Электронная библиотека » Станислав Зигуненко » » онлайн чтение - страница 7


  • Текст добавлен: 16 апреля 2017, 14:52


Автор книги: Станислав Зигуненко


Жанр: Энциклопедии, Справочники


сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 39 страниц) [доступный отрывок для чтения: 13 страниц]

Шрифт:
- 100% +
Человек-ракета

Так иногда друзья называют 48-летнего швейцарца Ива Росси, пишет журнал Popular Mechanics. И это прозвище не случайно. Время от времени он поднимается в небо, на высоте около 4 км отделяется от самолета и раскрывает… крылья. Но и этого ему мало. В дополнение он включает четыре расположенных под ними реактивных двигателя и в течение 4 минут летит, как самый настоящий, только очень маленький реактивный самолет.

Для чего ему понадобился такой «цирк в небе»?

Он мечтал стать пилотом с раннего детства. В 20 лет Росси поступил в ВВС родной Швейцарии и стал военным летчиком. За годы службы он пилотировал истребители Hunter и Tiger F-5, налетал более тысячи часов на Mirage III со скоростью, вдвое превышающей скорость звука.

Закончив служить, Росси стал гражданским пилотом, летал на Douglas DC-9 и Boeing 747 компании Swissair. В настоящее время Ив – командир экипажа огромного Airbus.

А в свободное от работы время Ив Росси перепробовал немало экстремальных видов спорта. Он – опытный парашютист, скайдайвер и скайсерфер, пара – и дельтапланерист.

В 1996 году Ив попал в Книгу рекордов Гиннесса как первый скайсерфер, прыгнувший с вершины купола воздушного шара. В том же году он вновь поставил еще один экстремальный рекорд: совершил полет, держась руками за крылья двух бипланов.

Эффектное шоу Ив продемонстрировал в фильме «Сверхзвуковой серфер», пролетев верхом на масштабной модели сверхзвукового истребителя Mirage III вместо серфа.

С 1999 года Росси разрабатывал надувное крыло собственной конструкции, которое в 2002-м позволило ему преодолеть 12 км, разделяющие берега Женевского озера. Тогда же спортсмен вплотную подошел к идее установить на крыло двигатель.

Немецкая компания JetCat, которая производит турбореактивные и газотурбинные двигатели для масштабных радиоуправляемых моделей самолетов и вертолетов, предоставила ему несколько двигателей для экспериментов.

Первая попытка совершить полет состоялась в марте 2003 года. Однако надувное крыло, которое казалось удобным потому, что России мог надуть и расправить его, после того как выпрыгнет из самолета, в данном случае было непригодно. Оно недостаточно жестко, чтобы нести на себе реактивные двигатели.

К 2004 году Ив Росси завершил разработку складного жесткого крыла. Однако попытавшись продемонстрировать его на крупнейшем авиа-шоу в Аль-Аине (ОАЭ), Ив вошел в штопор и с трудом вышел из положения, приземлившись лишь на запасном парашюте, – основной купол был порван вышедшим из повиновения крылом.

Лишь 24 июня 2004 года пилот достиг успеха. Он выпрыгнул из самолета над швейцарским городком Ивердон на высоте 4000 м и, спустя пару секунд раскрыл крыло с двумя реактивными двигателями. Планируя, он снизился до 2500 м над землей и включил двигатели. На высоте 1600 м он вышел на стабильный горизонтальный полет, развил скорость около 190 км/ч и поддерживал ее в течение четырех минут. Затем Ив сложил крылья, раскрыл парашют и благополучно приземлился.

«Я испытывал абсолютную свободу в трех измерениях, – делился впечатлениями Ив. – Я был птицей!»

Реактивное крыло доказало свою работоспособность и в тот же день было запатентовано. Однако предстояло еще много работать, чтобы довести революционный летательный аппарат до совершенства.

Целый год работы ушел на создание новой модели крыла с четырьмя двигателями JetCat P200. Установка дополнительных двигателей – это серьезный риск для пилота. Температура выхлопных газов «игрушечного» Р200 достигает 690 °C, при этом сопла двигателей находятся в непосредственной близости от ног летчика. В одном из экспериментов Росси пилотировал крыло с шестью двигателями, однако эта попытка завершилась неудачей.

Новое крыло с размахом три метра и четыре реактивных двигателя обеспечили аппарату ожидаемую маневренность и стабильность. Полет в швейцарском городе Бексе в ноябре 2006 года длился 5 минут 40 секунд.

