, при этом десятилетиями у них сохранялась измененной картина метилирования ДНК. Более того, подобные маркеры проблем со здоровьем находили и у их детей, родившихся гораздо позже голодных времен, что указывает на наследование эпигенетических модификаций генома13.
В завершение этой главы напомним себе, что аппарат генетической регуляции превращает любой организм в мощный многозадачный компьютер, способный принимать решения на базе разнородных стимулов из окружающей среды и выстраивать поведение, изменяющееся во времени и пространстве. Вся эта сложность, однако, не нуждается в центральном управлении или обдумывании, а проистекает из самой природы генетического материала, заключающего в себе как гены, так и средства их регуляции. И снова мы наблюдаем самосборку в действии: механизмы конструируют сами себя. Изящество генетических схем и предсказуемость в принятии решений, однако, сосуществуют со случайностью, пронизывающей весь микроскопический уровень организации. Прежде чем в шестой главе мы оценим ее значимость, познакомимся еще с одним важным клеточным компонентом – мембранами: их архитектура служит великолепным примером самосборки, независимой от белков и ДНК.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?