Электронная библиотека » Шон Кэрролл » » онлайн чтение - страница 7


  • Текст добавлен: 12 августа 2015, 19:30


Автор книги: Шон Кэрролл


Жанр: Физика, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 28 страниц) [доступный отрывок для чтения: 8 страниц]

Шрифт:
- 100% +
Суперколлайдер

Предполагалось, что у Теватрона будет преемник – Сверхпроводящий суперколлайдер (ССК), проект которого был одобрен президентом Рональдом Рейганом в 1987 году и который первоначально планировалось запустить в 1996 году. ССК был невероятно амбициозным проектом, предусматривающим сооружение совершенно нового кольца с длиной окружности примерно 87 км и полной энергией сталкивающихся протонов 40 ТэВ, что в двадцать раз выше, чем на Теватроне. Оглядываясь назад, можно сказать, что проект оказался, видимо, слишком амбициозным. В первые дни, когда место для лаборатории еще не было выбрано, поддержка проекта была почти единодушной: представители почти всех штатов в Конгрессе надеялась, что смогут заполучить масштабный проект для своего штата и похвастаться этим перед избирателями. 43 из 50 американских штатов восприняли конкурс настолько серьезно, что даже провели геологические изыскания и экономическую экспертизу. Победителем стал Техас, точнее, территория возле сонного городка Ваксахачи, расположенного примерно в 50 км к югу от Далласа.

Но после того, как место для ССК было выбрано, энтузиазм в отношении проекта у представителей оставшихся ни с чем 49 штатов в Конгрессе сразу угас. Это были годы усиления требований по введению контроля над дефицитом федерального бюджета, а стоимость ССК, и в начале немаленькая, выросла почти в три раза, до 12 миллиардов долларов. Дополнительным негативным фактором (если не в представлении ученых, то уж точно в головах правительственных чиновников) была конкуренция проекту Суперколлайдера со стороны другого гигантского проекта – Международной космической станции. Бюджет МКС составлял свыше 50 миллиардов долларов только на саму станцию, разрабатываемую в NASA, а если включить в общую стоимость полеты космических шаттлов, получалось более 100 миллиардов долларов. И это при том, что большая часть денег на этот гигантский проект также должна была в конечном итоге осесть в Техасе – в Джонсоновском космическом центре управления полетами.

Я спросил Джоан Хьюэтт, теоретика из лаборатории SLAC, когда она решила пойти туда работать. Джоан назвала точную дату – 21 октября 1993. Это был день, когда Конгресс проголосовал за то, чтобы окончательно похоронить проект ССК. Хьюэтт звали и в лаборатории Суперколлайдера, и в SLAC, и естественно, она предпочла бы работать в новой команде и окунуться в захватывающую атмосферу создания новой машины на стадии ее строительства. Все то осеннее утро она внимательно наблюдала по каналу C-SPAN за слушаниями в Конгрессе, с ужасом понимая, что обсуждение идет в неправильном направлении. Она провела день в рыданиях, а потом позвонила директору SLACа и приняла его предложение. Ее карьера сложилась вполне успешно, в Стэнфорде она строила новые модели в физике элементарных частиц и изобретала хитроумные способы их проверки на основании полученных экспериментальных данных. Но невозможно было не чувствовать разочарования из-за несбывшейся надежды получать эти данные не из чужой лаборатории, а прямо у себя, раньше всех и при гораздо больших энергиях столкновений.

Сам я в то время был свежеиспеченным постдоком, членом группы, занимавшейся теорией элементарных частиц в Массачусетском технологическом институте. Я помню, мрачную атмосферу на встрече, которую мы проводили, пригласив все физическое сообщество большого Бостона поговорить о том, что делать дальше. Некоторые вопросы были чисто научными, например есть ли альтернативный способ решения тех задач, для которых разработан ССК. Но в основном говорили о том, должны ли мы направить свои усилия на поддержку серьезных инвестиций со стороны США в БАК или правильнее продолжать бой за ССК, который, впрочем, был уже проигран. Некоторые из вопросов были даже еще более практическими: есть ли какие-то способы помочь найти работу, хотя бы временную, тем ученым, которые остались на улице после закрытия лаборатории ССК?

На момент закрытия проекта Суперколлайдера на него уже было потрачено $2 млрд, выкопана часть туннеля и создана часть необходимой инфраструктуры. Трудно точно понять главный мотив решения Конгресса по закрытию проекта, но известно, что чиновники часто жаловались на нежелание руководства ССК следовать принятым бюрократическим процедурам. Отчет 1994 года, составленный комитетом Конгресса после закрытия проекта, назывался: «Потеря контроля: уроки Сверхпроводящего суперколлайдера». Он содержал подробный перечень многочисленных фактов бесхозяйственности, в том числе постоянную недооценку затрат, невыполнение обязательных внутренних проверок, а также трудности ученых в общении с Конгрессом и самим министерством энергетики. Иногда критика звучали глупо, например, когда газеты сообщили, что лаборатория потратила 20 000 долларов на растения, а эта сумма, как оказалось, включала затраты на озеленение территории. Физиков, меж тем, раздражало, что их отвлекают на то, что им казалось бюрократическими проволочками. Рой Швиттерс, бывший в то время директором лаборатории ССК, раздраженно заявил репортерам: «Наше время и энергию откачивают бюрократы и политики. Мы на ССК становимся жертвой мести студентов-троечников». Оглядываясь назад, мы понимаем, что это была, возможно, не самая политически дальновидная формулировка.

Кроме всего прочего, внутри физического сообщества тоже шла борьба. В то время как физика элементарных частиц на свои исследования получила изрядное финансирование и сумела привлечь общественное внимание, на другие направления физики выделялись гораздо меньшие деньги, и широкая общественность ими почти не интересовалась. Только семь процентов членов Американского физического общества (APS) состоят в Отделении элементарных частиц и полей, остальные занимаются исследованиями в области конденсированных сред и материалов, атомной и молекулярной физики, оптики, астрофизики, физики плазмы, гидродинамики, биофизики или другими направлениями. В конце 1980-х и начале 1990-х годов многие физики, работавшие в этих областях, были изрядно раздражены непропорционально щедрым финансированием работ по физике элементарных частиц, и для них проект ССК стал символом серьезного искажения приоритетов.

В 1987 году Боб Парк, бывший в то время исполнительным директором отдела APS (Американского физического общества) по связям с общественностью, сказал, что проект ССК «пожалуй, самый спорный из всех, расколовших физическое сообщество». Филип Андерсон из Принстона, уважаемый физик, специалист в области физики конденсированных сред, получивший Нобелевскую премию в 1977 году, заявил, что масштаб «результатов, полученных в физике элементарных частиц, совершенно не соответствует не только реальным затратам, но и несравним с масштабом результатов, полученных в других науках», и хотя ССК – хороший проект с научной точки зрения, деньги, которые он требует, лучше бы потратить на развитие других направлений науки. Джеймс Крумхансл, ученый-материаловед из Корнелла, который должен был стать следующим президентом APS, считал, что проект забирает деньги из более рентабельных областей исследований и с разработкой нового ускорителя частиц нужно подождать, пока технологии изготовления сверхпроводниковых магнитов не усовершенствуются. Кроме всего прочего, физики, занимающиеся элементарными частицами, часто сами себе вредили, хвастаясь перед коллегами своими достижениями в других областях, которые они считали побочными продуктами развития ускорителей, например, в магнитно-резонансной томографии. Николас Бломберген – еще один лауреат Нобелевской премии и президент APS – в 1991 году заявил: «Как один из пионеров в области магнитного резонанса, могу заверить вас, что он возник из физики микрообъектов».

Под натиском проблем, связанных с бюрократическим контролем, бюджетными проблемами и определением приоритетов в науке, немного отошли на второй план более важные вопросы о значении фундаментальных исследований и ценности собственно открытий самих по себе. В 1993 году в США избрали нового президента, сменились и многие конгрессмены, и новые поклялись народу взять государственные расходы под строгий контроль. Берлинская стена и Советский Союз рухнули, окончилась холодная война, а с ней и сопровожшее ее соревнование за технологическое превосходство. Роль физики высоких энергий в национальной политике, достигшая своего апогея во время Второй мировой войны в ходе выполнения Манхэттенского проекта, все последующие годы постепенное снижалась. Большинство думающих людей согласятся с тем, что задача лучшего понимания устройства Вселенной является важной, но не менее важно организовать адекватную медицинскую помощь и рабочие места для граждан страны. Выбрать здесь приоритеты и сбалансировать их между собой было не легко даже в самые благополучные времена.

После того как ССК был закрыт навсегда, отведенная для него земля и объекты инфраструктуры передали штату Техас, который очень долго пытался продать их частным владельцам. Это, наконец, удалось в 2006 году, когда миллионер из Арканзаса по имени Джонни Брайан Хант приобрел участок за 6,5 миллионов долларов. Хант хотел превратить комплекс ССК в супербезопасные информационные центры (дата-центры). Лаборатория ССК уже была оборудована силовыми и телекоммуникационными линиями, место тщательно выбиралось подальше от эпицентров возможных землетрясений и наводнений. Но в конце того же года 79-летний Хант поскользнулся на льду, сиьно ударился головой и умер. Планы по организации дата-центра были забыты, а участок под ССК снова оказался заброшенным. По сведениям на 2012 год, комплекс сегодня принадлежит владельцу химических заводов, который надеется построить там новый химический завод, но соседи возражают против этого. Какой бы ни была дальнейшая судьба лаборатории ССК, Ваксахачи уже никогда не сыграет важную роль в поиске бозона Хиггса.

Как многие и предсказывали, закрытие проекта ССК не привело к увеличению финансирования в других областях науки. Более того, те же самые конгрессмены, которые с таким энтузиазмом недавно голосовали за урезание расходов, с удовольствием стали распределять высвободившиеся деньги. В этой грустной истории был, однако, один бенефициант: Большой адронный коллайдер. Американские физики, которым власти отказали в постройке своей супермашины, успешно пролоббировали повышение участия США в проекте БАКа. Вливание американских денег сильно помогло продвинуть проект коллайдера и сохранить надежду на то, что бозон Хиггса когда-нибудь все-таки удастся поймать.

Глава 5
Величайшая машина всех времен

Мы посетим Большой адронный коллайдер – символ триумфа науки и техники, сыгравший важную роль в поисках и обнаружении бозона Хиггса.


10 сентября 2008 года началась большая жизнь Большого адронного коллайдера. Первые протоны успешно проделали весь путь по кольцу. Тысячи физиков всего мира были счастливы. Полетели в потолок пробки шампанского, сотрудники ЦЕРНа радостно похлопали друг друга по спине, произнесли пологающиеся в этом случае речи, и наступила новая эра грандиозных открытий.

А девять дней спустя коллайдер взорвался.

Не весь, конечно. БАК помещается в кольцевом туннеле, вырытом на глубине около 100 м. Он образует кольцо с длиной окружности примерно 26,7 км, пересекающее франко-швейцарскую границу в пятнадцати минутах езды от центра Женевы. Чтобы взорвалась такая махина, нужен какой-то невероятный катаклизм. Но с отдельными ее частями это вполне может произойти.

Для того чтобы БАК работал, внутри должно быть очень холодно. Машина гоняет пучки протонов по двум отдельным пучковым трубам: в одной пучок движется по часовой стрелке, в другой – против, пучки могут столкнуться в определенных местах – там, где расположены детекторы. Обе пучковые трубы окружены сверхмощными магнитами, задача которых искривлять траекторию протонов так, чтобы они оставались на правильном пути.

Магнитное поле создать легко: нужно просто пропустить электрический ток через виток проволоки. Чтобы получить сильные поля, требуется большой ток. Но большинство материалов, даже высококачественные провода, оказывают некоторое сопротивление току. Проблема состоит в том, что провод начинает нагреваться и в конце концов плавится. Для борьбы с этой проблемой провода охлаждают до невероятно низкой температуры, тогда они становятся сверхпроводящими. Сверхпроводник не имеет никакого сопротивления вообще, так что при прохождении через него тока его температура не повышается. БАК является самым крупным холодильником в мире (с большим отрывом от остальных), и охлаждение его магнитов достигается с помощью жидкого гелия, температура в котором поддерживается на уровне 1,9 градуса Кельвина (минус 271 градус по Цельсию) выше абсолютного нуля – самой низкой возможной температуры.

Но все время нужно следить: при малейшем увеличении температуры гелия провода магнитов тут же перестанут быть сверхпроводящими. Если это произойдет, огромные электрические токи, проходящие через них, встретят сопротивление, и в результате нагреют провода еще больше. От них, в свою очередь, нагреется гелий, и процесс выйдет из-под контроля, при этом жидкий гелий вскипит, превратится в газ и взорвется в своих контейнерах. Когда БАК работает, магниты всегда на волоске от катастрофы.

Такое катастрофическое развитие событий на профессиональном языке называется квенчем магнита. 19 сентября 2008 года незначительная, казалось бы, неисправность в электрическом контакте вызвала квенч в одном магните, а затем процесс быстро распространился на другие, соседние магниты. Лин Эванс, в то время бывший главой БАКа, сидел в это время в офисе для персонала и спорил по какому-то довольно тривиальному вопросу, когда зазвонил его мобильный. Эванса просили немедленно прийти – случилось что-то серьезное. «Это был ужас! – вспоминал Эванс, – я никогда не видел подобного даже на экране компьютера. Везде мигали красные сигналы тревоги».

Виновник неисправности был в конечном счете найден – им оказался плохой контакт в сверхпроводящем соединении, в результате чего возникла электрическая дуга, пробившая гелиевый дьюар. Из 1232 магнитов, направляющих протоны вдоль кольца БАКа, более пятидесяти пришлось заменить. Первоначально в докладах ЦЕРНа авария была охарактеризована как «утечка» гелия, но в данном случае больше подходит термин «взрыв». Более шести тонн жидкого гелия в течение нескольких минут было выброшено в туннель, давление там поднялось так резко, что магниты просто вырвало из пола, к которому они были прикручены болтами. Техника безопасности запрещает сотрудникам быть в туннеле БАКа, когда там циркулируют протоны, и хотя во время инцидента пучки были отключены, к счастью, на поврежденном участке в то время никого не было и никто не пострадал.

Удвоение усилий

Действительно, физически никто не пострадал. Но моральный ущерб был огромным. Роберт Аймар – французский физик, бывший в то время генеральным директором ЦЕРНа, – выпустил пресс-релиз, в котором говорилось: «Авария, случившаяся сразу после очень успешного начала работы БАКа 10 сентября, вызвала, несомненно, психологический шок». После стольких лет тяжелой подготовительной работы подойти так близко к долгожданному моменту запуска БАКа и из-за какой-то досадной неполадки пережить крушение всех надежд!

Но это история со счастливым концом. Как ни велико было разочарование, охватившее команду ЦЕРНа после взрыва 19 сентября, задача восстановления БАК только сплотила всех. Инженеры и физики бросились проверять и усиливать каждый узел машины, чтобы она выдержала те беспрецедентно высокие энергии, которые они собирались получить. Дело было не просто в том, чтобы подкрутить несколько винтов: требовалось не только отремонтировать поврежденное оборудование, но и все остальные детали машины довести до более высокого стандарта качества. И вот, несмотря на множество трудностей, не прошло и года, как ускоритель был готов к повторному запуску.

Официально должность Майка Ламона называлась «координатор БАКа», но фанаты «Звездного пути» однажды назвали его «Мистером Скоттом с БАКа[3]3
  Лейтенант-коммандер Скотти – начальник инженерной службы, персонаж из американской телесаги «Звездный путь».


[Закрыть]
». Он проработал в ЦЕРНе более 23 лет, в его обязанности входило поддержание пучка протонов в рабочем состоянии даже в тех случаях, когда для этого возникали казалось бы непреодолимые препятствия. Крошечные неполадки, конечно, происходят все время, но по мере того, как день повторного запуска БАКа приближался, каждый чих представлялся смертельной болезнью. Например, во время испытаний 3 ноября 2009 года температура на некоторых магнитах начала расти из-за электрической неисправности на одной из электростанций на поверхности. Неисправность быстро ликвидировали, и Ламот объяснил любопытным репортерам, что проблема возникла из-за крошечного кусочка хлеба, упавшего на электрошину – видимо, пролетавшая птица выронила из клюва. Работа на ускорителе шла как обычно, но репортеры все-таки сумели раздуть сенсацию. The Telegraph напечатал фотографию детектора CMS рядом с фотографией голубя с подписью «Большой адронный коллайдер (слева) и его заклятый враг (справа)».

20 ноября 2009 года по трубам БАКа впервые с момента аварии полетели протоны. Через три дня пучки направили навстречу друг другу, чтобы увидеть первые столкновения. А всего лишь через семь дней после этого энергию в ускорителе подняли до такой величины, что БАК тут же вышел на первое место по энергии столкновений среди всех когда-либо построенных ускорителей.

Обычным графиком предусматривалось, что в течение большей части зимы из соображений экономии БАК не работает – в эти месяцы электричество в Женеве дороже, чем в другие периоды года. Но в 2009/2010 в команде ускорителя царило такое нетерпение, что график изменили. Ускоритель проработал зиму, и первые значимые данные (уже не «эксплуатационные», которые используются для тестирования установки) получили уже в начале 2010 года. В марте 2010 года энергия БАКа была поднята до запланированного промежуточного значения (половины максимального уровня энергии), что составило рекордную величину для столкновений частиц высоких энергий. Шампанское вновь потекло рекой.

Оглядываясь назад, можно сказать, что авария, произошедшая в сентябре 2008 года, помогла физикам и техникам БАКа намного лучше изучить свою машину, и в результате, начиная с 2010 года, физические исследования на ускорителе шли без существенных перерывов. Учитывая, что до 2010 года серьезных экспериментов на БАКе по сути не проводилось, почти для всех стало полнейшей неожиданностью то, что уже к июлю 2012 года было собрано и проанализировано достаточно данных для обнаружения бозона Хиггса. Представьте, что вы купили дорогой автомобиль, который почти сразу сломался. Вам пришлось бы потратить время, чтобы найти некоторые досадные неполадки и исправить их, но как только вы справитесь с этим, выедете на автостраду и надавите на газ, вы почувствуете, что взлетаете.

Большой адронный коллайдер – это в чистом виде Большая наука. Количество подвижных частей – как живых, так и механических – может испугать, а может и удручить. Лауреат Нобелевской премии Джек Стейнбергер заметил: «БАК – это символ того, как трудно в наши дни добиться существенного продвижения в науке. Какая огромная разница с моими аспирантскими годами, когда 65 лет назад я в одиночку за полгода смог проделать эксперимент, и он оказался важным». БАК – это самая крупная и наиболее сложная машина из всех конструкций, построенных людьми, и иногда удивляешься, что она вообще работает.

Но она работает и работает на редкость хорошо. Физики, с которыми я беседовал, когда писал эту книгу, снова и снова говорили о потрясающих масштабах проекта, но их восхищал не только он. По их мнению, ЦЕРН можно рассматривать в качестве модели крупномасштабного международного сотрудничества. Джо Инкандела сказал однажды: «Меня поразило, что у нас работают бок о бок ученые из 70 стран мира – палестинцы и израильтяне, иранцы и иракцы. Такое сотрудничество во имя Большой науки следовало бы взять за образец для подражания». Джо Ликкен – американский физик-теоретик из лаборатории Ферми – грустно сказал: «Если бы только ООН могла работать как ЦЕРН, мир был бы намного лучше».

Если считать, что изучение частиц, подобных бозону Хиггса, требующих для своего рождения огромного количества энергии, – цель, оправдывающая затраты, то единственный способ достичь этой цели – развивать эту Большую науку. Существует море фантастически интересной науки, которой нужно заниматься, и это можно делать с помощью недорогих лабораторных экспериментов, но открытие новых тяжелых частиц – не из этой категории. Сейчас БАК является единственным в своем роде инструментом для занятий такого рода научной деятельностью, и то, что он работает, свидетельствует о необыкновенной человеческой изобретательности и настойчивости.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации