Автор книги: Ричард Докинз
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 8 (всего у книги 25 страниц) [доступный отрывок для чтения: 8 страниц]
Но человеческие ошибки присущи не только ДНК-уликам. Любые улики – уязвимая мишень для халатности и саботажа и требуют добросовестного обращения. Этикетки можно перепутать и в картотеке обычных отпечатков пальцев. К орудию убийства могли прикасаться, помимо преступника, и невинные люди, так что у них, как и у подозреваемого, тоже нужно брать отпечатки пальцев, чтобы сузить круг версий. Судебные учреждения уже приучены к необходимости принимать все мыслимые меры предосторожности против ошибок, но ошибки – и порой трагические – время от времени все равно случаются. Результаты анализа ДНК не защищены от человеческого разгильдяйства, но и не то чтобы как-то особенно уязвимы для него – за исключением разве что тех случаев, когда при ПЦР амплифицируется посторонняя примесь. Если отвергнуть ДНК-улики из-за возможности ошибки, то тогда, в соответствии с этим прецедентом, придется вообще отказаться от большей части любых улик. Мы вправе требовать разработки таких процессуальных кодексов и строгих мер предосторожности, которые защищали бы от ошибок, связанных с человеческим фактором, при предъявлении каких бы то ни было доказательств на суде.
Более сложные проблемы, вносящие путаницу в ДНК-доказательства, потребуют и более развернутого объяснения. Данные проблемы возникают и в случае с обыкновенными, традиционными уликами, хотя на судебных заседаниях этого, похоже, часто не осознают.
Там, где улики служат для идентификации чего бы то ни было, возможны два типа ошибок, соответствующие двум типам ошибок, свойственных любому статистическому доказательству. В одной из следующих глав мы назовем их ошибками первого и второго рода, но проще называть их ложноположительными и ложноотрицательными результатами. Виновный избежал наказания, не будучи узнан, – ложноотрицательный результат. А ложноположительный результат (который большинство людей сочтет ошибкой посерьезнее) – это осуждение невиновного подозреваемого, имеющего несчастье быть похожим на настоящего преступника. В ходе обычного опознания с участием очевидцев случайный свидетель, внешне слегка напоминающий подлинного виновного, может быть по этой причине арестован – вот вам пример ложноположительного результата. Методика предъявления для опознания была разработана с целью уменьшить вероятность подобных исходов. Вероятность судебной ошибки обратно пропорциональна числу людей, участвующих в процедуре. Мы уже рассматривали варианты, при которых риск обознаться возрастает, – например, неоправданно большое число гладковыбритых мужчин, предъявляемых вместе.
В случае с ДНК-уликами опасность ложноположительного обвинительного приговора на самом деле крайне низка. У нас есть проба крови подозреваемого и образец ДНК с места преступления. Если бы можно было взять и переписать полный набор генов из обоих образцов, то вероятность осудить невиновного составила бы единицу на многие и многие миллиарды. Если не считать однояйцевых близнецов, шансы того, что ДНК двух людей полностью совпадет, можно приравнять к нулю. Но, к сожалению, прочтение полной последовательности генов конкретного индивидуума на практике малоосуществимо. Даже после того как проект “Геном человека” завершится, предпринимать нечто подобное вновь и вновь для расследования каждого преступления будет нереально. На практике судебные эксперты ограничиваются небольшими участками генома, преимущественно теми, про которые известно, что они отличаются особым разнообразием в популяции. И следует опасаться того, что, хотя мы могли бы с уверенностью исключить возможность ошибки, сличив геномы целиком, все равно останется риск, что тот небольшой кусочек ДНК, на изучение которого у нас есть время, окажется у обоих индивидуумов одинаковым.
Вероятность такого исхода следует оценивать для каждого интересующего нас участка генома, чтобы решить, насколько допустим подобный риск. Чем больше выбранный участок, тем меньше возможностей для ошибки – подобно тому как чем длиннее шеренга участников предъявления для опознания, тем большего доверия заслуживает вынесенный приговор. Разница же в том, что для того, чтобы соперничать со своим ДНК-эквивалентом, предъявлению для опознания потребуется выставить в шеренгу не пару десятков человек, а сотни, тысячи или даже миллиарды. Но на этом количественном отличии аналогия с предъявлением для опознания не заканчивается. Как мы увидим, существует и ДНК-эквивалент гипотетического ряда из бритых мужчин и одного бородатого подозреваемого. Но прежде – еще немного основ ДНК-дактилоскопии.
Разумеется, для сравнения образцов, взятых у подозреваемого и с места преступления, мы исследуем одни и те же участки генома. Выбор этих участков обусловлен их склонностью широко варьировать в пределах популяции. Дарвинист тут добавил бы, что не склонные к изменчивости участки зачастую играют важную роль в выживании организма. Любые существенные изменения этих важных генов будут, по всей вероятности, удалены из популяции гибелью своих носителей – дарвиновским естественным отбором. Но есть и другие участки генома, которые крайне вариабельны – возможно, в связи с тем, что их влияние на выживание невелико. Это еще не вся правда, поскольку некоторые полезные гены тоже отличаются существенным многообразием. Почему – предмет для полемики. Позволю себе небольшое отступление, ведь… Не жизнь, коль стрессы и проблемы мешают отступить от темы.
Согласно так называемой нейтралистской теории, связанной с именем выдающегося японского генетика Мотоо Кимуры, полезные гены одинаково полезны во всем многообразии имеющихся форм. Это ни в коем случае не следует понимать так, будто все они бесполезны, – имеется в виду лишь то, что различные варианты одного и того же гена выполняют свою работу одинаково хорошо. Если представить себе ген в виде изложенного на бумаге рецепта, то его альтернативные формы можно сравнить с тем же самым текстом, записанным различными шрифтами: слова те же, смысл тот же, и продукт, создаваемый по данному рецепту, получается точно таким же. Естественный отбор не “видит” тех изменений в генах, мутаций, которые не создают никаких различий. Если говорить об их влиянии на жизнь животного, то это и не мутации вовсе, однако, с точки зрения ученого-криминалиста, потенциально это очень полезные мутации. Благодаря им популяция приходит к большому разнообразию вариантов в том или ином локусе (конкретном местоположении на хромосоме), и это разнообразие может использоваться в ДНК-дактилоскопии.
Другая теория изменчивости, в противоположность нейтралистской теории Кимуры, гласит, что альтернативные формы генов на самом деле выполняют различные функции и у естественного отбора имеются особые причины сохранять это разнообразие. Например, у некоего белка крови могут быть две альтернативные формы, α и β, каждая из которых чувствительна к одному из двух инфекционных заболеваний – скажем, “альфлюэнце” и “бетакулезу” соответственно – и невосприимчива к другому. Обычно, чтобы в популяции разразилась эпидемия, доля особей, восприимчивых к инфекции, должна достигнуть некой критической плотности. Популяцию, где преобладает белок α-типа, сотрясают эпидемии альфлюэнцы, а бетакулез там редок. И потому естественный отбор благоприятствует β-типу, для альфлюэнцы неуязвимому, в силу чего через некоторое время этот тип белка становится в популяции преобладающим. Теперь дело принимает иной оборот. В популяции свирепствуют эпидемии бетакулеза, но не альфлюэнцы. Естественный отбор благоприятствует теперь носителям белков α-типа, невосприимчивым к бетакулезу. Популяция будет либо претерпевать бесконечные колебания с попеременным преобладанием то α-, то β-формы, либо же придет к некоему промежуточному состоянию так называемого равновесия. И в том и в другом случае в соответствующем локусе будет наблюдаться высокое разнообразие генных вариантов – на радость тем, кто занимается установлением личности по ДНК. Данный феномен называется частотно-зависимым отбором и предположительно является одним из механизмов, поддерживающих высокий уровень генетического разнообразия в популяции. Есть и другие.
Как бы то ни было, для криминалистики здесь существенно только одно: в геноме имеются вариабельные участки. Чем бы ни окончилась дискуссия о том, насколько изменчивы полезные участки генома, в нем так или иначе с избытком хватает областей, которые никогда не считываются и не переводятся в свои белковые эквиваленты. Да-да, поразительно большая часть наших генов, по всей видимости, не делает вообще ничего. Следовательно, они могут видоизменяться сколько им угодно, что делает их превосходным материалом для ДНК-дактилоскопии.
Как будто чтобы специально продемонстрировать нам, что значительная часть ДНК не несет никакой пользы, абсолютное содержание ДНК в клетках организмов разных видов различается самым чудовищным образом. Поскольку информация, записанная в ДНК, является цифровой, мы можем измерить ее в единицах, подобных тем, в каких измеряется информация, хранящаяся в компьютере. Одного бита информации достаточно для обозначения единичного выбора по принципу “да – нет”: 1 или 0, “истина” или “ложь”. У компьютера, на котором я печатаю эти строки, 256 мегабит (32 мегабайта) оперативной памяти. (Мой самый первый компьютер был более громоздкой штуковиной, и однако же емкость памяти у него была в пять тысяч раз меньше.) Соответствующей фундаментальной единицей информации ДНК служит азотистое основание нуклеотида. Поскольку возможных разновидностей этих оснований четыре, количество информации, содержащейся в одном основании, эквивалентно 2 битам. Размер генома Escherichia coli – типичной бактерии из нашего кишечника – равен 4 мегабазам (миллионам пар оснований), или 8 мегабитам. А у гребенчатого тритона, Triturus cristatus, геном величиной в 40 000 мегабит. Эта 5000-кратная разница между бактерией и гребенчатым тритоном примерно соответствует разнице между самым первым моим компьютером и нынешним. У нас, людей, геном состоит из 3000 мегабаз, или 6000 мегабит. Это в 750 раз больше, чем у бактерии (что льстит нашему самолюбию), но как быть с тритоном, обставившим нас шестикратно? Хотелось бы думать, что размер генома и его функциональность не находятся в строгой пропорциональной зависимости и значительная часть генома у этого вида тритона попросту ничего не делает. Несомненно, так оно и есть. И то же самое справедливо и для большей части нашей с вами ДНК. Имеются различные подтверждения тому, что только около 2 % от 3000 мегабаз человеческого генома используется для синтеза закодированных в нем белков. Остальное нередко называют мусорной ДНК. У гребенчатого тритона, по-видимому, содержание мусорной ДНК еще выше, чем у нас. У других тритонов – нет.
Эти неиспользуемые излишки ДНК делятся на несколько категорий. Некоторые из них выглядят как настоящая генетическая информация и, вероятно, представляют собой древние, уже неисправные гены либо устаревшие копии тех генов, что и поныне работают. Такие псевдогены, будучи считанными и переведенными в белок, дали бы нечто вразумительное. Но они не считываются и в белки не переводятся. Жесткие диски компьютеров тоже обычно содержат подобный мусор: старые копии находящихся в работе файлов, объем памяти, отведенный под временное хранение данных о разных промежуточных операциях, и прочее. Мы, пользователи, этого мусора обычно не видим, потому что компьютер показывает нам только те части диска, о которых нам необходимо знать. Но если задаться целью и прочесть байт за байтом всю записанную на диске информацию, то нам встретится немало мусора, существенная часть которого будет содержать в себе какой-то смысл. Вероятно, в настоящий момент на жестком диске моего компьютера находятся десятки разрозненных фрагментов этой главы, разбросанных то там, то сям, хотя меня ставят в известность только об одной, “официальной” версии (ну и о предусмотрительно сохраненной резервной копии).
Вместе с ДНК, которую в принципе можно было бы прочесть, хоть этого и не делается, в геноме полным-полно такой мусорной ДНК, которая не только не читается, но в которой и невозможно увидеть ничего осмысленного. Там есть бескрайние участки однообразно повторяющейся околесицы: быть может, какого-то одного азотистого основания, или двух, или же некоего более сложного мотива. В отличие от предыдущей разновидности мусорной ДНК, мы не можем рассматривать эти так называемые тандемные повторы в качестве вышедших из употребления копий полезных генов. Эта повторяющаяся ДНК никогда не бывала декодирована и, предположительно, никогда не была ни для чего нужна. (Во всяком случае, никогда не была нужна для выживания организма. Но, как я разъяснил в другой своей книге, с точки зрения эгоистичного гена можно сказать, что любая разновидность мусорной ДНК “приносит пользу” самой себе, просто если ей удается выживать и увеличивать число собственных копий. Эта идея стала известна под ярлыком “эгоистичная ДНК” – впрочем, не слишком удачным, поскольку обычная, работающая ДНК тоже эгоистична в том смысле, который я вкладываю в данное слово. По этой причине некоторые стали прибегать к термину “ультраэгоистичная ДНК”.)
Так или иначе, каковы бы ни были причины ее существования, мусорная ДНК у нас имеется, и в огромных количествах. А поскольку она не используется, ничто не мешает ей меняться. Это у полезных генов, как мы видели, свобода варьирования жестко ограничена. Большинство изменений (мутаций) делают работу гена менее эффективной: животное гибнет – и изменение дальше не передается. В этом и есть суть естественного отбора по Дарвину. Однако мутаций в мусорной ДНК (по большей части это изменения числа повторов на том или ином участке) естественный отбор не замечает. Таким образом, исследуя популяцию, наибольшее разнообразие, подходящее для ДНК-дактилоскопии, мы обнаружим в мусорных областях. И, как нам сейчас станет ясно, особенно в этом смысле полезны тандемные повторы, поскольку в них изменяется число повторяющихся фрагментов – заметный признак, который легко измерить.
Не будь тандемных повторов, судебным генетикам пришлось бы выяснять точную последовательность азотистых оснований на выбранном для анализа участке ДНК. Это можно сделать, но секвенирование ДНК занимает много времени. Однако, как выяснил Алек Джеффрис из Университета Лестера, справедливо считающийся отцом ДНК-дактилоскопии (и ныне сэр Алек), тандемные повторы позволяют нам ловко срезать путь и упростить задачу. На том или ином участке генома у разных людей содержится разное количество этих самых повторов. Например, у меня на определенном участке генома некая бессмыслица может повторяться 147 раз подряд, а на соответствующем участке вашего генома та же самая бессмыслица повторяется, скажем, 84 раза. В другом месте у меня может оказаться 24 копии некой определенной чепухи, а у вас – 38. У любого из нас можно взять уникальный “отпечаток пальца”, который будет представлять собой набор чисел. Каждое из этих чисел будет означать, сколько раз та или иная бессмысленная последовательность ДНК повторяется в нашем геноме.
Свои тандемные повторы мы унаследовали от родителей. У каждого из нас 46 хромосом: 23 хромосомы от отца и 23 гомологичные, то есть подобные им, от матери. Мы получаем эти хромосомы целиком, вместе с тандемными повторами. Вашему отцу его 46 хромосом достались, в свою очередь, от его родителей, но он не передал их вам в целостном и неизменном виде. Каждая из хромосом, полученных им от вашей бабки, вытянулась бок о бок со своим дедовским гомологом, и они обменялись участками, после чего одна из двух получившихся комбинированных хромосом попала в сперматозоид, принявший участие в вашем появлении на свет. Каждый сперматозоид и каждая яйцеклетка уникальны, поскольку содержат различную комбинацию фрагментов отцовских и материнских хромосом. Этот процесс перемешивания участков затрагивает в равной степени как тандемные повторы, так и смысловые области генома. Получается, что свое уникальное число для каждого тандемного повтора мы наследуем примерно таким же образом, как цвет глаз или курчавость волос. С той лишь разницей, что цвет наших глаз определяется чем-то вроде совместного вердикта отцовских и материнских генов, а количество тандемных повторов является свойством хромосом как таковых и, следовательно, может быть подсчитано отдельно для каждой хромосомы, полученной нами от кого-то одного из родителей. Для любого участка генома, содержащего тандемные повторы, у каждого из нас имеются два показателя: число повторов на отцовской хромосоме и соответствующее число на материнской. Время от времени хромосомы мутируют: количество имеющихся на них тандемных повторов претерпевает случайные изменения. Также некий конкретный отрезок, содержащий тандемные повторы, может разделиться, когда хромосомы обмениваются своими участками. Вот откуда в популяции возникает разнообразие по числу тандемных повторов. Вся прелесть в том, что эти числа легко определить. Причем нет необходимости связываться с выяснением точной последовательности оснований ДНК – вместо этого производят нечто вроде взвешивания участков с повторами. Или, если использовать другую, не менее подходящую метафору: участки с тандемными повторами рассортировывают, получая что-то вроде цветных полос на выходе из призмы. Сейчас я расскажу про один из способов сделать это.
Сначала вам нужно подготовить так называемый ДНК-зонд – короткую, около 20 нуклеотидов в длину, последовательность ДНК, которая точно соответствует интересующей нас повторяющейся бессмыслице. В наши дни это задача не из сложных. Существуют различные методы для ее решения. Можно даже просто купить уже готовенький прибор, способный производить короткие фрагменты ДНК с любой заданной последовательностью, – точно так же как можно купить перфоратор с клавиатурой, умеющий пробивать любую последовательность букв на бумажной ленте. А если добавить в этот прибор радиоактивные исходные материалы для синтеза, то и получившиеся зонды будут радиоактивными – тем самым вы их как бы пометите. Впоследствии это поможет вам вновь обнаружить свои зонды, легко отличив их от обыкновенной, природной ДНК, которая не радиоактивна.
Радиоактивные зонды – это рабочий инструмент, который необходимо иметь под рукой, когда вы приступаете к ДНК-дактилоскопии по Джеффрису. Другим важнейшим инструментом служит рестриктаза. Рестриктазы, или ферменты рестрикции, – это химические ножницы, предназначенные для разрезания ДНК, причем в строго определенных местах. Например, одна рестриктаза может двигаться вдоль хромосомы до тех пор, пока не наткнется на последовательность GAATTC (G, C, T и A – это те самые четыре буквы алфавита ДНК; все гены всех живущих на Земле видов отличаются друг от друга только очередностью составляющих их букв). Другая рестриктаза расщепляет ДНК везде, где встречает последовательность GCGGCCGC. В арсенале молекулярного биолога имеется довольно много различных рестриктаз. Впервые они были обнаружены у бактерий, которые используют их в целях самозащиты. Каждая рестриктаза осуществляет свой собственный, уникальный “поиск по фрагменту текста”, куда она затем нацеливается и производит разрез.
Теперь дело за малым: надо подобрать такую рестриктазу, чья последовательность узнавания не встречается в интересующем нас тандемном повторе. Тогда всю имеющуюся ДНК можно будет порубить на короткие отрезки, с обеих сторон ограниченные этой специфической последовательностью. Разумеется, не во всех этих фрагментах будут содержаться нужные нам тандемные повторы. Нашими молекулярными ножницами будут вырезаны самые разнообразные участки ДНК, по чистой случайности оказавшиеся между двух облюбованных рестриктазой последовательностей. Однако некоторые из полученных фрагментов будут содержать тандемные повторы, и длина каждого такого вырезанного участка будет определяться преимущественно количеством этих самых повторов. Если у вас содержится всего 83 копии какого-то бессмысленного кусочка ДНК там, где у меня их 147, то соответствующие отрезанные кусочки моей ДНК будут длиннее ваших.
Мы можем измерить длину этих фрагментов, используя методику, уже давно ставшую в молекулярной биологии рутинной. Она довольно сильно смахивает на расщепление света призмой, как в опытах Ньютона. В случае ДНК такой стандартной “призмой” служит колонка для гель-электрофореза, то есть длинная трубочка, заполненная своеобразным студнем, через который пропускается электрический ток. На один конец этой трубочки наносится раствор, содержащий порезанную рестриктазами ДНК, все кусочки вперемешку. Фрагменты ДНК притягиваются к положительному полюсу колонки, то есть к ее противоположному концу, и потому неуклонно движутся сквозь гель. Но они перемещаются не с одинаковой скоростью. Короткие фрагменты бегут быстрее длинных, подобно тому как низкочастотные световые волны быстрее проходят сквозь стекло. В результате, после того как через некоторое время вы выключите ток, отрезки ДНК окажутся распределенными вдоль всей колонки, точно так же как ньютоновские цвета разделяются призмой потому, что стекло замедляет свет с синего края спектра сильнее, чем с красного.
Но пока что мы не можем видеть этих отрезков. Наша студенистая колонка выглядит одинаково по всей своей длине. Ничто не говорит нам ни о том, что фрагменты ДНК потихоньку сгруппировались по размеру в отдельные полоски, ни о том, какие тандемные повторы в каких полосках содержатся. Как же сделать их видимыми? Тут-то нам и пригодятся радиоактивные зонды.
Для визуализации тандемных повторов мы можем использовать еще одну хитроумную методику – саузерн-блот, или гибридизацию по Саузерну, названную так по имени своего изобретателя Эдвина Саузерна. (Что может несколько сбивать с толку, так как есть другие методы – нозерн-блот и вестерн-блот, но ни мистера Нозерна, ни мистера Вестерна не было[38]38
“Саузерн” (southern) переводится с английского как “южный”, а “нозерн” и “вестерн” (northern, western) – как “северный” и “западный”.
[Закрыть].) Для этого наш желеобразный столбик извлекается из трубочки и размещается на специальной фильтровальной бумаге. Вся жидкость из геля вместе с находящимися в ней фрагментами ДНК впитывается в эту промокашку, которая предварительно была обработана значительным количеством радиоактивного ДНК-зонда к интересующему нас тандемному повтору. В силу обычных законов строения ДНК, молекулы зонда, распределенные по бумаге, соединяются с точно соответствующими им последовательностями тандемных повторов. Излишки зонда мы смываем. Теперь на бумаге остаются только те молекулы радиоактивного зонда, которые связаны со своими напарниками, просочившимися из геля. Затем мы помещаем нашу промокашку на кусок рентгеновской пленки, оставляя на нем следы радиоактивности. Проявив эту пленку, мы видим набор темных полосок – еще один штрихкод. Конкретное расположение полосок штрихкода, получившегося при саузерн-гибридизации, является уникальным “отпечатком пальца” человека, примерно так же как фраунгоферовы линии – “отпечатком пальца” звезды, а форманты – “отпечатком пальца” гласного звука. “Штрихкод крови” и правда очень напоминает как фраунгоферовы линии, так и узор формант.
Технические подробности ДНК-дактилоскопии становятся все сложнее, и я не буду дальше в них углубляться. К примеру, одна из стратегий сводится к тому, чтобы вывалить на ДНК целую кучу разных зондов одновременно. В результате мы увидим смесь полосок, получившуюся при наложении штрихкодов друг на друга. В крайнем варианте этой стратегии полоски сольются в единый размытый мазок, образованный фрагментами ДНК всех возможных размеров, вырезанными отовсюду из генома. Для установления личности такое не годится. Противоположная крайность – использование зонда только к одному генетическому “локусу” за раз. При такой “однолокусной дактилоскопии” мы получим аккуратные, четко различимые полоски наподобие фраунгоферовых линий. Но только одну или две на человека. И даже в этом случае шансы обознаться совсем не велики. Ведь приметы, обсуждаемые здесь нами, иного рода, нежели те категории, под которые подпадает сразу много людей, – например, карие или голубые глаза у предполагаемого преступника. Напомню, что измеряемый нами признак – это длины фрагментов, содержащих тандемные повторы. Число возможных значений этих длин огромно, поэтому и с помощью однолокусной ДНК-дактилоскопии можно весьма надежно идентифицировать личность. Впрочем, все-таки недостаточно надежно, и потому на практике генетики-криминалисты используют с полдюжины различных ДНК-зондов. В таком случае вероятность ошибки в самом деле крайне низка. Но все же стоит поговорить о том, насколько именно она низка, ведь на кону может стоять человеческая жизнь или свобода.
Вернемся к различию между ложноположительными и ложноотрицательными результатами. ДНК-улики могут быть использованы как для того, чтобы оправдать невиновного подозреваемого, так и затем, чтобы указать на преступника. Предположим, что из влагалища жертвы изнасилования был взят образец спермы. На основании косвенных улик полиция арестовывает некоего человека – подозреваемого А. У него берут пробу крови и сравнивают ее с этим образцом спермы, используя только один ДНК-зонд для анализа только одного содержащего тандемные повторы локуса. Если совпадения нет, то подозреваемый А невиновен. Даже нет необходимости выяснять, что там в других локусах.
Ну а что, если по этому локусу кровь подозреваемого А и сперма из взятого образца совпали? Предположим, в обоих случаях мы видим один и тот же штрихкод – назовем его паттерном П. Это не противоречит виновности подозреваемого, но и не доказывает ее. Быть может, просто так вышло, что паттерн П есть и у него, и у настоящего насильника. Так что следует проанализировать еще несколько локусов. Если образцы снова совпадут, какова вероятность того, что эти совпадения случайны, – ложноположительной идентификации? Тут пришла пора начать рассуждать статистически о популяции в целом. Теоретически, взяв кровь у некой выборки людей, можно было бы рассчитать ту вероятность, с какой двое мужчин из данной популяции окажутся идентичны по исследуемым локусам. Но среди какой части населения следует производить выборку?
Помните нашего одинокого бородача, участвовавшего в старом добром предъявлении для опознания? А вот вам его молекулярный эквивалент. Допустим, если брать весь мир в целом, то паттерн П встречается только у одного человека на миллион. Значит ли это, что шанс несправедливо осудить подозреваемого А у нас всего один из миллиона? Нет. Подозреваемый А может принадлежать к немногочисленной группе населения, предки которой прибыли из какого-то определенного уголка света. Представители локальных популяций часто обладают общими генетическими особенностями – по той простой причине, что происходят от одних и тех же предков. Из двух с половиной миллионов южноафриканских голландцев, или африканеров, большинство – потомки пассажиров одного корабля, прибывшего из Нидерландов в 1652 году. Сколь узко было это генетическое бутылочное горлышко, видно из того, что около миллиона африканеров до сих пор носят фамилии двадцати из этих первых поселенцев. Некоторые наследственные заболевания встречаются у них намного чаще, чем в среднем по всему миру. Согласно одной из оценок, примерно 8000 африканеров (каждый 300-й) страдают вариегатной порфирией – патологией крови, у всего остального человечества гораздо более редкой. Дело тут, видимо, в том, что все они – потомки одной пары с того корабля, Геррита Янса и Ариантье Якобс, хотя и неизвестно, кто из этих двоих был носителем гена (доминантного) данной болезни. (Якобс была одной из восьми воспитанниц роттердамского сиротского приюта, взятых на корабль, чтобы обеспечить переселенцев женами.) На самом деле об этом патологическом состоянии стало известно много позже, только с развитием медицины, ибо наиболее заметный его симптом – летальный исход при применении некоторых современных анестетиков. (Сегодня в больницах ЮАР перед анестезией проводят стандартный анализ на наличие данного гена.) В других популяциях по аналогичным причинам нередко наблюдается повышенная встречаемость каких-то других необычных генов.
Теперь вернемся к нашему воображаемому судебному процессу. Если и подозреваемый А, и настоящий преступник принадлежат к одному и тому же этническому меньшинству, то вероятность перепутать их друг с другом может оказаться значительно выше, чем можно было бы предположить, исходя из оценок по популяции в целом. Получается, что частота, с которой паттерн П встречается у всех людей вообще, тут не существенна. Нам важно знать, как часто встречается паттерн П в той группе населения, к которой принадлежит подозреваемый.
В такой необходимости нет ничего нового. Мы уже видели, что и в случае обычного предъявления для опознания есть риск подобной ошибки. Если главный подозреваемый – китаец, нет смысла ставить его в шеренгу, состоящую в основном из европейцев. И точно такие же статистические рассуждения, основанные на том, как обстоит дело в конкретной популяции, применимы к идентификации не только личности, но и украденных ценностей. Я уже упоминал про свою бытность присяжным в оксфордском суде. В одном из тех трех дел, что мне довелось рассматривать, человека обвиняли в краже трех монет у конкурента-нумизмата. У обвиняемого были обнаружены три монеты, соответствовавшие пропавшим. Прокурор изрек:
Дамы и господа присяжные, действительно ли мы должны поверить в то, что эти три монеты – точно такого же вида, как и три пропавшие, – просто случайно оказались в доме коллекционера, соперничавшего с потерпевшим? Заявляю вам, что переварить такое совпадение мне не под силу.
Присяжным не дозволяется проводить перекрестный допрос. Это входило в обязанности защитника, но тот, будучи, несомненно, сведущ в юриспруденции и не менее красноречив, имел не больше понятия о теории вероятностей, чем обвинитель. Мне бы хотелось, чтобы он ответил что-нибудь вроде следующего:
Вшчесть, мы не знаем, под силу ли нам переварить такое совпадение, ибо мой ученый коллега не предъявил нам вообще никаких данных о том, насколько редко или часто эти монеты встречаются у населения в целом. Если они столь редки, что любую из них можно обнаружить только у одного из ста коллекционеров нашей страны, то это говорит в пользу обвинения, поскольку у моего подзащитного их найдено сразу три. Однако же если таких монет вокруг что грязи, то улик для вынесения обвинительного приговора недостаточно. (Если доводить мою аргументацию до крайности, то те три монеты, которые лежат сейчас у меня в кармане, будучи находящимися в обращении легальными платежными средствами, с высокой вероятностью окажутся идентичными монетам из кармана Вашей чести.)
Я хочу сказать, что ни одному из искушенных в юриспруденции умов, находившихся в зале суда, даже не пришло в голову, что нелишне хотя бы поинтересоваться, насколько редки такие монеты. Юристы, несомненно, обладают способностями к сложению (однажды я получил счет от адвоката, где последним пунктом значилось: “Время, потраченное на составление данного счета”), но вот теория вероятностей – дело другое.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?