Электронная библиотека » Сергей Мусский » » онлайн чтение - страница 6


  • Текст добавлен: 4 ноября 2013, 21:56


Автор книги: Сергей Мусский


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 6 (всего у книги 42 страниц)

Шрифт:
- 100% +
Ускорители заряженных частиц

У современной физики есть испытанное средство проникать в тайны атомного ядра – обстрелять его частицами или облучить и посмотреть, что с ним произойдет. Для самых первых исследований атома и его ядра хватало энергии излучений, возникающих при естественном распаде радиоактивных элементов. Но вскоре этой энергии оказалось недостаточно, и, чтобы еще глубже «заглянуть» в ядро, физикам пришлось задуматься над тем, как искусственно создать поток частиц высоких энергий.

Известно, что, попав между электродами с разным зарядом, заряженная частица, например, электрон или протон, ускоряет движение под действием электрических сил. Это явление и породило в 1930-е годы идею создания так называемого линейного ускорителя.

По конструкции линейный ускоритель представляет собой длинную прямую трубку-камеру, внутри которой поддерживается вакуум. По всей длине камеры расставлено большое количество металлических трубок-электродов. От специального генератора высокой частоты на электроды подают переменное электрическое напряжение – так, что, когда первый электрод оказывается заряженным, допустим положительно, второй электрод будет заряжен отрицательно. Дальше снова положительный электрод, за ним – отрицательный.

Пучок электронов выстреливается из электронной «пушки» в камеру и под действием потенциала первого, положительного электрода начинает ускоряться, проскакивая сквозь него дальше. В этот же момент фаза питающего напряжения меняется, и электрод, только что заряженный положительно, становится отрицательным. Теперь уже он отталкивает от себя электроны, как бы подгоняя их сзади. А второй электрод, став за это время положительным, притягивает электроны к себе, еще более ускоряя их. Потом, когда электроны пролетят через него, он снова станет отрицательным и подтолкнет их к третьему электроду.

Так по мере движения вперед электроны постепенно разгоняются, достигая к концу камеры околосветовой скорости и приобретая энергию в сотни миллионов электрон-вольт. Через установленное в конце трубы окошко, непроницаемое для воздуха, порция ускоренных электронов обрушивается на изучаемые объекты микромира – атомы и их ядра.

Нетрудно понять, что чем больше энергия, которую мы хотим сообщить частицам, тем длиннее должна быть труба линейного ускорителя – десятки, а то и сотни метров. Но не всегда это возможно. Вот если бы свернуть трубу в компактную спираль. Тогда такой ускоритель свободно мог бы разместиться в лаборатории.

Воплотить эту идею в жизнь помогло еще одно физическое явление. Заряженная частица, попав в магнитное поле, начинает двигаться не по прямой, а «завивается» вокруг магнитных силовых линий. Так появился еще один тип ускорителя – циклотрон. Первым циклотрон был построен еще в 1930 году Э. Лоуренсом в США.

Основная часть циклотрона – мощный электромагнит, между полюсами которого помещена плоская цилиндрическая камера. Она состоит из двух полукруглых металлических коробок, разделенных небольшим зазором. Эти коробки – дуанты – служат электродами и соединены с полюсами генератора переменного напряжения. В центре камеры находится источник заряженных частиц – что-то вроде электронной «пушки».

Вылетев из источника, частица (предположим, что теперь это положительно заряженный протон) сразу же притягивается к электроду, заряженному в данный момент отрицательно. Внутри электрода электрическое поле отсутствует, поэтому частица летит в нем по инерции. Под влиянием магнитного поля, силовые линии которого перпендикулярны плоскости траектории, частица описывает полуокружность и подлетает к зазору между электродами. За это время первый электрод становится положительным и теперь выталкивает частицу, в то время как другой втягивает ее в себя. Так, переходя из одного дуанта в другой, частица набирает скорость и описывает раскручивающуюся спираль. Из камеры частицы выводятся с помощью специальных магнитов на мишени экспериментаторов.

Чем ближе скорость частиц в циклотроне подходит к скорости света, тем они становятся тяжелее и начинают постепенно отставать от меняющего свой знак электрического напряжения на дуантах. Они уже не попадают в такт электрическим силам и перестают ускоряться. Предельная энергия, которую удается сообщить частицам в циклотроне, составляет 25–30 МэВ.

Чтобы преодолеть этот барьер, частоту электрического напряжения, поочередно подаваемого на дуанты, постепенно уменьшают, подстраивая ее в такт «отяжелевшим» частицам. Ускоритель такого типа называется синхроциклотроном.

На одном из крупнейших синхроциклотронов в Объединенном институте ядерных исследований в Дубне (под Москвой) получают протоны с энергией 680 МэВ и дейтроны (ядра тяжелого водорода – дейтерия) с энергией 380 МэВ. Для этого потребовалось соорудить вакуумную камеру диаметром 3 метра и электромагнит массой 7000 тонн!

По мере того как физики все глубже проникали в структуру ядра, требовались частицы все более высоких энергий. Возникла необходимость строить еще более мощные ускорители – синхротроны и синхрофазотроны, в которых частицы движутся не по спирали, а по замкнутой окружности в кольцевой камере. В 1944 году независимо друг от друга советский физик В.И. Векслер и американский физик Э.М. Макмиллан открыли принцип автофазировки. Суть метода заключается в следующем: если определенным образом подобрать поля, частицы будут все время автоматически попадать в фазу с ускоряющим напряжением. В 1952 году американские ученые Э. Курант, М. Ливингстон и Х. Снайдер предложили так называемую жесткую фокусировку, которая прижимает частицы к оси движения. С помощью этих открытий удалось создать синхрофазотроны на сколь угодно высокие энергии.

Существует и другая система классификации ускорителей – по типу ускоряющего электрического поля. Высоковольтные ускорители работают за счет высокой разности потенциалов между электродами ускоряющего пространства, которое действует все время, пока частицы пролетают между электродами. В индукционных ускорителях «работает» вихревое электрическое поле, индуцируемое (возбуждаемое) в месте, где в данный момент находятся частицы. И, наконец, в резонансных ускорителях используют изменяемое по времени и по величине электрическое ускоряющее поле, синхронно с которым, «в резонанс», происходит ускорение всего «комплекта» частиц. Когда говорят о современных ускорителях частиц на высокие энергии, имеют в виду в основном кольцевые резонансные ускорители.

В еще одном виде ускорителей – протонном – на очень высокие энергии к концу периода ускорения скорость частиц приближается к скорости света. Они обращаются по круговой орбите с постоянной частотой. Ускорители для протонов высоких энергий называют протонными синхротронами. Три самых крупных расположены в США, Швейцарии и России.

Энергия ныне действующих ускорителей достигает десятков и сотен гигаэлектронвольт (1 ГэВ = 1000 МэВ). Один из самых крупных в мире – протонный синхрофазотрон У-70 Института физики высоких энергий в городе Протвино под Москвой, вступивший в строй в 1967 году. Диаметр ускорительного кольца составляет полтора километра, общая масса 120 магнитных секций достигает 20000 тонн. Каждые две секунды ускоритель выстреливает по мишеням залпом из 10 в двенадцатой степени протонов с энергией 76 ГэВ (четвертый показатель в мире). Чтобы достигнуть такой энергии, частицы должны совершить 400000 оборотов, преодолев расстояние в 60000 километров! Здесь же сооружен подземный кольцевой тоннель длиной двадцать один километр для нового ускорителя.

Интересно, что пуски ускорителей в Дубне или Протвино в советские времена проводились только по ночам, поскольку на них подавалась чуть ли не вся электроэнергия не только Московской, но и соседних областей!

В 1973 году американские физики привели в действие в городе Батавии ускоритель, в котором частицам удавалось сообщить энергию в 400 ГэВ, а потом довели ее до 500 ГэВ. Сегодня самый мощный ускоритель находится в США. Он называется «Тэватрон», поскольку в его кольце длиной более шести километров с помощью сверхпроводящих магнитов протоны приобретают энергию около 1 тераэлектронвольт (1 ТэВ равен 1000 ГэВ).

Чтобы достичь еще более высокой энергии взаимодействия пучка ускоренных частиц с материалом исследуемого физического объекта, надо разогнать «мишень» навстречу «снаряду». Для этого организуют столкновение пучков частиц, летящих навстречу друг другу в особых ускорителях – коллайдерах. Конечно, плотность частиц во встречных пучках не столь велика, как в материале неподвижной «мишени», поэтому для ее увеличения применяют так называемые накопители. Это кольцевые вакуумные камеры, в которые «порциями» вбрасывают частицы из ускорителя. Накопители снабжены ускоряющими системами, компенсирующими частицам потерю энергии. Именно с коллайдерами ученые связывают дальнейшее развитие ускорителей. Их сооружено пока считанные единицы, и находятся они в самых развитых странах мира – в США, Японии, ФРГ, а также в Европейском центре ядерных исследований, базирующемся в Швейцарии.

Современный ускоритель – это «фабрика» по производству интенсивных пучков частиц – электронов или в 2000 раз более тяжелых протонов. Пучок частиц из ускорителя направляется на подобранную, исходя из задач эксперимента, «мишень». При соударении с ней возникает множество разнообразных вторичных частиц. Рождение новых частиц и есть цель опытов.

С помощью специальных устройств – детекторов – эти частицы либо их следы регистрируют, восстанавливают траекторию движения, определяют массу частиц, электрический заряд, скорость и другие характеристики. Затем путем сложной математической обработки информации, полученной с детекторов, на компьютерах восстанавливают всю «историю» взаимодействия и, сопоставив результаты измерений с теоретической моделью, делают выводы: совпадают реальные процессы с построенной моделью или нет. Именно так добывается новое знание о свойствах внутриядерных частиц.

Чем выше энергия, которую приобрела частица в ускорителе, тем сильнее она воздействует на атом «мишени» или на встречную частицу в коллайдере, тем мельче будут «осколки».

С помощью коллайдера в США, например, проводятся эксперименты с целью воссоздания в лабораторных условиях Большого взрыва, с которого, как предполагается, началась наша Вселенная. В этом смелом эксперименте принимали участие физики из двадцати стран, среди которых были и представители России. Российская группа летом 2000 года непосредственно участвовала в эксперименте, дежурила на ускорителе, снимала данные.

Вот что говорит один их российский ученых – участников этого эксперимента – кандидат физико-математических наук, доцент МИФИ Валерий Михайлович Емельянов: «В 60 милях от Нью-Йорка, на острове Лонг-Айленд, был построен ускоритель RHIC – Relativistic Heavy Ion Collider – коллайдер на тяжелых релятивистских ионах. «Тяжелых» – поскольку уже в этом году он начал работать с пучками ядер атомов золота. «Релятивистских» – тоже понятно, речь идет о скоростях, при которых во всей красе проявляются эффекты специальной теории относительности. А «коллайдером» (от collide – сталкиваться) он называется потому, что в его кольце происходит столкновение встречных пучков ядер. Кстати, в нашей стране ускорителей такого типа нет. Энергия, которая приходится на один нуклон, составляет 100 ГэВ. Это очень много – почти вдвое больше ранее достигнутого. Первое физическое столкновение было зафиксировано 25 июня 2000 года». Задачей ученых было попытаться зарегистрировать новое состояние ядерного вещества – кварк-глюонную плазму.

«Задача очень сложна, – продолжает Емельянов, – а математически – вообще некорректна: одно и то же фиксируемое распределение вторичных частиц по импульсам и скоростям может иметь совершенно разные причины. И только при детальном эксперименте, в котором задействована масса детекторов, калориметры, датчики множественности заряженных частиц, счетчики, регистрирующие переходное излучение, и т п., есть надежда зарегистрировать тончайшие отличия, присущие именно кварк-глюонной плазме. Механизм взаимодействия ядер при столь больших энергиях интересен сам по себе, но куда важнее, что впервые в лабораторных условиях мы можем исследовать зарождение нашей Вселенной».

Голография

Первые голограммы получил в 1947 году венгерский физик Деннис Габор, работавший тогда в Англии. Это название восходит к словам «холос» (весь, полностью) и «грамма» (написание). До изобретения венгерского ученого любая фотография была плоской. Она передавала лишь два измерения предмета. Глубина пространства ускользала от объектива.

В поисках решения Габор отталкивался от одного известного факта. Лучи света, отброшенные трехмерным объектом, достигают фотопленки в разные моменты времени. И все они проделывают различный путь за разное время. Говоря научным языком: все волны приходят с фазовым смещением. Смещение зависит от формы предмета. Ученый пришел к выводу, что объем любого предмета можно выразить через разность фаз отраженных световых волн.

«Конечно, человеческий глаз не в состоянии уловить это запаздывание волн, – пишет в журнале «Всемирный следопыт» Николай Малютин, – ибо оно выражается в очень маленьких промежутках времени. Данную величину надо преобразовать в нечто более осязаемое, например в перепады яркости. Это и удалось ученому, прибегнувшему к одному трюку. Он решил наложить волну, отраженную от предмета – то есть искаженную – на попутную ("опорную") волну. Происходила "интерференция". Там, где встречались гребни двух волн, они усиливались – там появлялось светлое пятно. Если же гребни волны накладывались на впадину, волны гасили друг друга, там наблюдалось затемнение. Итак, при взаимном наложении волн возникает характерная интерференционная картина, чередование тонких линий, белых и черных. Эту картину можно запечатлеть на фотопластинке – голограмме. Она будет содержать всю информацию об объеме предмета, попавшего в объектив.

Чтобы "объемный портрет" получился очень точным и детальным, надо использовать световые волны одинаковой фазы и длины. При дневном или искусственном освещении такой фокус не пройдет. Ведь свет обычно представляет собой хаотическую смесь волн разной длины. В нем есть все краски: от коротковолнового голубого излучения до длинноволнового красного. Эти световые компоненты самым причудливым образом сдвинуты по фазе».

Поскольку источников когерентного света в то время не существовало, ученый использовал излучение ртутной лампы, «вырезав» из него с помощью различных ухищрений очень узкую спектральную полоску. Однако мощность светового потока при этом становилась такой мизерной, что на изготовление голограммы требовалось несколько часов. Само качество голограмм оказалось весьма низким. Причины были в несовершенстве и источника света, и самой оптической схемы записи. Дело в том, что при записи голограммы возникает сразу два изображения по разные стороны пластинки.

У венгерского ученого одно из них всегда оказывалось на фоне другого, и при их фотографировании резким оказывалось только одно изображение, в то время как второе создавало на снимке размытый фон. Чтобы в таком случае увидеть изображение на голограмме, ее нужно просветить насквозь излучением той же длины волны, которая применялась при записи. Но есть и очевидное преимущество: такое объемное изображение создается любым, даже самым маленьким участком голограммы-пластинки, вследствие того, что луч, рассеиваемый каждой точкой предмета, освещает голограмму полностью. Выходит, любая ее точка хранит информацию обо всей освещенной поверхности объекта.

Появление лазера дало новый толчок развитию голографии, поскольку его излучение обладает всеми необходимыми качествами: оно когерентно и монохроматично. В 1962 году в США физики Эммет Лейт и Юрис Упатниекс создали оптическую схему топографической установки, которая с некоторыми изменениями используется до сих пор. Для того чтобы устранить наложения картинок, лазерный луч расщепляют на два и направляют на пластинку под разными углами. В результате голографические картинки формируются независимыми лучами, идущими по разным направлениям.

Другой принципиально новый способ голографирования удалось создать российскому физику Юрию Николаевичу Денисюку. Ученый использовал интерференцию встречных пучков света. Попадая на пластинку с разных сторон, пучки складываются в слое фотоэмульсии, формируя объемную голограмму.

С появлением лазера давняя идея Габора наконец-то была реализована. В 1971 году ученый получил за свое изобретение Нобелевскую премию по физике.

В 1969 году Стивен Бентон придумал способ изготовления голограмм при обычном, белом свете. «Для этого, – отмечает Малютин, – с помощью фотошаблона – тонкого слоя с множеством микрошлицов – надо изготовить «мастер-голограмму» и копировать ее голографическим способом. Шлицевой шаблон, наподобие призм, расщепляет дневной свет на основные цвета спектра. В каждый из шлицов входит световой пучок одной-единственной длины волны. Это обеспечивает интерференцию и помогает получить картинку, яркую, разноцветную, сверкающую разными красками в зависимости от угла зрения, – ту самую голограмму, к которому мы привыкли за последние годы».

Главное преимущество цветной голографии кроется в том, что ее можно копировать машинным способом, используя определенную технику тиснения. Красочную копию экспонируют на особый светочувствительный слой – фоторезистный лак. Этот материал отличается высокой разрешающей способностью. (Его применяют, например, в микролитографии, чтобы нанести на плату те или иные элементы микросхемы.)

В нашем случае, при массовом тиражировании голограмм, вначале берут цифровую камеру и фотографируют объект со всех сторон. Компьютер соединяет отдельные снимки. И вот трехмерное изображение готово. Затем в лаборатории лазер «гравирует» эту картинку на фоточувствительной пластине. Получается тонкий поверхностный рельеф. С помощью электролиза «гравюру» наносят на никелевую матрицу.

Матрица нужна для массового тиражирования голограмм. Их оттиски – по методу горячего тиснения – получают на металлической фольге. Теперь, как только луч света падает на голограмму, она начинает играть всеми цветами радуги. Среди этого многоцветья предстает перед зрителем изображенный предмет. Подобные голограммы дешевы. Изготовить их можно в любом количестве, лишь бы было оборудование.

Такие голограммы используют во всем мире в качестве наклеек на товарные упаковки и документы. Они служат прекрасной защитой от подделок: скопировать голографическую запись очень трудно.

Можно создавать голограммы, на которых изображены предметы, не существующие в реальности. Достаточно компьютеру задать форму объекта и длину волны падающего на него света. По этим данным компьютер рисует картину интерференции отраженных лучей. Пропустив световой пучок сквозь искусственную голограмму, можно увидеть объемное изображение придуманного предмета.

По мнению Сергея Транковского: «Настоящим подарком голография стала для инженеров: теперь они могут исследовать и регистрировать процессы и явления, описанные порой только теоретически.

Например, лопатки турбореактивного авиационного двигателя во время работы нагреваются до сотен градусов и деформируются. Каким образом распределяется при этом напряжение в детали, где находится ее слабое место, угрожающее разрушением, – определить это прежде было либо крайне сложно, либо вообще невозможно. С помощью голографических методов такие исследования проводят без особого труда.

Освещенная лазерным светом, голограмма восстанавливает световую волну, отраженную деталью при съемке, и изображение появляется там, где раньше находилась деталь. Если же деталь осталась на месте, возникают сразу две волны: одна идет непосредственно от объекта, другая – от голограммы. Эти волны когерентны и могут интерферировать. В том случае, если объект во время наблюдения подвергся деформации, его изображение покрывается полосами, по которым судят о характере изменений.

Методы топографического контроля очень удобны. Они позволяют измерять величину деформации деталей и амплитуду их вибрации, исследовать поверхности предметов сложной формы, следить за точностью изготовления как очень больших изделий (например, зеркал диаметром в несколько метров для телескопов), так и миниатюрных линз (как в микроскопе). Объект может плохо отражать свет, иметь неровную поверхность, быть совершенно прозрачным – на качество голограммы это не влияет. Благодаря мощным лазерным импульсам голограммы записывают за тысячные доли секунды. А потому сейчас можно изучать взрывы, электрические разряды и потоки газов, движущиеся со сверхзвуковой скоростью».

С помощью голограммы можно видеть сквозь матовое стекло или другую рассеивающую свет преграду. С рассеивателя снимают голограмму и совмещают одно из восстановленных с нее изображений с самим рассеивателем. Световые волны, идущие навстречу друг другу от голограммы и от рассеивателя, складываются и взаимно уничтожаются. Преграда исчезает, а предмет, лежащий за ней, становится виден во всех подробностях.

У современных технологов появилась новая идея. Она основана на способности лазера по заданной программе «сделать» из заготовки деталь любой формы и размера. Достаточно внутрь технологического лазера вставить голограмму эталонной детали, чтобы избавиться от необходимости писать программу и настраивать лазерную установку. Голограмма сама «подберет» такую конфигурацию луча и распределение его интенсивности, что «вырезанная» деталь будет точной копией эталона.

Надо обратить внимание на еще один, очень похожий способ выделения полезных сигналов, который называется оптической фильтрацией, или распознаванием образов. Подобным образом можно отыскивать нужные изображения среди множества других похожих, например отпечатков пальцев. Для этого с эталона необходимо сделать голограмму, а затем поставить на пути светового пучка, отраженного от проверяемого объекта. Голограмма пропустит свет только от объекта, полностью идентичного эталону, «бракуя» другие изображения. Яркое пятно на выходе оптического фильтра – сигнал, что объект обнаружен. Примечательно, что поиск ведется с огромной скоростью, недостижимой при использовании других методов, поскольку он может вестись автоматически.

«Голографические методы, – пишет Транковский, – применимы не только к свету – электромагнитному излучению, но и к любым другим волнам. В частности, предмет, погруженный в непрозрачную или мутную жидкость, можно разглядеть с помощью звука. Излучатели акустических колебаний создают в жидкости две когерентные волны. Одна (предметная) «озвучивает» предмет, вторая (опорная) – поверхность жидкости. Их интерференция вызывает на ней рябь – так называемую акустическую голограмму. Освещая ее пучком лазерного света, восстанавливают объемное изображение предмета, лежащего в воде. Впрочем, поступают и по-другому: сигнал от системы миниатюрных микрофонов записывают на фотопластинку в виде полос почернения, а потом восстанавливают с нее объемное изображение лучом лазера».


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации