Электронная библиотека » Рома Агравал » » онлайн чтение - страница 1


  • Текст добавлен: 1 февраля 2022, 10:44


Автор книги: Рома Агравал


Жанр: Архитектура, Искусство


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 1 (всего у книги 15 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +

Рома Агравал
Built: неизвестные истории известных зданий

© Roma The Engineer Ltd, 2018

© Попова А., перевод на русский язык, 2018

© Оформление. ООО «Издательство «Эксмо», 2019

* * *

Посвящается Маа и маленькому Сэмюелю



Глава 1. Этаж

В одной руке я сжимала плюшевого кота, боясь его потерять. А другой ухватилась за мамину юбку. Мне было страшно и волнительно оттого, что я попала в новый, странный и неизвестный мир, который вращался вокруг меня в постоянном движении, и я старалась удержать в руках хотя бы две знакомые вещи.

Сейчас, когда я думаю о Манхэттене, я всегда мысленно представляю ту первую поездку, когда я была еще совсем крошечной и очень впечатлительной: забавный запах выхлопных газов, крики уличных торговцев лимонадом, рой несущихся куда-то людей, которые врезались в меня безо всяких извинений. Незабываемые переживания для ребенка, который жил вдали от крупных городов. Вместо неба я увидела башни из стекла и стали, которые закрывали солнце. Что это за чудовища? Как мне на них забраться? Как они выглядят сверху? Я вертела головой то вправо, то влево, а мама тащила меня по оживленным улицам. Я ковыляла за ней, задрав голову наверх и не в силах оторвать взгляд от этих гигантских столбов, задевающих облака.

Дома я пыталась построить то же самое из кубиков с помощью миниатюрных игрушечных подъемных кранов. В школе я рисовала высокие прямоугольники на больших листах бумаги и раскрашивала броскими яркими цветами. Нью-Йорк прочно вошел в мир моего воображения, а в жизни я снова и снова возвращалась в этот город и любовалась новыми башнями, которые появлялись на вечно меняющемся горизонте города.

Когда мой отец работал инженером-электриком, мы несколько лет жили в Америке. Но мы жили не в одном из парящих небоскребов, которые так поражали меня, когда я бывала на Манхэттене, а в скрипучем деревянном доме на холмах за городом. Когда мне было шесть лет, отец бросил заниматься инженерным делом и стал заниматься семейным бизнесом в Мумбаи, и мы переехали в семиэтажную бетонную башню с видом на Аравийское море. Когда мои куклы Барби наконец приехали в целости и сохранности в наш новый дом, совершив длинное путешествие через океан в контейнерах, я позаботилась о том, чтобы им было уютно. Папа помог мне собрать игрушечные краны и постелил большую белую простыню, чтобы детальки не потерялись. С громким жужжанием я отправляла на место длинные пластиковые трубки и сложенные куски картона, и так я построила дом своим куклам. Вероятно, это был мой первый шаг к карьере инженера-строителя.

У меня был американский акцент, и я была – а вы это скоро поймете, если еще не поняли, – немножко ботаником, так что поначалу в новой школе мне было сложно. В школе меня дразнили «грамотейкой». Но со временем я нашла друзей и учителей, которые меня понимали. Я носила большие очки в золотой оправе и с удовольствием читала учебники по физике, математике и географии. Еще мне нравилось рисование, а вот химия, история и языки давались плохо. Мама в университете изучала математику и естественные науки, а работала программистом, и она поощряла мой растущий интерес к наукам, давала мне дополнительные задачи и книги для чтения. За школьные годы я больше всего полюбила эти предметы и решила стать космонавтом или архитектором, когда вырасту.

Тогда я даже не знала о профессии инженера-строителя и подумать не могла, что однажды буду участвовать в проектировании великолепного небоскреба под названием «Осколок».

Я обожала учиться, и родители решили, что мне стоит поучиться в другой стране, потому что это прекрасная возможность расширить свои горизонты. Так что в пятнадцать лет я уехала в Лондон, где в старших классах изучала математику, физику и проектирование. Очередная новая школа в новой стране, только на этот раз я быстро нашла единомышленников – девчонок, которые так же, как и я, увлекались законом Фарадея, а в свободное время проводили эксперименты в лаборатории. Блестящие учителя открыли мне путь к изучению физики в университете, и я переехала в Оксфорд.

В школе я физику еще понимала. В университете уже нет – по крайней мере, поначалу. Свет – это одновременно и волна, и частицы? Пространство и время можно исказить? Путешествия во времени математически возможны?! Я сильно увлеклась, но разобраться во всем этом было довольно трудно. Я всегда немного отставала от своих однокашников. Для меня было настоящей наградой, когда я наконец понимала ту или иную тему. Я совмещала походы в библиотеку с уроками бальных и латинских танцев и параллельно училась стирать, готовить (вероятно, с небольшим успехом, как вы потом увидите) и всячески заботиться о себе. Мне нравилось изучать физику; детские мечты о том, чтобы полететь в космос или стать архитектором, превратились в далекие воспоминания. В то же время я слабо представляла, чем хочу заниматься в жизни.

Как-то летом я работала на факультете физики в Оксфордском университете и проектировала планы систем безопасности в разных зданиях. Мою задачу едва ли можно назвать революционной, зато люди, с которыми я работала, работали как раз над такими проектами. Это были инженеры, и их работа заключалась в проектировании оборудования, на котором физики смогут найти частицы, которые определяют устройство нашего мира. Вы легко можете себе представить, что я замучила их бесконечными вопросами и то и дело поражалась масштабам их работы. Один из них проектировал металлический держатель для стеклянной линзы – можно подумать, что это просто, если не учитывать, что весь аппарат нужно будет охлаждать до -70°C. При замерзании металл сжимается гораздо сильнее, чем стекло, и если тщательно не продумать этот держатель, то охлажденный металл разобьет линзу. Это всего лишь маленькая деталь в огромном лабиринте различных устройств, но это сложная и творческая задача. В свободное время я часами раздумывала над тем, как бы я решила эту задачу.

Внезапно меня осенило: я хочу решать сложные практические задачи с помощью физики и математики, чтобы каким-то образом изменить мир. И именно в этот момент из детских воспоминаний возродилась моя любовь к небоскребам. Я буду инженером-строителем и проектировщиком зданий. Чтобы переквалифицироваться из физика в инженеры, я год училась в Имперском колледже Лондона, окончила его, получила работу и стала инженером.

Как инженер-строитель, я отвечаю за то, чтобы здания, которые я проектирую, стояли. За последние десять лет я участвовала в проектировании удивительно разнообразных конструкций. Я стала частью команды, которая построила «Осколок» – самую высокую башню в Западной Европе, – и шесть лет производила вычисления для проектирования ее шпиля и фундамента; я работала над необычным пешеходным мостом в Ньюкасле и круглыми сводами купола вокзала «Кристал Пэлас» в Лондоне. Я спроектировала сотни новых квартир, вернула былую славу георгианскому коттеджу и позаботилась о том, чтобы скульптура художника стояла как следует. Моя работа представляет собой создание различных сооружений на основе принципов математики и физики (что само по себе невероятно весело), но в ней гораздо больше интересного. Во-первых, современный инженерный проект – это огромная командная работа. В прошлом инженеры, вроде Витрувия (который написал первый трактат по архитектуре) или Брунеллески (который построил невероятный купол Флорентийского собора), были известны как мастера-строители. Они разбирались во всех дисциплинах, связанных со строительством. В настоящее время здания более сложные с технической точки зрения, и один человек попросту не может разбираться в каждом аспекте строительства. У каждого из нас есть своя узкая специализация, и главная задача в том, чтобы увлечь всех в замысловатый и тихий неистовый танец, в котором мы соберем вместе материалы, физическую силу и математические вычисления. Вместе с архитекторами и другими инженерами мы обсуждаем вопросы проектирования. Наши чертежи помогают строителям, а геодезисты рассчитывают расходы и занимаются логистикой. Рабочие на стройке получают материалы и воплощают в них наше видение. Порой трудно себе представить, что все эти хаотические действия приводят к созданию твердой структуры, которая простоит многие десятилетия или даже столетия.

Для меня каждое новое здание становится чем-то очень личным, когда я наблюдаю, как оно растет и обретает свой неповторимый характер. Сначала мы обсуждаем несколько набросков, потом я постепенно понимаю, на чем конструкция будет держаться, как сделать ее высокой и дать возможность меняться согласно требованиям времени. Чем больше времени я занимаюсь проектом, тем больше я его уважаю и даже люблю. Когда здание готово, я иду встретиться с ним лично и обхожу вокруг. Даже потом, как мне кажется, между нами сохраняется некоторая связь, и я наблюдаю издалека, как другие люди встают на мое место и развивают свои отношения с моим созданием, селятся в нем или работают, и как оно защищает их от внешнего мира.

Конечно, мои чувства к сооружениям, над которыми я работала, носят особенно личный характер, но, на самом деле, мы все тесно связаны с работами инженеров, которые нас окружают, – улицами, по которым ходим, туннелями, по которым проносимся в метро, мостами, которые переходим. Они делают нашу жизнь проще, а мы заботимся о них. В свою очередь, они становятся безмолвной, но важной частью нашей жизни. Мы чувствуем себя энергичными профессионалами, когда заходим в стеклянный небоскреб с аккуратными рядами офисных столов. Скорость, с которой мы перемещаемся, подчеркивают стальные кольца, мимо которых пролетает поезд в метро. Неровные кирпичные стены и мощенные камнем тротуары напоминают нам о прошлом, о нашей истории. Сооружения придают нашей жизни форму и поддерживают ее, формируя пейзаж нашего бытия. Мы часто их не замечаем или не знаем об этом, но у каждого сооружения своя история. Туго натянутые тросы над огромным мостом через реку, стальной скелет под стеклянной кожей высокой башни, трубопроводы и туннели, которые прячутся у нас под ногами, – все это и есть мир, который мы построили, и он многое говорит о человеческой изобретательности, о нашем взаимодействии друг с другом и с природой. Наша постоянно меняющаяся инженерная вселенная полна разных историй и тайн, и если вы захотите прислушаться и присмотреться, то вас ждет увлекательное приключение.

Надеюсь, что в этой книге вы вместе со мной окунетесь в эти истории и тайны: вы по-новому взглянете на сотни привычных сооружений, которые вас окружают и которые вы видите то сверху, то снизу, то изнутри; что вы в своем собственном доме, своем городе или деревне и на окраинах увидите чудо; что вы станете смотреть на мир совершенно другими глазами – глазами инженера.

Глава 2. Сила



Очень необычное ощущение – дотронуться до сооружения, которое ты спроектировал. Моим первым проектом после университета стал пешеходный мост Нортумбрийского университета в Ньюкасле в Англии. Два года я работала с планами архитекторов и помогала воплотить их видение в жизнь, исписала сотни страниц вычислениями и создавала бесчисленные компьютерные модели. В конце концов его построили. Когда уехали подъемные краны и экскаваторы, мне наконец удалось постоять на стальной конструкции, в создании которой я участвовала.


Пешеходный мост Нортумбрийского университета построили в 2007 году, и он соединяет две основные части территории университета в Ньюкасле-апон-Тайнев Англии


Я немного постояла на твердой земле перед мостом, прежде чем ступить на него. Я помню этот момент: я была взволнована и в то же время не верила своим глазам – меня поражало, что я принимала участие в возведении этого прекрасного моста, по которому каждый день будут ходить сотни людей. Я посмотрела наверх – на его высокую мачту и расходящиеся от нее тросы, которые надежно держат тонкое полотно над шоссе, – он легко выдерживает свой собственный вес и мой. Парапеты, предусмотрительно расположенные под таким углом, чтобы на них было трудно залезть, отражали холодный солнечный свет. Подо мной проносились машины и грузовики, не обращая внимания на юного инженера, которая гордо стоит на «своем» мосту и изумляется своему первому осязаемому вкладу в этот мир.

Конечно же, он очень прочный. В конце концов, все числа и модели, которые я тщательно проработала, чтобы вычислить, какие силы будут действовать на мой мост, проверили и перепроверили. Потому что инженеры не могут позволить себе допускать ошибки. Я понимаю, что каждый день тысячи людей будут пользоваться сооружениями, которые я проектирую: они будут по ним переходить, работать в них или жить и совершенно не будут волноваться о том, что мои творения могут их подвести. Мы вкладываем в инженерное дело свою веру и усилия ног своих (часто в буквальном смысле), и инженер отвечает за то, чтобы сооружения были прочными и надежными. При всем этом, история показывает, что что-то может пойти не так. Днем 29 августа 1907 года жители города Квебека решили, что началось землетрясение. На самом деле в 15 километрах от города происходило нечто еще более немыслимое. На берегах реки Святого Лаврентия воздух разрывали звуки рвущегося металла.


Стою на пешеходном мосту Нортумбрийского университета – моем первом инженерном проекте


Заклепки, которые скрепляли конструкцию моста, отрывались и свистели над головами напуганных рабочих. Стальные балки сложились как бумага, и сам мост – вместе с рабочими, которые находились на нем, – погрузился под воду. Это одно из самых эпичных крушений моста за всю историю строительства и жестокий пример того, как неумелое руководство и просчеты могут обернуться катастрофой.

Мосты расширяют города, соединяют людей и способствуют развитию торговли и коммуникаций. Идея о строительстве моста через реку Святого Лаврентия обсуждалась в парламенте с 1850-х гг. С технической точки зрения это было настоящее испытание: в самом узком месте ширина реки составляет три километра, вода в ней глубокая, а течение быстрое. Зимой вода замерзала, и в канале образовывались нагромождения льда высотой до 15 метров. Тем не менее для реализации этого проекта учредили компанию «Квебек-Бридж» и в 1900 году начали работу над фундаментом.

Эдвард Хоар, главный инженер компании, до этого никогда не занимался строительством мостов длиннее 90 м (даже в оригинальных планах проекта называлась «свободная расчетная длина» – то есть длина участка без каких-либо опор – чуть более 480 м). Таким образом было принято судьбоносное решение заручиться поддержкой Теодора Купера в качестве консультанта. Купер был широко известен как один из лучших специалистов по строительству мостов и написал блестящий доклад об использовании стали в сооружении железнодорожных мостов. Теоретически он был похож на идеального кандидата. Но с самого начала что-то пошло не так. Купер жил далеко, в Нью-Йорке, и из-за проблем со здоровьем редко посещал строительную площадку. Тем не менее он настоял на том, чтобы лично отвечать за контроль над производством стали и строительством. Он отказался предоставить свой проект на проверку кому-либо еще и полагался лишь на своего относительно неопытного инспектора Нормана Маклюра, который сообщал ему, как идут дела на площадке. Возведение стальной конструкции началось в 1905 году, и в последующие два года Маклюр все больше волновался о том, как идет процесс строительства. Начнем с того, что стальные детали, которые доставили с завода, оказались тяжелее, чем ожидалось. Некоторые из них даже оказались согнутыми, а не прямыми, потому что не выдерживали собственного веса. Еще более тревожит тот факт, что многие детали, которые установили рабочие, деформировались еще до окончания строительства, а это означало, что они недостаточно прочные и не выдерживают нагрузки, для которой предназначены.

Деформация произошла в результате решения Купера изменить конструкцию моста относительно первоначального плана и удлинить центральный пролет (часть моста в середине, под которой нет опор) почти до 549 м. Вероятно, разум Купера затуманили амбиции: принимая такое решение, он, очевидно, надеялся, что станет инженером, построившим первый в мире мост с таким длинным пролетом, и заберет это звание у проектировщиков Форт-Бриджа в Шотландии. Чем длиннее пролет, тем больше материала на него нужно и тем тяжелее конструкция. Новый проект Купера весил примерно на 18 % больше изначального, и, не уделив достаточно внимания вычислениям, он решил, что конструкция по-прежнему прочная и выдержит дополнительный вес. Маклюр был с ним не согласен, и они спорили об этом в переписке. Но так ничего и не решили.

Наконец Маклюр так забеспокоился, что распорядился приостановить строительство и отправился на поезде в Нью-Йорк, чтобы выяснить вопрос с Купером. В его отсутствие инженер на строительной площадке отменил его распоряжение и продолжил строительство, которое в результате закончилось трагедией. Всего за пятнадцать секунд вся южная часть моста – 19 тысяч тонн стали – рухнула в реку и погребла под водой 75 из 86 рабочих.


Сцена разрушения после трагедии 1907 года при строительстве Квебек-Бриджа через реку Святого Лаврентия в Квебеке в Канаде


К крушению моста привело много проблем и ошибок. В частности, катастрофа показала, как опасно наделять огромной властью одного инженера, за которым никто не присматривает. Организации профессиональных инженеров в Канаде и других странах мира стали решать эту проблему и стараться предотвратить ошибки, совершенные при строительстве Квебек-Бриджа. В конечном же счете большая часть ответственности лежит на Теодоре Купере, который неправильно рассчитал вес моста. Ведь план строительства не учитывал того, что конструкция не выдержит собственного веса.

Разрушение Квебек-Бриджа показывает, к каким катастрофическим последствиям может привести неквалифицированная инженерная работа. Немалая часть работы инженера заключается в том, чтобы выяснить, как конструкции будут выдерживать множество сил, приложенных к ним, которые их толкают, тянут, трясут, скручивают, гнут, продавливают, разъединяют и разрывают на части. Однако гравитация – самый важный из всех этих факторов. Это вездесущая сила, благодаря которой существует солнечная система, и все, что находится на нашей планете, стремится к ее ядру. Таким образом, к каждому объекту приложена сила, которую мы называем весом. Эта сила проходит через объект. Подумайте о весе разных частей тела. Вес кисти руки воздействует на предплечье, оно, в свою очередь, на плечо, а вес плеча ложится на позвоночник. Сила стремится вниз по позвоночнику к бедрам, а потом, пройдя тазовую кость, разделяется надвое, проходит через каждую ногу и устремляется в землю. Примерно то же можно наблюдать, если построить башню из соломинок и полить ее сверху водой: вода побежит вниз всеми путями, какие найдет, и будет разделяться там, где возможно.

Когда инженер проектирует конструкцию, ему необходимо понимать, куда приложена сила и какая, и убедиться, что конструкция, через которую эта сила проходит, выдержит нагрузку.

Существуют два основных вида силы, которые гравитация (а также другие явления вроде ветра и землетрясений) создает в конструкциях: сжатие и растяжение. Если сложить лист плотной бумаги в цилиндр, поставить вертикально на стол, а сверху положить книгу, то книга будет давить на цилиндр. Сила, с которой книга давит на цилиндр (равная массе книги, умноженной на гравитационную постоянную g), проходит через цилиндр и давит на стол (подобно тому, как вес тела проходит через ногу). Таким образом, цилиндр (как и нога) подвергается сжатию.

И наоборот, если взять веревку, привязать к одному концу книгу, а другой подвесить, то подвешенная книга (на которую по-прежнему воздействует сила гравитации) будет растягивать веревку. Сила, воздействующая на книгу, проходит через веревку, на которую воздействует сила растяжения. Такое же воздействие кисть руки оказывает на предплечье.


Опора книги с помощью сжатия (слева) и растяжения (справа)


В первом примере книга не падает на стол, потому что бумажный цилиндр достаточно прочный, чтобы противостоять приложенному к нему сжатию. Во втором примере книга не падает потому, что веревка достаточно прочная, чтобы противостоять приложенной к ней силе растяжения.

Чтобы конструкция сломалась, можно взять более тяжелую книгу. Сила, с которой эта книга будет воздействовать на опору, будет больше, потому что увеличилась масса книги. Цилиндр не выдержит такой вес, сломается, и книга упадет на стол. Аналогично, если более тяжелую книгу подвесить на веревке, то растяжение веревки окажется слишком большим. Веревка порвется, и книга упадет.

Силы, воздействующие на мост, происходят из его собственного веса, а также веса людей и транспортных средств, которые по нему передвигаются. Когда я работала над строительством пешеходного моста Нортумбрийского университета, то делала вычисления, чтобы понять, какие силы воздействуют на конструкцию. В результате я точно знала, какова сила сжатия и растяжения, приложенная к каждой детали. Я использовала компьютерную модель для проверки каждой секции моста, а потом рассчитывала, какой величины должны быть стальные детали, чтобы они не согнулись, не сломались и не продавились.

Вид силы и угол ее приложения зависят от того, как собрана конструкция. Собрать ее можно двумя основными способами. Первый известен как система опор, а второй как рамная конструкция.

Глиняные дома наших древних предков, толстые стены которых они возводили из глины, располагая их в форме круга или квадрата, сооружались по первому принципу. Стены таких одноэтажных жилищ были прочными и выполняли несущую функцию: вес конструкции спокойно выдерживал сжатие, воздействующее на стены. Этот принцип похож на книгу на бумажном цилиндре, на стенки которого воздействует одинаковая сила сжатия. Если к хижине пристраивали дополнительные этажи, то в какой-то момент сила сжатия начинала разрушать глиняные стены, несущие нагрузку, и они осыпались, точно так же как под весом более тяжелой книги складывается бумажная трубка. Когда у наших предков в распоряжении была древесина, они строили каркасные дома: связывали вместе бревна, и получался каркас, или скелет, дома, в котором силы распределяются между собой. Чтобы надежно укрыться внутри, между бревнами натягивали шкуры животных или плели стены из соломы. Если у глиняных домиков были прочные несущие стены, защищавшие жителей, то у деревянных домов появляются две четкие структуры: бревна, между которыми распределяются силы, и своеобразные «перегородки» или шкуры животных, которые нагрузки не несут. Способ распределения сил является фундаментальным различием между несущими и каркасными конструкциями.


Два типа постройки дома: с несущими стенами (слева) и с каркасом (справа)


Со временем материалы, которые люди использовали при постройке несущих стен и каркасов, становились все более сложными. Несущие стены стали сооружать из кирпича и камня, что сделало их гораздо прочнее глиняных. В начале XIX века, после Промышленной революции, железо и сталь стали изготавливать в промышленных масштабах, и эти материалы начали использовать не только в вооружении и судостроении, но и в гражданском строительстве. Был вновь открыт бетон (известно, что его производили древние римляне, но с падением империи рецепт был утерян). Эти эволюционные шаги навсегда изменили облик наших домов. Так как сталь и бетон гораздо прочнее древесины и подходят для сооружения больших каркасов, мы смогли строить башни гораздо выше, а мосты гораздо длиннее. Сегодня крупнейшие и самые сложные конструкции – например, изящный стальной арочный мост Харбор-Бридж в Сиднее, треугольная геометрическая Херст-Тауэр в Манхэттене, легендарный национальный стадион «Птичье гнездо» в Пекине, построенный к Олимпиаде 2008 года, – имеют каркасную конструкцию.

Когда я начинаю проектировать новое сооружение, то изучаю детальные эскизы архитекторов, в которых передано их видение того, как должна выглядеть готовая конструкция. Затем инженеры разрабатывают нечто вроде рентгеновского изображения, на котором можно рассмотреть, какой каркас должен находиться внутри этой конструкции, чтобы противостоять гравитации и другим приложенным к ней силам. Я представляю, где должен проходить скелет здания и где нужно соединить все его косточки, а также рассчитываю, насколько большими они должны быть, чтобы скелет был прочным. Черным маркером поверх эскизов архитекторов я подрисовываю кости к плоти. Толстые черные линии придают цветным рисункам ощущение прочности. Нам с архитекторами неизбежно приходится многое обсуждать, и иногда достаточно оживленно, – ведь в поисках решения нужно идти на компромиссы. Часто в том месте, где они представляли свободное пространство, мне нужно поставить колонну; бывает и так, что в каких-то местах лишняя опора не нужна, и тогда я даю им больше простора. Нам необходимо понимать видение друг друга, особенно когда возникают технические проблемы: нужно приходить к балансу между визуальной красотой и технической целостностью. В конце концов у нас получается проект, в котором эстетическая составляющая и физическая структура находятся (почти) в идеальной гармонии.

Каркасы наших конструкций представляют собой паутину из колонн, балок и распорок. Колонны – это вертикальные части каркаса; балки – горизонтальные; а распорки – детали, расположенные под другими углами. Например, если посмотреть на фотографию моста Харбор-Бридж, то станет видно, что его конструкция состоит из стальных деталей, расположенных под различными углами, то есть из огромного количества колонн, балок и распорок. Понимая, как колонны и балки взаимодействуют между собой и поддерживают друг друга, какие силы на них действуют и, что важнее всего, от чего они могут сломаться, – мы проектируем конструкции так, чтобы они не развалились.


Мост Харбор-Бридж в Сиднее. Построен в 1930 году для железнодорожного, автомобильного и пешеходного сообщения между Северным берегом и центральным деловым районом Сиднея, Австралия


Колонны тысячелетиями противостояли силе гравитации, а греки и римляне превратили их в форму искусства. Красота и величие афинского Парфенона создается в основном благодаря внешнему ряду дорических мраморных колонн. Над руинами Римского форума возвышаются монументальные колонны, которые поддерживают хрупкие обломки храмов или просто печально устремляются в небо. Конечно, колонны выполняли важнейшую практическую функцию – поддерживали структуры, – но это не мешало инженерам античности украшать их резьбой, навеянной самой природой и мифологией. Коринфскую колонну, вершину которой украшает орнамент из причудливо закрученных листьев, изобрел, как считается, греческий скульптор Каллимах, когда обратил внимание на растение акант, которое проросло сквозь корзину, оставленную на могиле коринфской девушки, и обвилось вокруг нее.

На форуме десятки примеров колонн коринфского ордера, которые веками оставались классическим образцом гражданской архитектуры и даже украшают, например, фасад здания Верховного суда Соединенных Штатов, а их более скромные версии – вход в викторианский многоквартирный дом, где я живу.

Колонны, как правило, противодействуют силе сжатия. Один из вариантов, как они могут пострадать, – это когда на них воздействует такая большая сила, что материал колонн не выдерживает и просто ломается или дает трещины. Как раз это и случается с бумажной трубкой, если на нее положить слишком тяжелую книгу. Возьмите пластиковую линейку, поставьте вертикально на стол и надавите ладонью сверху: вы увидите, как она начинает сгибаться. Чем сильнее давишь, тем больше сгибается линейка – и в какой-то момент она просто треснет пополам.


Колонна может разрушиться двумя способами: треснуть (слева) и согнуться (справа)


При проектировании колонн необходимо соблюдать хрупкий баланс. Хочется, чтобы она была тонкой и не занимала слишком много места, но если она окажется слишком тонкой, то не выдержит нагрузки. В то же время хочется использовать материал, достаточно прочный для того, чтобы она не сломалась. Колонны, которые использовались в античных сооружениях, обычно были толстыми и массивными и в основном изготавливались из камня, так что они вряд ли сгибались. В отличие от них, современные стальные колонны гораздо тоньше, из-за чего они легче сгибаются.



Сгибание линейки показывает, как тонкая опора сгибается вдоль слабой оси Y (вверху), в то время как бетонные и стальные колонны изготавливают так, чтобы они противостояли давлению по обеим осям Х и Y (внизу)


Линейка широкая в одном направлении и узкая в другом, и, как вы убедились, когда надавили на нее перпендикулярно, она согнулась по более слабой оси. Чтобы такого не произошло, современные стальные колонны обычно имеют форму буквы «Н» на торце, так что по обеим осям они достаточно прочные и могут выдерживать гораздо большую нагрузку.

Балки работают по-другому. Они образуют каркас полов.

Когда мы стоим на балке, она незаметно прогибается и распределяет наш вес на колонны, которые ее поддерживают. Колонны, в свою очередь, сжимаются и передают наш вес земле. Если встать в середину балки, то на каждый ее конец придется по половине нашего веса. А колонны передадут эту нагрузку вниз. Мы не хотим, чтобы балки слишком сильно сгибались, когда мы на них встаем, отчасти потому, что чувствуем себя некомфортно, если пол под ногами движется, но еще и потому, что тогда они могут сломаться. Балки должны быть надлежащей жесткости, а для их усиления мы используем глубину, геометрию или особые материалы.


Балка сгибается под любым весом, при этом сверху на нее действует сила сжатия, а снизу – сила растяжения


Чтобы балки не гнулись, их делают особой формы


Когда балка сгибается под нагрузкой, вес проходит через нее неравномерно. Верхняя часть балки сжимается, а нижняя растягивается, то есть сверху на нее воздействует сила сжатия, а снизу – сила растяжения. Попробуйте согнуть руками морковку: если попытаться согнуть ее буквой «U», то она рано или поздно сломается снизу. Это происходит в тот момент, когда материал, из которого сделана морковка, не выдерживает силы растяжения, действующей на вершину дуги. Если повторить тот же эксперимент с морковками разных диаметров, станет очевидно, что более тонкие легче сгибаются. Чтобы согнуть более толстую морковку до той же дуги, нужно приложить гораздо больше сил. Таким же образом, чем больше поперечное сечение у балки, тем она прочнее и тем меньше она сгибается под нагрузкой.


Страницы книги >> 1 2 3 4 5 | Следующая
  • 4.6 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации