Автор книги: Рагувир Партасарати
Жанр: Очерки, Малая форма
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 7 (всего у книги 21 страниц) [доступный отрывок для чтения: 7 страниц]
Глава 6. Предсказуемая случайность
Ничто никогда не пребывает в покое. Все наши картинки белков, ДНК и любых других молекул принципиально нереалистичны. Так, например, любой липид нужно изображать размытым в движении, а не замершим на месте.
В движении пребывают не только биологические молекулы. Если я решу изучить под микроскопом плавающий в воде стеклянный шарик размером с бактерию, то за несколько секунд он преодолеет расстояние, в несколько раз превышающее его диаметр. Его перемещения обусловлены не течениями в воде и не неровностью предметного столика микроскопа. Это неизбежный естественный танец, который исполняют все тела. Такое движение, вытекающее из фундаментальных физических законов, служит фоном для всех природных процессов – фоном, глубоко чуждым нашей макроскопической интуиции и управляемым, по сути, случайностью. Как ни парадоксально, в этом хаосе есть структура, и многие механизмы жизни можно понять, вскрыв взаимосвязи между случайностью и предсказуемостью в мелкомасштабном мире.
Физика пыльцы
Непрерывный танец малых частиц называют броуновским движением: его наблюдал и описал в 1827 году ботаник Роберт Броун. Изучая под микроскопом пыльцевые зерна полевых цветов, Броун заметил, что они постоянно пребывают в движении. Это движение беспорядочно: в среднем зерна совершают одинаковое количество перемещений вправо и влево, вверх и вниз, но при этом меняют направление движения без какой-либо закономерности. Такую динамику под микроскопом наблюдали и раньше, но Броун установил, что это движение обусловлено не живым началом, не биологической природой участвующих в нем элементов, не течениями в окружающей их жидкости и не потоками от испарения этой жидкости, а скорее универсальными законами физики. Например, чтобы проверить, не порождается ли движение испарением, Броун смешал масло с водой, содержащей пыльцу, и взболтал получившийся состав: масло теперь защищало воду от испарения, но зерна пыльцы все равно хаотично перемещались.
Броун выяснил, что все беспрестанно колеблется и блуждает. Но почему? Что побуждает к этому микроскопическому движению? Без ответа мы оставались не один десяток лет, пока в самом начале XX века Альберт Эйнштейн в Швейцарии, Мариан Смолуховский в Польше и Уильям Сазерленд в Австралии независимо друг от друга не нашли простое, понятное и точное объяснение1. Первый шаг в нужном направлении они сделали тогда, когда решили всерьез рассмотреть собранные в XIX веке (преимущественно химиками) косвенные свидетельства того, что вещество состоит из отдельных единиц, атомов. Сегодня это кажется банальным – мы ведь так привыкли говорить об атомах и молекулах, – а в начале XX века представление о веществе как совокупности дискретных строительных элементов, а не как о бесконечно делимом континууме считали спорным и признавать не спешили. Эйнштейн и остальные отметили, что множественные беспорядочные столкновения молекул воды с броуновскими зернами или моими стеклянными шариками вызвали бы ровно такое движение, какое наблюдали в экспериментах.
Следующим шагом стало выяснение роли температуры в этом процессе. Температуру в грубом приближении можно считать мерой пронизывающей нас тепловой энергии. Чем выше температура, тем больше тепловой энергии у тела. Эйнштейн, Смолуховский и Сазерленд поняли, что сочетание движущей силы тепловой энергии с вязкостным сопротивлением, создаваемым жидкостью, которая окружает тело, позволяет построить прогностическую модель случайного движения, идеально соответствующую экспериментальным наблюдениям. Более того, лежащие в ее основе законы универсальны и неизбежны, и где есть температура, есть и беспорядочное движение. (Покой наступает только при недостижимом абсолютном нуле, –273,15 °C.) Чтобы оценить биофизический смысл этой модели, нам нужно поточнее описать броуновское движение. Мы назвали его беспорядочным. Тем не менее оно постижимо.
Вычисление случайности
Допустим, вы 10 секунд идете по прямой и преодолеваете расстояние в 9 метров. Вас, конечно, не удивит, если за 20 секунд вы пройдете 18 метров, за 100 секунд – 90 и так далее. Мы говорим, что расстояние пропорционально времени: чтобы вдвое увеличить пройденное расстояние, нужно вдвое увеличить время ходьбы. График зависимости расстояния от времени представляет собой прямую, а угол ее наклона отражает вашу скорость (в нашем случае – около метра в секунду).
Если зарисовать пути, которые мой блуждающий микроскопический шарик мог бы пройти за 10 секунд, мы получим всевозможные запутанные траектории. Ни маршрут шарика, ни конечную точку его пути невозможно спрогнозировать. Его движение случайно.
Но с этой случайностью сосуществует своего рода предсказуемость. Я не могу заранее сказать, какой стороной упадет подброшенная монетка, но знаю, что если подбросить ее много раз, то примерно в половине случаев выпадет решка, а в половине – орел. Точно так же и со статистикой броуновского движения: если я понаблюдаю за несколькими десятками 10-секундных скитаний шарика, который всякий раз движется от центра страницы, и отмечу конечную точку каждого его пути, у меня получится набор точек типа темного облака, изображенного на рисунке.
Хотя конечные положения случайны, среднее расстояние от начальной точки четко определено. Каким образом оно зависит от времени в пути? Если вы сейчас испытываете дежавю, отлично! По сути своей это эквивалентно вопросу о размере клубка ДНК из главы 3. Там мы узнали, что случайное блуждание на N шагов в среднем оканчивается на расстоянии N2 шагов от начальной точки. Здесь же в каждое мгновение бомбардировки атомами жидкости наша броуновская частица получает случайный толчок, заставляющий ее «шагнуть» в случайном направлении. Следовательно, в среднем расстояние, которое проходит частица, пропорционально квадратному корню времени ее движения. График зависимости типичного расстояния от времени здесь представляет собой уже не прямую, а изогнутую линию.
Если частица будет двигаться в четыре раза дольше, в среднем она будет проходить лишь вдвое большее расстояние. Чтобы переместиться в среднем в три раза дальше, ей нужно двигаться в девять раз дольше.
Помимо времени броуновское движение зависит и от размера частицы. Это логично: мы ведь утверждали, что беспорядочное движение имеет значение для микроскопических частиц, и нам отлично известно, что крупные тела вроде арбузов и мячей не катаются хаотично по полу ни с того ни с сего. Все частицы в среднем смещаются на расстояние, которое увеличивается пропорционально квадрату времени, но у мелких частиц это увеличение больше, чем у крупных. Все частицы получают одинаковый толчок от внешней тепловой энергии, но мелкие частицы реагируют на него сильнее.
Беспорядочное движение молекул в специфических контекстах еще называют диффузией: этот термин часто применяют в отношении красителей, перемещающихся по жидкости, и газов, разносящихся по воздуху. Отмечу, однако, что типичная для школьного урока демонстрация распространения запаха духо́в на самом деле не иллюстрирует диффузию. Парфюмерные молекулы, несомненно, пребывают в броуновском движении, но по комнате они распространяются главным образом благодаря потокам воздуха, возникающим из-за температурной неоднородности, работы вентиляции, перемещений людей и прочих возмущений среды.
Малые элементы в клеточном строительстве
Броуновское движение не только подводит нас к очевидному заключению, что соли и сахара, липиды, белки и даже целые клетки постоянно пребывают в возбуждении, но и проливает свет на множество биологических процессов2. Прежде всего, оно устраняет назойливую шероховатость в наших обсуждениях самосборки. Мы узнали, что белки сворачиваются в специфические трехмерные формы под влиянием физических взаимодействий собственных аминокислот. Кирпичики лего тоже специфически взаимодействуют друг с другом, однако груда кирпичиков сама по себе не собирается в какую-то форму. Броуновское движение объясняет, в чем здесь разница. В силу своего малого размера аминокислотная цепь постоянно пребывает в активном движении. Молекула непрестанно извивается, сближая то одни, то другие аминокислоты с третьими, пока не остановится на структуре с достаточной для фиксации силой взаимодействия. Примерно так же тепловая энергия вызывает беспорядочное движение липидов: они находят друг друга и выстраиваются в мембрану. Таким образом, в рецепт для самосборки входят не одни физические взаимодействия, а физические взаимодействия в сочетании с броуновским движением.
Экспрессия и регуляция генов тоже зависят от броуновского движения. Мы описали, как факторы транскрипции связываются с ДНК, но обошли вниманием вопрос о том, как они находят свои последовательности-мишени. Не существует ни направляющей руки, ни рельсов, которые доставляли бы их прямиком к пункту назначения. Подгоняемые тепловой энергией, белки блуждают по пространству клетки, сталкиваясь со всевозможными участками ДНК и задерживась лишь на тех, которые они специфически распознают. Как и самосборка, эта стратегия управления не сработает с макроскопическим телом: я не могу положить на пол ключ от своего кабинета и надеяться, что он сам как-то попадет в дверной замок, – но в микроскопическом мире она очень успешна.
Чем определяется скорость мышления?
Броуновское движение проливает свет даже на глубокую связь строения и времени. В качестве примера рассмотрим взаимодействие двух нейронов.
Нейроны могут вступать в два типа контактов. При образовании контакта первого типа, химического синапса, две клетки находятся на расстоянии пары десятков нанометров друг от друга[33]33
Во втором, редком для человека, типе контактов – электрическом синапсе – расстояние между мембранами двух клеток еще меньше – до 3,8 нанометра, – к тому же они соединены физически белковыми каналами. По таким синапсам нервные импульсы проходят быстрее, что полезно для молниеносных, примитивных рефлекторных ответов. Синапсы бывают и смешанными, использующими оба способа передачи сигнала.
[Закрыть]. Клетки общаются путем передачи через этот зазор химических веществ, называемых нейромедиаторами или нейротрансмиттерами (серые точки на рисунке).
Существует множество нейромедиаторов и множество веществ, включая фармпрепараты, которые управляют их высвобождением, обратным захватом и разложением. Например, никотин и некоторые препараты для лечения болезни Альцгеймера повышают уровень ацетилхолина. Другой нейромедиатор, аденозин, снижает активность мозга, вызывая сонливость, а кофеин блокирует рецептор аденозина, тем самым мешая вам заснуть. Как же нейроны отправляют и получают медиаторы по химическому синапсу? Им достаточно лишь высвободить эти вещества в синаптическую щель и позволить им распространяться путем диффузии. Молекулы свободно блуждают по зазору и когда случайно натыкаются на рецепторы клетки-мишени, связываются с ними и запускают соответствующий нейронный ответ. То есть здесь не нужны никакие специальные механизмы – ни наномерный перевозчик, ни толкающие электромагнитные силы. Молекулы нейромедиаторов очень малы – их размеры колеблются в районе нанометра, – и мощное броуновское движение переносит их на пару десятков нанометров за какую-нибудь микросекунду.
Если зайти с другой стороны, можно поинтересоваться, как быстро информация передается по химическому синапсу. Если при активации одного нейрона электрический сигнал проходит по нему до самой дальней части, новость о его активации должна передаваться следующей клетке в цепи – например, другому нейрону или мышечной клетке. Как мы узнали, на передачу этой эстафетной палочки клетки тратят около микросекунды. Разумеется, это грубая оценка. Строго говоря, нам нужно спрашивать, за какое время синаптическую щель преодолеет пороговое количество случайных блуждающих, а не одна среднестатистическая молекула. Но так или иначе речь здесь идет о микросекундах, то есть миллионных долях секунды. Учитывая физические размеры синапса, мы не видим причин, почему бы времени требовалось значительно больше – например, тысячные секунды, – и не видим физической возможности для того, чтобы времени тратилось значительно меньше – скажем, миллиардные секунды.
Мне с детства было интересно, чем определяется скорость мышления – почему минута кажется минутой, а не годом и почему не получается прочувствовать каждую миллисекунду наших переживаний. Скорость общения нейронов через химический синапс неизбежно определяется броуновским движением. Существует еще пара способов передачи информации в мозге, и динамика у каждого из них своя. Но все пути переноса биологической информации так или иначе регулируются молекулярными потоками с их неотъемлемой компонентой – броуновским движением, помогающим задавать скорость работы нашего мозга.
Микросекундные сроки, характерные для химического синапса, довольно малы и, несомненно, соответствуют нашим нуждам. Любопытно, однако, сравнить их со скоростью работы современных компьютеров, которые затрачивают на операцию около наносекунды, то есть одной миллиардной секунды. Мой ноутбук функционирует многократно быстрее моего мозга. Вместо движения молекул он использует движение гораздо более мелких частиц, электронов, да еще и перемещает их принудительно с помощью электрических полей. В сравнении с ним мой мозг работает медленно, но схема взаимодействий моих нейронов гораздо сложнее схемы связей между транзисторами в центральном процессоре ноутбука3. Нейронная архитектура позволяет параллельно совершать головокружительное количество вычислений в разных группах клеток, а не выполнять их строго по очереди. Связность и параллельность сильно помогают в решении концептуально сложных задач. Любопытно представить, что случится, когда машины превзойдут нас и по скорости вычислений, и по сложности сети, ведь вполне вероятно, что этот день уже не за горами.
Транспортировка грузов в клетках
В приведенном выше примере нейрон просто высвобождает нейромедиаторы, точно зная, что за приемлемое время они диффундируют до мишени. Подобным образом броуновское движение используют и другие клетки. Как помните, в главе 4 мы говорили о бактерии, которая любит лактозу: lac-репрессор может как встретиться, так и не встретиться с лактозой, поглощенной бактерией из внешней среды, и от этого зависит, свяжется ли он с нужным участком ДНК, чтобы остановить производство белков, расщепляющих лактозу. Как lac-репрессор находит ту самую ДНК? Опять же ничего особенного, никаких направляющих он не использует. Белок просто блуждает. Благодаря малому размеру его хаотичное движение довольно интенсивно, и репрессор способен преодолеть расстояние в микрометр, близкое к диаметру типичной бактерии, за сотую долю секунды. Чтобы достичь определенной точки – например, своей ДНК-мишени, – он затратит больше времени, поскольку лишь единичные случайные траектории будут ему полезны. И все же для попадания в любую заданную точку ему хватает в среднем десятой доли секунды. Следовательно, нет ничего удивительного в том, что бактерия, получив информацию из окружающей среды, способна за доли секунды принять взвешенные решения.
Теперь представьте типичную эукариотическую клетку – например, один из ваших лейкоцитов. Его диаметр составляет около 10 микрометров, что в 10 раз больше диаметра типичной бактерии. Чтобы покрыть расстояние, равное диаметру лейкоцита, белку понадобится в 102, то есть в 100 раз больше времени. Найти нужную мишень, например промотор гена, ему будет сложнее. Оказывается, в среднем он должен затрачивать на это время, пропорциональное размеру клетки в кубе (10 × 10 × 10), то есть искать цель в лейкоците белок будет в 1000 раз дольше, чем в бактерии4. Вместо десятой доли секунды на реакцию уйдет почти две минуты – а это много!
Дабы не впасть в летаргию, эукариоты выбирают более активный подход и перемещают грузы с помощью моторных белков5. Мы уже знакомы с одним из них, кинетином, который одним концом захватывает заключенный в липидно-белковую оболочку материал, а другим шагает по микротрубочке.
Кинетин передвигается со средней скоростью около 2 микрометров в секунду, а значит, может пересечь эукариотическую клетку за несколько секунд. Диффундирующим молекулам для этого потребовались бы минуты. Но даже здесь клетка эксплуатирует случайность: моторному белку не нужно доставлять груз до самого пункта назначения, а достаточно лишь переместить его поближе, чтобы на последнем отрезке пути дело завершило броуновское движение. (Например, достигнув ядра после выхода из начальной точки на другом конце крупной клетки, фактор транскрипции может уже путем диффузии быстро добраться до своей ДНК-мишени, расположенной не дальше микрометра.) Польза молекул вроде кинетина очевидна, но она имеет свою цену: клетка вынуждена расходовать энергию на работу моторных белков, в то время как броуновское движение Вселенная предоставляет бесплатно.
Несмотря на активные исследования, никто пока не обнаружил подобные кинетину моторные белки в прокариотических клетках (бактериях и археях). С точки зрения биофизики это закономерно: не то чтобы бактерии не смогли развить их в ходе эволюции – они просто не испытывают в них необходимости. В малых масштабах броуновское движение происходит быстро, в крупных – медленно. Поскольку бактерии в большинстве своем малы, они могут спокойно положиться на случайность в удовлетворении своих внутренних транспортных потребностей.
Зачем бактерии плавают?
Транспортировка вне бактерий и перемещение их самих тоже не обходятся без случайности. Большинство бактерий подвижны и могут, например, плавать в жидкости. Так, у E. coli есть несколько нитевидных жгутиков, при вращении которых в одну сторону организм движется вперед, а в другую – кувыркается[34]34
У E. coli жгутики расположены по всему периметру клетки, и у каждого из них есть движущий элемент – ротор. Если ротор вращается против часовой стрелки, жгутики сплетаются в общий толстый жгут и работают скоординированно, толкая клетку вперед по относительно прямой линии; если ротор начинает вращаться по часовой стрелке, жгут расплетается и клетка недолго крутится на месте. Такие кувыркания ведут к смене направления дальнейшего прямолинейного движения. Эти два типа случайного движения постоянно чередуются, а частота их смены, способная корректировать направление, может зависеть от содержания в среде важных для бактерий веществ.
[Закрыть]. Эти микробы постоянно пребывают в движении, и под микроскопом видно, как они снуют из стороны в сторону в чашке с водой.
Можно подумать, что бактерии плавают ради поглощения пищевых частиц, подобно миниатюрным усатым китам, собирающим криль на своем пути, но физика это опровергает. E. coli плавает со скоростью около 10 микрометров в секунду, а значит, если бы в микрометре от нее (то есть на расстоянии, сравнимом с длиной ее тела) находилась пища, бактерии понадобилось бы около десятой доли секунды, чтобы к ней подплыть. Их пища – это сахара и другие молекулы размером менее одной тысячной микрометра, такие маленькие, что за миллисекунду могут преодолеть расстояние в целый микрометр. Будь вы бактерией, пища достигала бы вас путем диффузии гораздо быстрее, чем вы до нее доплывали бы! Как отметил физик Эдвард Пёрселл, «вы можете носиться как угорелый, но тот парень, что спокойно сидит в ожидании диффузии», получит не меньше.
Зачем же тогда им плавать? Бактерии вроде E. coli измеряют концентрацию питательных веществ в окружающей среде по изменению загруженности клеточных рецепторов их молекулами и перемещаются в направлении повышения концентрации. И снова процитирую Пёрселла: «(Бактерия) может находить места, где пища лучше или где ее больше. То есть она движется не как пасущаяся на лугу корова, а стремится туда, где луга зеленее». Благодаря многолетним исследованиям мы теперь можем в подробностях описать, как E. coli оценивает обстановку и принимает решения: как обнаружение питательных веществ поэтапно воздействует на белки, контролирующие жгутики, чтобы те позволяли клетке дольше плыть прямо по градиенту концентрации питательных веществ и чаще крутиться при движении в менее удачном направлении. Механизмы такого же типа работают у очень разных бактерий, включая тех, что привыкли прокладывать себе путь в организмы животных6. Похожие системы характерны и для многих эукариотических клеток – например, иммуноцитов, мигрирующих к ранам.
Итак, мы познакомились со многими компонентами клеток и физическими закономерностями, управляющими их сборкой, динамикой и принятием решений. Клетки, конечно, восхитительны – это живые, растущие, размножающиеся сущности, которых только в каждом из нас триллионы. Но клетки поражают нас еще сильнее, когда работают вместе. Во второй части этой книги мы расширим поле зрения до клеточных объединений, включая эмбрионы, органы, бактериальные сообщества и целые организмы всех форм и размеров, – и снова увидим в работе общие биофизические принципы, потому что взаимодействующие клетки тоже осуществляют самосборку, принимают решения с помощью регуляторных схем, имеют дело со случайностью и увеличивают свои размеры масштабированием.
Часть II. Жизнь во всей полноте
Глава 7. Сборка эмбрионов
Мы познакомились с главными строительными элементами жизни и тремя общими принципами, лежащими в основе их взаимодействий: концепцией самосборки, предсказуемой случайностью микроскопического движения и построением регуляторных схем. Затронули мы и четвертый принцип, масштабирование, находящий отражение в зависимости броуновского движения от размера частиц и в продолжительности диффузии на большие расстояния. В следующих главах мы рассмотрим масштабирование подробнее.
В первой части мы иллюстрировали эти принципы примерами на уровне одиночных клеток и их внутренних механизмов. Но те же самые правила применимы к бьющимся сердцам, бананам, трехпалым ленивцам и прочим проявлениям жизни более крупного масштаба. Биофизические закономерности проливают свет на скопления и сообщества клеток, включая целые организмы, и среди них мы найдем изящные иллюстрации сложности, основанной на простоте.
«Совокупность всех зачатков»
Вместо того чтобы начать с малых групп клеток, с отдельных тканей и органов, давайте сразу бесстрашно окунемся, пожалуй, в самый сложный и поразительный феномен живого мира – развитие такого животного, как мы, из единственной оплодотворенной яйцеклетки. Наши представления об эмбриональном развитии углублялись стремительно. Всего несколько веков назад господствовало мнение, что в этой клетке, зиготе, содержится гомункул – миниатюрный, но полностью сформированный человек, постепенно разрастающийся в младенца и затем взрослого1. Собственно, кое-кто из первых микроскопистов даже смог убедить себя, что видит через окуляры этих человечков, преформированных в сперматозоидах или в неоплодотворенных яйцеклетках. Теперь мы знаем, что в одноклеточном эмбрионе просто содержится геном – ДНК от матери и отца, – а также белки, РНК и другие полезные ингредиенты, заложенные в основном матерью. Клетка с таким стартовым багажом далее делится, и делится, и делится. Ее потомки не только разделяются, но и меняют свои размеры, форму, профиль экспрессии генов и положение, пока не обретут размеры, форму, профиль экспрессии генов и положение, характерные для работоспособного организма.
Трансформация клетки в животное может показаться волшебством, даже если применять научную оптику. Давайте отмотаем чуть больше 100 лет назад и заглянем в конец XIX века, время первых прорывных эмбриологических экспериментов. Наблюдая за развитием животных, а также стимулируя, разделяя и пересаживая клетки, ученые постепенно прорисовывали пути, по которым клетки обретают уникальные черты, а ткани – форму. Одним из таких первопроходцев был Ханс Дриш, немецкий биолог, работавший по большей части в Неаполе. Дриш установил, что после разделения двухклеточного эмбриона морского ежа на отдельные клетки из каждой развивается нормальное животное. Даже при разделении четырех– или восьмиклеточного эмбриона из отдельных клеток часто вырастали полноценные организмы. Более того, Дриш обнаружил, что при осторожном надавливании на юный эмбрион клетки смещаются со своих стандартных позиций (например, те, что должны формировать верхнюю часть тела, оказываются внизу) и не возвращаются на них даже после прекращения воздействия. Несмотря на такую перестройку, морской еж развивался нормально, как если бы перемещенные клетки знали, что заняли новые места, и потому вели себя соответствующе. Каждая клетка, заключил Дриш, «вмещает в себя совокупность всех зачатков»2, но такой вывод противоречил простому механистическому представлению о развитии. Если перемешать шестеренки часов или поршни паровой машины, в них не обнаружится глубинного, «врожденного» знания о том, какие новые роли им нужно принять на себя, чтобы механизм работал и дальше. Пораженный явным противоречием между тем, как развивается эмбрион, и тем, что он знал из физики, Дриш бросил эмбриологию и, заняв должность профессора философии, продвигал идею, будто живые организмы подчиняются законам, в корне отличным от руководящих неживой природой[35]35
Дриш взял на вооружение аристотелевский термин энтелехия, вложив в него смысл нематериального фактора, который организует все живое, придавая биологическим процессам целесообразность, отличную от «машинной» целесообразности неживых, рукотворных систем.
[Закрыть].
Даже для того времени концептуальный рывок Дриша казался слишком радикальным. Другие биологи, в частности американский эмбриолог Росс Гренвилл Гаррисон, отстаивали мнение, что развитием совместно руководят те факторы, что заложены в каждой клетке, и те, что рассредоточены по эмбриону. Эта точка зрения, в следующем веке уточненная множеством деталей, соответствует современному представлению о развитии.
Пока у вас не возникло завышенных ожиданий и не мелькнула мысль, что в этой главе мы опишем весь путь от единственной клетки до сложного организма, поспешу отметить, что в эмбриологии остается много белых пятен. Никто не может взять ваш геном и, видя лишь последовательность A, Ц, Г и T, сказать, что вы – двурукое, двуногое, волосатое животное, которое дышит воздухом. По геному морской звезды мы никак не можем предсказать, что это животное пройдет путь от мягкой, свободно плавающей личинки с двусторонней симметрией до жесткотелого хищника с пятилучевой симметрией, прочесывающего морское дно и литорали в поисках жертвы. Не зная организм – источник ДНК, мы можем сказать, что геном морской звезды – это геном морского беспозвоночного, а геном человека – это геном примата, только если сравним их с другими известными геномами, а не смоделируем по базовым биологическим законам активность всех закодированных в нем белков и регуляторных сетей. Тем не менее о развитии мы можем сказать довольно много – особенно благодаря двум обстоятельствам.
Первое обстоятельство таково: гены у разных организмов весьма схожи, и потому, узнав функции какого-то гена в относительно простом для изучения организме – мыши или плодовой мушки, например, – мы сможем многое сказать об этом гене в другом организме, даже в человеческом.
Возьмем для примера ген sonic hedgehog (SHH). Он кодирует белок, необходимый для формирования конечностей и участвующий в разрастании раковых опухолей. В знаменитой статье, опубликованной в 1980 году, Христиана Нюслайн-Фольхард и Эрик Вишаус сообщили об открытии нескольких генов, определяющих план тела плодовой мушки, и назвали один из них hedgehog («ежик»), поскольку его мутации приводили к появлению маленьких шипиков на мушиной личинке3. Позже подобные гены были обнаружены во всем животном царстве. В геномах млекопитающих, включая человека, есть по три гена типа hedgehog. Два из них, desert hedgehog и Indian hedgehog, получили причудливые названия по аналогии с реально существующими видами ежей. Третий, sonic hedgehog, назвали еще причудливее в честь быстроногого героя видеоигры Sonic the Hedgehog: одного из исследователей этого гена вдохновил образ того самого ежа Соника.
Кодируемые этими генами белки удивительно похожи друг на друга. Я изобразил строение одного из участков белка Hedgehog плодовой мушки (слева) и белка Sonic hedgehog человека (справа)4. Оба организованы идентично как пара лежащих под углом спиралей и несколько коротких листов, связанных всевозможными петлями.
Отличить мушку от человека легко, а вот различить их белки семейства Hedgehog очень сложно. Сходство очевидно даже в последовательностях аминокислот. Просто посмотрите на фрагменты из 46 аминокислот – это примерно треть белкового участка с предыдущего рисунка. Я использую здесь устоявшиеся однобуквенные обозначения аминокислот и жирным выделю те, что идентичны у двух белков.
Плодовая мушка:
RCKEKLNVLAYSVMNEWPGIRLLVTESWDEDYHHGQESLHYEGRAV
Человек:
RCKDKLNALAISVMNQWPGVKLRVTEGWDEDGHHSEESLHYEGRAV
Сходство последовательностей столь же поразительно, как и сходство пространственной организации. В целом у мушиного Hedgehog и человеческого Sonic hedgehog около 70 % идентичных аминокислот, но даже различия в оставшихся 30 % не так сильны, как может показаться. В приведенных выше цепочках первое различие – это E (глутаминовая кислота) в белке дрозофилы и D (аспарагиновая кислота) в человеческом, обе они заряжены отрицательно. Далее не совпадают V и A (валин и аланин), но оба они гидрофобны. Пусть аминокислоты и различаются молекулярными компонентами, их физические характеристики во многих случаях схожи. Бережливость природы многократно усиливает эффективность изучения ее инструментов: мы можем вполне обоснованно утверждать, что белок Hedgehog у плодовых мушек ведет себя примерно так же, как Sonic hedgehog у людей и Desert hedgehog у эфиопских ежей.
Второе обстоятельство, позволяющее рисовать общую картину развития разных организмов, еще фундаментальнее: природа применяет отлаженные физические механизмы для коллективной организации клеток. Эти механизмы, как и задействованные в индивидуальном развитии (онтогенезе) гены и белки, универсальны. Посмотрим, как они работают.
Знай место
Разные органы развиваются в разных местах. Крылья – в районе среднеспинки комара, а усики (антенны) – на голове. Ваши пальцы вырастают на дальнем конце ладони, а не у запястья. Можно предположить, что лишь специальные крыльеформирующие клетки мигрируют в зону формирования крыльев в средней части развивающегося насекомого и остаются в ней – иными словами, что судьба клеток определена еще до их миграции. А можно представить и другое: что клетки по всему телу способны к формированию крыльев, но лишь те, которые оказываются в нужном месте, получают сигнал к этому. Оказывается, природа применяет обе тактики. Вторая, в которой судьба клетки решается в зависимости от ее расположения в пространстве, распространена на удивление широко и обеспечивает эффективное кодирование инструкций для развивающегося организма.
О существовании пространственных сигналов известно больше века. В экспериментах вроде тех, что Дриш проводил с эмбрионами морских ежей и других животных, где клетки намеренно меняли местами или некоторые из них пересаживали в иную часть тела другой особи, развитие часто даже не нарушалось, словно перемещенные клетки знали свои новые эмбриональные адреса и вели себя сообразно им. Изучать эту едва ли не волшебную сенсорную способность, а также природу и значимость пространственных сигналов начали позже и продолжают до сих пор. Основа феномена, однако, проста и сочетает два уже знакомых нам биофизических механизма – диффузию и регуляторные сети.
Возьмем тот же белок Sonic hedgehog: он не распределен по эмбриону равномерно, но и не сосредоточен в фиксированной концентрации в каких-то избранных областях. Sonic hedgehog скорее образует градиент концентрации: она постепенно снижается по мере удаления от места, где белок синтезируется. (Как и все белки, он со временем распадается, и потому его общее количество не растет постоянно.) Этот градиент – следствие обычной диффузии, случайного блуждания молекул из исходных точек, которое, как мы видели в главе 6, приводит к размыванию молекулярного облака. Sonic hedgehog производится во многих частях развивающихся организмов, потому возникает множество локальных градиентов. Одна из таких зон – зачаток конечности, который обретает форму на третьей неделе человеческого эмбриогенеза. В этом зачатке (их всего четыре) Sonic hedgehog сконцентрирован с одной стороны, а по мере продвижения к другой его содержание снижается.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?