В настоящее время Ив Росси работает над постройкой новой модели летательного аппарата. Он собирается взлететь на нем прямо с земли и выполнить несколько фигур высшего пилотажа. Если это ему удастся, тогда, возможно, вскоре мы сможем говорить о возникновении нового вида личного транспорта.

Спасительный «волан»

Специалисты не однажды пытались заменить парашютный купол каким-либо иным приспособлением. Однако многочисленные приспособления оказывались малопригодными практически. Но вот, похоже, ныне кое-что начинает получаться.

Способствовали тому космические полеты. Ведь подняться в космос – лишь половина дела. Здесь, как и в горах, подняться вверх проще, чем затем благополучно спуститься. Поэтому и в СССР и в США – ведущих космических державах мира – издавна вкладывались огромные средства в разработку технологии эвакуации астронавтов и дорогостоящего научного оборудования с орбиты.

Первоначально для спуска с орбиты применялись (и применяются поныне) баллистические капсулы «Радуга», «Бор-5» и другие. Суть такого спуска заключается в следующем. Груз закладывается в прочный контейнер, который сбрасывается с борта спутника или орбитальной станции с таким расчетом, чтобы он летел вниз, подобно камню. На заключительной стадии скорость падения может быть уменьшена с помощью тормозных парашютов. Но в основном расчет на то, что капсула сама притормозит за счет трения о воздух в плотных слоях атмосферы. А также на то, что и она сама и помещенный в нее груз достаточно прочны, а потому выдержат жесткое приземление. Понятное дело, таким образом десантировать с орбиты, скажем, людей нельзя. Кроме того, к недостаткам такого способа можно отнести малую вместимость капсул и невозможность достаточно точно направлять их спуск в заданный район.



Поэтому в пилотируемых полетах спуск осуществляется с помощью спускаемых аппаратов, которые имеют аэродинамическую поверхность, позволяющую более-менее управлять спуском при входе в плотные слои атмосферы. На заключительном этапе раскрывается парашютная система. И наконец, жесткий толчок о землю смягчается с помощью твердотопливных ракетных двигателей, включающихся в самую последнюю секунду спуска.

Однако и здесь есть свои недостатки. Парашютный спуск тоже плохо управляем, требует тщательного слежения за состоянием куполов, не всегда надежен. Так, скажем, гибель космонавта-испытателя В. М. Комарова отчасти можно отнести и на счет парашютной системы.

Появление космических кораблей многоразового использования, казалось, решило проблему доставки и возвращения грузов в принципе. Но и тут все оказалось не так просто. Дело в том, что запуск одного «шаттла» – сверхдорогое удовольствие. Одно «шоу» на мысе Канаверал стоит примерно 500 млн долларов. Поэтому специалисты и поныне продолжают поиски альтернативных технологий доставки грузов с орбиты.

Одна из них – использование надувных конструкций. Ее еще в середине 80-х годов XX века предложили специалисты Научно-исследовательского центра имени Г. Н. Бабакина. За два десятилетия в результате многолетних экспериментов здесь был разработан аппарат «Демонстратор-2».

По словам одного из разработчиков этой конструкции, начальника сектора проектного отдела НИЦ Олега Власенко, в рабочем положении «Демонстратор» напоминает перевернутый зонт или большой волан для игры в бадминтон. При вхождении в плотные слои атмосферы пластиковые «спицы» этого «зонта» наполняются газообразным азотом, и он раскрывается. В сложенном виде аппарат помещается в защитную капсулу, где и хранится до момента использования.

Схема использования устройства такова. После отделения контейнера от спутника, космического корабля или орбитальной станции одноразовый тормозной двигатель должен дать импульс, чтобы направить контейнер на заданную траекторию спуска.

При входе в верхние слои атмосферы капсула с «Демонстратором» сбрасывает защитный кожух. Благодаря рациональной форме капсулы, на этом этапе происходит так называемая закрутка устройства вокруг продольной оси со скоростью 70 град/сек. Таким образом «Демонстратор» летит как пуля, не кувыркаясь, и входит в атмосферу под расчетным углом.

Затем надувное тормозное устройство отделяется от капсулы и начинает собственно процесс торможения. Первый каскад наполняется азотом и раскрывается центральная часть «волана». При вхождении в плотные слои атмосферы перед лобовым участком устройства образуется ударная волна, набегающий поток воздуха нагревается до нескольких тысяч градусов. Поэтому специалисты снабдили «колпачок» волана жестким теплозащитным покрытием и металлическим экраном.

Остальные части тормозного устройства сохраняются благодаря гибкой тепловой защите, состоящей из термостойкого покрытия и теплоизолирующего слоя. Такая защита от высокотемпературных потоков позволяет поддерживать температуру внутри самого аппарата на уровне 25–30 градусов по Цельсию. Служебная и научная аппаратура, расположенная внутри приборного контейнера и предназначенная для исследований и для управления полетом, остается неповрежденной.

Второй надувной каскад наполняется азотом при входе в более низкие слои атмосферы, на высоте 15 километров. «Волна» как бы распушает свои «перья». Благодаря этому скорость падения к моменту посадки снижается до 15–17 м/с.

Так, побеждая атмосферные силы и используя энергию сопротивления атмосферы, «космический парашют» приземляется в обозначенном месте. Для обнаружения аппарата после его приземления используются радиомаяки комплекса бортового оборудования, сигнал которых можно поймать с помощью радиокомплексов, установленных на борту поисковых вертолетов.

Одним из достоинств новой технологии является ее относительная дешевизна. Для доставки надувного тормозного устройства на космическую станцию планируется использовать транспортно-грузовой корабль «Прогресс». Он придаст надувному тормозному устройству импульс торможения, затем в определенный момент отстыкуется и будет «затоплен». Производство «Прогрессов» является серийным процессом, что снижает издержки. Кроме того, у «Демонстратора» лучшее соотношение веса полезной нагрузки и веса аппарата. Сегодня на используемых средствах оно составляет 1: 4, на «Демонстраторе» его можно довести до 1: 1. Размеры надувного тормозного устройства подходят для размещения его на борту космических станций и транспортных кораблей. Диаметр устройства в сложенном виде равен 1 м.

По словам Олега Власенко, новая технология может иметь достаточно широкое применение. Аппарат с надувным тормозным устройством помимо того, что сможет решить проблему доставки грузов на землю с Международной космической станции, может использоваться и для исследования других планет. Кстати, эта идея фигурировала и в рамках программы «Марс-96», где надувному тормозному устройству отводилась задача доставки научной аппаратуры на поверхность Красной планеты. К тому же решится вопрос с возвращением на землю выработавших свой технический ресурс орбитальных спутников, что даст возможность использовать их вторично после переоборудования или капитального ремонта.

«Русская спасательная шлюпка»

Так иногда называют устройство для мягкого спуска с высоты, над совершенствованием которого работает уроженец Кавказа, Герой России, летчик-испытатель Магомет Талбоев. Когда-то он принимал участие в разработке, испытаниях и внедрении ряда образцов авиационной и космической техники. Готовился к полету на космическом самолете «Буран». Сопровождал его в первом автоматическом спуске с орбиты. Ныне он стал инициатором создания беспарашютного устройства, которое можно было бы использовать при разного рода катастрофах.

Магомет Талбоев готов доказать, что человек может мягко приземлиться с высоты от 20 м до 40 км с помощью оригинального спасательного средства.

«За основу мы взяли разработки мягкого спуска аппарата из программы “Марс-98”, – рассказывает он. – Там использовалась беспарашютная система, которая обеспечивала мягкую посадку научного оборудования на поверхность Красной планеты.

Ныне она переделана, модифицирована. Один аппарат уже отработал свой срок, выполнив 31 сброс с подъемного крана и один с воздушного шара, с высоты 1000 м».

Прежде всего подобная система имеет значение для престижа России, поскольку с ее помощью можно установить ряд мировых рекордов приземления без парашюта с максимальной высоты (более 40 км), по прохождению с максимальной скоростью плотных слоев атмосферы и т. д.

Но не менее важна и вторая задача – спасение людей из высотных зданий в случае пожара, землетрясения и прочих неприятностей. Для этого в офисе на каждого человека можно будет держать в шкафах или прямо под столами по рюкзаку с таким спасательным устройством.

Первоначальная стоимость в 2000 долларов очень быстро может быть снижена при серийном выпуске подобных устройств и дальнейшем их усовершенствовании.

При спуске спасаемый объект помещается внутрь устройства, которое по внешнему виду в надутом состоянии напоминает бадминтонный волан достаточно больших размеров.

«Проект называется “Потолок мира”, – продолжает свой рассказ Талбоев. – Выше 50 км вряд ли кто способен подняться с земли на самолете или стратостате. Выше можно поднять лишь на ракете. Тем не менее наши испытания показали, что на “волане” возможен спуск даже с орбиты. Во всяком случае, два спуска с высоты 220 км прошли удачно».

Не менее важен и другой аспект проблемы. При пожаре выше 5-го этажа спасти людей становится проблематично, поскольку в нашей стране практически нет высотных лестниц. Да и к горящему зданию подъехать бывает не просто. Наконец, ни одна лестница не может достать, скажем, до 20-го этажа и выше.

А вспомним хотя бы о трагических событиях 11 сентября 2001 года во Всемирном торговом центре. Если бы обитатели небоскребов-близнецов имели при себе такие спасательные устройства, то, как полагает Талбоев, как минимум 1000 человек, то есть треть погибших, успели бы спастись.

Для этого нужно было лишь надеть рюкзак с устройством, встать на подоконник и прыгнуть вниз, нажав красную кнопку. Все остальное бы сделала автоматика.

Если парашюту для раскрытия необходимо не менее двух секунд времени и порядка 100 м высоты, то здесь вовсе не нужно времени для набора скорости и возникновения достаточного воздушного потока. Поэтому устройство способно исправно работать уже на 20-метровой высоте. Поскольку оно надувается принудительно с помощью встроенного баллона, то нет необходимости выжидать, пока спасающийся наберет достаточную скорость в воздушном потоке. Парашют же на месте раскрыть нельзя, его купол и стропы попросту опутают человека и он погибнет.

Спуск волана в раскрытом состоянии идет со скоростью 8 м/с. А учитывая, что человек приземляется еще на батутную сетку, смягчающую удар, то получается, что действительная скорость спуска составляет как бы 6 м/с, то есть столько же, как и при обычном парашютном спуске.

Однако в данном случае никого не надо учить приземляться, как учат парашютистов. Человек лежит внутри волана и приземляется на спину, При этом получается распределение удара на большую площадь, и организм переносит его значительно легче, чем при парашютном приземлении.

Талбоев надеется, что волан в скором будущем позволит ему самому и другим нашим испытателям поставить еще не один мировой рекорд по спуску с запредельных высот. А пока идут испытания…

Старший брат самолета

«Дирижабль» в переводе с французского означает «управляемый». Так называют аэростат, который способен двигаться наперекор ветрам. Каким образом? Раз весла и паруса не помогают, значит, надо, как и на воде, использовать винты-пропеллеры и двигатели.

Первые дирижабли

Французский инженер М. Менье еще в 1794 году, всего через год после того, как в небо поднялись первые монгольфьеры и шарльеры, предложил построить управляемый воздушный шар. Для управления им Менье предложил поставить воздушные винты, вращаемые… не моторами – таковых в ту пору еще не существовало – а людьми! Усилий 80 человек, по мнению Менье, достаточно, чтобы воздушный корабль перестал быть игрушкой ветра.

Однако на практике получилось не так, как рассчитывал изобретатель. Чтобы поднять большой экипаж, нужен корабль немалых размеров: по расчетам выходило, что его длина должна составлять 84,5 м, диаметр оболочки 42 м, а ее объем – 79 тыс. куб. м.



Но чем масштабнее корабль, тем больше надо сил, чтобы сдвинуть его с места, удержать на курсе, противостоять натиску воздушной стихии… В итоге получалось так, что вес у команды увеличивался в большей степени, чем прибывало у нее сил.

Задачу решил соотечественник Менье, инженер-судостроитель Дюпуи де Лом. Он предложил построить дирижабль как можно меньших размеров. И его проект удалось осуществить на практике. В тихую погоду аэростат с 8 аэронавтами и воздушным винтом действительно поднялся в воздух и смог развить скорость аж 8 км/ч, т. е. он двигался быстрее, чем идущий человек.

Но на большее у аэронавтов сил все равно не хватило. Дирижаблям были нужны мощные и в то же время легкие двигатели. И вот в 1851 году механику-самоучке А. Жиффару удалось построить паровой двигатель мощностью в 3 лошадиные силы. А весил он всего 45 кг. Этот двигатель считался техническим чудом своего времени – ведь обычные двигатели имели тогда около 100 кг веса на каждую лошадиную силу мощности.

Построил Жиффар и дирижабль для своего двигателя. Объем его оболочки оказался в 30 раз меньше, чем у аэростата Менье. С помощью сетки под оболочкой был подвешен деревянный брус с рулем на одном конце. К брусу-балке прикреплялась гондола, в которой была установлена паровая машина и находился сам изобретатель, выполнявший обязанности и пилота, и механика. Трехлопастной пропеллер диаметром более 3 м вращался со скоростью 110 оборотов в минуту!

В сентябре 1852 года Жиффар поднялся на высоту около 2 км, затем потушил топку и благополучно приземлился. Во время полета аэростат развил скорость 10 км/ч, двигаясь перпендикулярно направлению ветра.

Несмотря на успешные испытания, дирижабль Жиффара не получил сколько-нибудь широкого распространения. Ведь он был одноместным, а стало быть, даже пассажиров покатать не мог.

И прошло 20 лет, прежде чем в воздух поднялся другой дирижабль, созданный немецким инженером П. Генлейном. Он был уже больших размеров, использовал двигатель, работавший на светильном газе; им же заполнялась и оболочка. С помощью четырехлопастного пропеллера этот дирижабль развивал скорость уже 19 км/ч.

В 1983 году братья Тисандье оснастили свой аэростат электрическим двигателем мощностью в 1,5 л. с.

И, наконец, в 1896 году в Германии изобретатель Вельферт построил дирижабль с бензиновым двигателем.

Таким образом, к концу XIX века в дирижаблестроении были использованы все возможные виды двигателей. Наилучшим показал себя двигатель внутреннего сгорания, работающий на бензине или соляре, и последующие дирижабли оснащались в основном двигателями этого типа.

Воздушные гиганты

Ныне дирижабли классифицируют как матрасы – они бывают жесткими, полужесткими, полумягкими и мягкими. Причем не думайте, что это розыгрыш, – такова действительная официальная градация.

Обыкновенная мягкая надувная оболочка все-таки плохо держала форму, недостаточно жестко противостояла порывам ветра, вот инженеры и постарались ее укрепить. Для этого в оболочку стали встраивать, вшивать металлические балки и фермы. Чем их больше, тем более жесткой становится конструкция.



Итак, если ферм в оболочке относительно немного, оболочка называется полумягкой. С увеличением их числа конструкция становится полужесткой и, наконец, жесткой. Точку в 1897 году поставил австрийский инженер Д. Шварц, построивший дирижабль, который имел не только металлический каркас, но и склепанную из тонких алюминиевых листов обшивку. Гондола тоже были сделана из алюминия. В ней помещался бензиновый двигатель мощностью 12 лошадиных сил, который вращал четыре пропеллера. Два из них были расположены по бокам гондолы; с их помощью аэронавты могли легко и быстро разворачивать свой корабль. Третий винт, позади гондолы, помогал дирижаблю двигаться против сильного ветра или использовался для развития большой скорости. И, наконец, последний, четвертый, пропеллер располагался под гондолой. Ось его вращения была расположена вертикально, как у вертолета; этот пропеллер использовался для быстрого взлета и приземления дирижабля.



Особо большие дирижабли с жесткой оболочкой начали строить в Германии. Прямо на поверхности Боденского озера конструктор Ф. Цеппелин возвел рекордно-огромный эллинг – гараж для дирижаблей. Длина его была 142 м, ширина – 23 м, высота – 21 м. А на воде его поддерживали 80 понтонов-поплавков.

В этом огромном зале, где при желании можно было бы запросто поиграть в футбол, и началось строительство воздушных кораблей новой конструкции. По имени изобретателя их так и назвали – цеппелинами.

Чем же отличались дирижабли Цеппелина от своих предшественников? Во-первых, это были весьма крупные корабли. Так, например, в 1900 году был построен дирижабль длиной в 128 м, а объем его оболочки составил 11 300 куб. м! Во-вторых, в конструкцию воздушного исполина было введено принципиальное новшество. Всю оболочку поделили на несколько отсеков. Внутри каждого из них помещался отдельный баллон с газом. Таким образом, если какой из баллонов и давал течь, то остальные продолжали поддерживать дирижабль в воздухе.

Во время испытаний LZ-1 – так назвали новый дирижабль – показал отличные летные качества. И вслед за первым кораблем Цеппелин построил еще несколько, каждый из которых был крупнее предыдущего. Например, 128-метровый дирижабль LZ-3 мог поднять в воздух 9 человек и 2500 кг груза. Во время испытательного полета 6 октября 1906 года он взлетел на высоту 800 м и развил скорость 50 км/ч.

Летом 1910 года было завершено строительство дирижабля LZ-7 «Германия», длина которого составляла 148 м. Это был первый в мире дирижабль, специально предназначенный для перевозки пассажиров. Он брал на борт сразу 20 человек.

Большие дирижабли начинают строить не только в Германии, но и в других странах. Только за первое десятилетие XX века их было построено около 500. Причем в той же Германии на постройку очередного воздушного гиганта уходило менее месяца. А ведь это были громадины длиной уже более 200 м!


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации