Текст книги "100 великих достижений в мире техники"
Автор книги: Станислав Зигуненко
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 3 (всего у книги 35 страниц) [доступный отрывок для чтения: 12 страниц]
«Полагаю, – сказал в заключение беседы со мной Лускинович, – что вскоре, зайдя в хозяйственный магазин, вы сможете купить и поставить у себя дома не просто очередной кухонный агрегат, а репликатор – устройство, способное синтезировать по заказу любой продукт. Все в окружающем мире создано из атомов и молекул, а значит, и может быть скопировано нашим агрегатом. Более того, если надо, то и модернизировано, улучшено»…
Как растут детали? Первые достижения новой технологии уже налицо. Так, например, в московском НИИавтопроме уже несколько лет работает необычная технологическая лаборатория. Не имея ни токарных станков, ни прессов со штампами, ни литейных форм, ее сотрудники берутся за выполнение самых замысловатых заказов. Например, минут за двадцать вам могут изготовить из прозрачного полимерного материала куб, внутри которого будет заключена модель земного шара.
Изготовляют подобные сувениры и даже более сложные технологические заказы ее с помощью небольшой установки, представлявшей собой металлический шкаф с дверцей и установленным на полочке компьютером. Вот нажата одна из клавиш, и на экране дисплея высветился объемный рисунок будущего изделия. Емкость в шкафу наполняют жидким полимером, немного напоминающим жидкую смолу, включают лазерный сканер, и… через несколько минут изделие готово.
Суть «фокуса» довольно проста. В свое время химики создали жидкий полимер, способный быстро твердеть под действием наведенного на него лазерного луча. Этим и воспользовались американские специалисты из фирмы 3D Systems Inc, с которыми теперь сотрудничает НИИавтопром. Разработанная ими установка SLA-250 представляет собой, по существу, маленькую фабрику, где процесс изготовления модели, или, лучше сказать, прототипа того или иного будущего серийного изделия, напоминает своеобразное выращивание. Ведь появляется деталь не сразу, а постепенно, слой за слоем, которые по мере отвердения прочно соединяются между собой.
Руководит же подобной «агрономией» компьютер, который с педантичной аккуратностью выполняет программу, заданную конструкторами. Деталь «вырастает» в точности такой, каким был ее компьютерно-экранный рисунок. Ее можно сразу же примерить, смонтировав непосредственно в узле или агрегате, тут же внести, если потребуется, поправки и уже окончательно закрепить нужные параметры, по которым затем технологам не составит особого труда изготовить безошибочную оснастку для последующего производства деталей уже не из пластмассы, а из металла.
SLA-250 и подобные ей системы значительно упрощают технологию. Многие считавшиеся ранее обязательными звенья производственного процесса теперь оказываются излишними, их исключают, сберегая драгоценное время, материалы и средства. Подсчитано, что только одна установка, работающая по технологии, получившей название лазерной стереолитографии, позволяет сократить производственные расходы на 5 млн долларов в год! Стоит ли после этого удивляться, что на многих зарубежных предприятиях SLA-250 работают круглосуточно все семь дней в неделю.
Причем стереолитография тем эффективнее, чем сложнее изделие. Возможности ее поистине безграничны. Подобным образом можно изготовить даже автомобиль, «вырастив» и склеив его по частям.
Впрочем, использовать новую технологию можно не только в промышленности. Она также способна освободить от кропотливого труда макетчиков, работающих в градостроительстве. Скульптор уже на компьютере получит до последнего штриха законченное художественное творение, которое затем не составит особого труда выполнить в металле или даже камне с помощью копировально-камнерезного станка. Сородичи SLA-250 могут быть также надежными союзниками хирурга и протезиста.
Вот так в наши дни трансформировалась технология, над которой еще лет сорок тому назад начинал «колдовать» ленинградский профессор Б. Степанов. Читатели постарше, быть может, помнят, как он предлагал помещать в расплав затравку в виде кусочка готовой детали. А затем эту затравку потихоньку приподнимали, и вслед за ней тянулось продолжение. Расплав кристаллизовался частица за частицей, принимая ту же форму, что и затравка.
Таким образом, как показали многочисленные эксперименты, можно выращивать провода, швеллеры, рельсы, двухтавровые балки, заготовки для зубчатых колес и т. д., не прибегая к прокатке, волочению или штамповке. И если эта технология по сию пору не нашла себе широкого применения, так только потому, что никому в мире еще не удалось ускорить процесс кристаллизации настолько, чтобы установки по выращиванию деталей смогли по производительности соперничать с теми же прокатными станами и штамповочными прессами.
Ныне же – иное дело. В СМИ уже появились первые сообщения о созданном на 3D-принтере самолете, собираются подобным же образом создавать космические корабли и даже… органы для пересадки!
Шапки и плащи для невидимок XXI века
Идея эта идет к нам из глубины веков, была в свое время подхвачена А. С. Пушкиным. Вспомните хотя бы о Людмиле, которая обнаружила в покоях Черномора шапку-невидимку. Наступившее XXI столетие внесло свои коррективы как в литературные произведения, так и в реальные разработки ученых и инженеров. И вот что в итоге из всего этого выходит…
Эффект световода. Нагляднее всего, как ни странно, суть новшества объяснил автор одного современного детектива, описав, как его герой преодолевает завесу лазерной системы сигнализации на балконе. Он снимает с карабинного крючка рюкзачка за спиной моток световода, тщательно примеряется. А затем, не прерывая лазерного луча, рывком крепит конец световода присоской на приемник нижнего луча, тут же выставив линзу другого конца световода на пути этого же луча. Луч сквозь линзу свернул в световод, и петля его засветилась.
Осторожно перемещаясь вдоль ограждения балкона, удерживая линзу по лучу, лазутчик достиг стены, из которой лучи исходили… Потом прижал линзу к глазку истока нижнего луча, достал из кармана моментально схватывающий клей, аккуратно приклеил линзу на стене.
То же было сделано со второй линзой, и… человек стал невидимкой. Приподняв нити световодов, он смог спокойно проникнуть в лоджию, и охранная система его не заметила.
Образец опытного плаща-невидимки
Нечто подобное в 90-х годах XX века попытались воспроизвести на практике московские изобретатели, использовав вместо одного световода сразу множество. Суть дела тем не менее это не меняет. Система световодов с линзами на обоих концах действует точно так же, как и одиночный. Линзы-объективы воспринимают, скажем, изображение окружающего ландшафта и транслируют его к линзам-окулярам. В результате, когда наблюдатель смотрит на замаскированный, укрытый под такой сеткой объект, он его, что называется, в упор не видит, поскольку световые лучи как бы обтекают спрятанное, а шестиугольные линзы прилегают друг к другу столь плотно, что в щелки между ними не видно ничего.
Прототип такой «шапки-невидимки» был разработан на кафедре радиотехнических устройств и систем Московского государственного открытого университета. Авторы изобретения – И. А. Наумов, В. А. Каплун и В. П. Литвинов – полагали, что оно может быть использовано, скажем, вместо традиционных маскировочных сетей для сокрытия важных военных объектов – самолетов на стоянках или ракетных установок. И говорят, первые маскировочные плащи-накидки с вплетением оптических световодов уже изготовлены.
А японские инженеры недавно запатентовали свой вариант спецкостюма для человека-невидимки. В Стране восходящего солнца созданы чрезвычайно тонкие пленочные телеэкраны на основе жидких кристаллов. Теперь из такой пленки, внешне похожей на обычный полиэтилен, тоже скроен плащ-накидка. Телекамера величиной со спичечную головку, расположенная на затылке обладателя такой накидки, проецирует телеизображение на переднюю часть плаща. А телекамера, смотрящая вперед, аналогично транслирует изображение на заднюю часть плаща. В итоге наблюдатель смотрит как бы сквозь плащ-накидку, не замечая его обладателя.
И все это, как говорится, еще цветочки…
Даешь зеленый свет?! «Шапку-невидимку» пытаются сделать и многими иными способами. Например, группа физиков из университета штата Мэриленд, США, объявила, что ей удалось сделать невидимым объект в зеленом свете лазера. Правда, невидимость руководителю этой группы профессору Кристоферу Девису и его коллегам удалось создать лишь для одного цвета и на площади всего лишь несколько сотых долей миллиметра.
Можно, конечно, сказать: «Зачем тут и огород городить, коль столь крошечный объект и сам по себе можно различить лишь при помощи сильного микроскопа?» Однако профессор и его коллеги довольны уже и этим, поскольку их экспериментальная установка позволила им понять: они на правильном пути, их идеи и расчеты верны.
Концепция, благодаря которой они сделали свое изобретение, вообще-то известна всем иллюзионистам. Когда они хотят сделать кого-то невидимым на сцене, то прячут человека или иной объект за зеркала, которые так хитро отражают окружающую обстановку, что кажется: никаких зеркал тут и вообще нет.
«Наша задача состояла в том, чтобы заставить свет обогнуть объект примерно так же, как вода в ручье огибает камень, – пояснил профессор Девис. – А коль от объекта не будет отраженных лучей, формирующих его изображение в глазу, то нам и будет казаться, будто объект стал невидимым».
На практике эту идею ученый и его коллеги осуществили так. Вместо зеркал они используются несколько концентрических колец, расположенных на золотой подложке. А сами кольца сделаны из полиметилметакрилата, или, говоря проще, обычного органического стекла.
Если посмотреть на эту конструкцию сверху в микроскоп, она несколько напоминает многорядную дорожную развязку. Только в данном случае объект, расположенный в центре подложки, обтекают не автомобили, а световые лучи, изгибаемые прозрачным акриловым стеклом.
А поскольку мы привыкли считать, что свет, а тем более лазера, распространяется строго по прямой, то возникает обман зрения – объект в самом центре глаз не видит. А разглядит лишь то, что находится уже позади него.
Прототип Шалаева. Исследователей из Университета Мэриленда, в свою очередь, подпирают физики из университета Пердью в Уэст-Лафейетте (штат Индиана). Они уже сконструировали первый прототип «шапки-невидимки», способной укрыть от нежелательного взора любой объект. Но тоже пока в определенных диапазонах длин волн видимого света.
Во главе этой группы стоит работающий в США российский физик Владимир Шалаев. «Уже создана математическая модель нашей конструкции, – пояснил ученый, – основанная на численном решении уравнений Максвелла, описывающих распространение электромагнитного излучения, которым, в частности, является и видимый свет».
Своим происхождением эффект опять-таки обязан электромагнитным характеристикам материала, из которого изготовлена «шапка-невидимка», а точнее говоря, их постепенному изменению в пределах «шапки». При нужном распределении этих характеристик свет начинает плавно «обтекать» и «шапку», и накрытый ею объект, а наблюдатель получает возможность без всяких искажений видеть то, что ранее скрывалось в тени этого объекта.
Однако пока даже в теории подобное возможно лишь для отдельных длин волн видимого диапазона. Удастся ли сделать «шапку-невидимку» универсальной, то есть «мультиволновой», остается пока неизвестным.
Зеркальный «плащ» для невидимок. Как видите, исследования ведутся наперегонки. И многие ученые не скупятся на щедрые посулы и авансы. Например, сотрудники университета Дьюка, США, собираются вскоре продемонстрировать покрытие, которое сделает невидимкой целую атомную субмарину! Такая лодка сможет действовать практически безнаказанно: для ее обнаружения придется разрабатывать устройства, использующие иные физические принципы, либо глубоко модернизировать существующие сонары.
И вот вам последнее известие с фронта научных исследований. Создана модель «плаща-невидимки», который действительно может скрыть объект от человеческого глаза. В отличие от предыдущих версий «магического» покрытия, работавших в инфракрасном диапазоне, новый «плащ» эффективен в области длин волн, соответствующих видимому свету, сообщает журнал Nano Letters.
Ученые из Университета Калифорнии в Беркли (США) летом 2011 года сообщили о создании защитного покрытия, способного делать объекты невидимыми во всем диапазоне длин волн видимого света. Предыдущие попытки создания «невидимости» использовали в основном метаматериалы на основе металлов. Однако такой состав оказался неприемлемым при приближении к видимому диапазону длин волн, поэтому, как пояснила профессор Мичиганского университета Елена Семушкина, ряд групп обратились к созданию диэлектрических «плащей-невидимок». Они не имеют проводящих свойств металлов и больше похожи на стекло.
Еще один вариант, предложенный специалистами из Бирмингема, – использование для «плащей-невидимок» материалов из так называемых одноосных кристаллов. Для таких кристаллов характерно двойное лучепреломление при всех направлениях падающего на них света, кроме одного (это направление называется оптической осью кристалла). Материалы на одноосных кристаллах позволяли «прятать» микрообъекты от видимого света, однако лишь в случае его особой поляризации. Усовершенствование этой технологии позволило эффективно скрывать относительно большие объекты (размером около 300 нм на 6 мкм) под отражающим «защитным покрытием».
Говоря проще, такое покрытие представляет собой гладкое оптическое зеркало, которые скрывает объект в видимом диапазоне длин волн. «Вы, словно фокусник, прячете объект под особым материалом, который внешне выглядит как обычное зеркало – сквозь него не видно объекта, находящегося внизу. Внешний наблюдатель и не предполагает, что под зеркалом что-то находится», – пояснил суть дела профессор Сян Чжан, под руководством которого выполнялась работа.
Чтобы заставить видимый свет «обойти» спрятанный объект, исследователи изобрели материалы с переменным показателем преломления – это метаматериалы, не существующие в природе. Для этого волновод из нитрида кремния поместили на прозрачную нанопористую подложку оксида кремния, которая имела меньший показатель преломления, чем волновод. «Это первый пример “шапки-невидимки”, действительно работающей в видимом диапазоне длин волн», – подчеркнул Чжан.
Путешествия к центру Земли
Помните, как совершили путешествие в глубь Земли герои Жюля Верна? Расшифровали таинственную записку, спустились в древний кратер и подземными ходами добрались куда хотели…
На самом деле даже через самую глубокую пещеру нельзя попасть к ядру планеты. А потому ученые осуществляют «путешествия к центру Земли» иными способами. Одни из них изобретают разного рода подземные лодки, капсулы и буровые снаряды. Другие же вообще не выходят из своих лабораторий и тем не менее ухитряются узнать, что именно происходит в недрах Земли на глубинах в десятки и даже сотни километров.
Новокраматорский пресс-гигант в Институте физики высоких давлений
Как именно они это делают? Вот что рассказал о работе своих коллег директор Института физики высоких давлений имени Л. Ф. Верещагина, член-корреспондент РАН С. М. Стишов.
«Исследователи давно пытаются заглянуть в недра нашей планеты, – начал свой рассказ Сергей Михайлович Стишов. – Однако даже сверхглубокая скважина на Кольском полуострове не позволила проникнуть в глубь Земли далее 12 км – чудовищные давления и температуры не дают бурить дальше. Поэтому пришлось использовать обходные способы, а именно смоделировать условия земных недр»…
Каким образом? Вот вам одно любопытное описание: «Мы стояли, держась за поручни стального ограждения лестницы, которая, как в пропасть, уходила в глубь громадного бетонного “колодца”. В нем, наверное, свободно бы разместился многоэтажный жилой дом. Когда глаза привыкли к полумраку, можно было рассмотреть детали циклопической конструкции, которая тянулась вверх с бетонного днища»…
Думаете, это цитата из фантастического романа? Вовсе нет. Таким увидел четверть века тому назад самый большой пресс СССР репортер одной из центральных газет.
Разместили пресс в здании, напоминающем своими размерами зимний стадион: длина строения – 84 м, ширина – 36, высота – 30 м.
И сама махина весом 5000 т будто бы прибыла из страны великанов. Один лишь цилиндр «поршня», с помощью которого пресс мог развивать усилие в 50 000 т, а давление в 3 млн атмосфер, имел массу в 60 т и высоту в два человеческих роста.
На нашей планете есть еще несколько прессов примерно такой же мощности, но они построены для промышленных целей. А этот гигант единственный, что был создан специально для ученых на Новокраматорском машиностроительном заводе.
Этим достижением в немалой степени гордился тогдашний директор Института физики высоких давлений академик Леонид Федорович Верещагин. Ведь ему приходилось начинать свои исследования на куда более скромном оборудовании. Первый пресс, на котором Верещагин вместе с двумя научными сотрудниками и одним механиком получил еще до войны рекордное для нашей страны давление – 10 тыс. атмосфер, – занимал всего лишь угол скромной лаборатории.
Впрочем, сейчас в институте тоже больше не увидишь прессов-гигантов. И не только потому, что у нашей науки теперь нет средств на их создание. Огромные давления ученые научились получать более скромными средствами.
Знаете ли вы, например, что любой из читающих эти строки способен буквально пальцами развить давление около 3 т… Каким образом? Для этого надо лишь взять в руки иглу и силой воткнуть ее в какой-либо материал. Давление, развиваемое при этом на кончике иглы, и даст искомую величину.
Примерно так концентрируют усилия современные исследователи. В рабочей камере гидравлического пресса на острие алмазной наковальни они получают такие же давления, как на глубине в сотни и даже тысячи километров.
А когда мощи гидравлики становится недостаточно, призывают на помощь удар или даже взрыв. Именно с помощью взрывов, проводимых опять-таки в особых камерах, еще в 50-х годах прошлого века были получены из графита первые промышленные алмазы. Сейчас технологи научились получать алмазные зерна величиной до 5 каратов, широко используют их в алмазных инструментах для обработки особо твердых сплавов и материалов.
«Благодаря методам исследования, созданным в нашем институте совместно с фондом Карнеги в Вашингтоне, проведена серия исследований свойств серы при высоких давлениях, – продолжал свой рассказ Стишов. – Оказалось, что этот химический элемент, в обычном состоянии представляющий собой почти идеальный диэлектрик, под давлением переходит в металлическое состояние со сверхпроводящими свойствами, сохраняющимися до температуры примерно в 16 К. При этом изменяется даже цвет элемента. Желтая сера становится красной и, наконец, чернеет, превращаясь при этом в металл. Эта работа имеет большое фундаментальное и практическое значение. Возможно, что с помощью металлической серы будут создано новое поколение сверхпроводящих сплавов, работающих при высоких температурах»…
Сейчас исследователи готовятся к следующему шагу в познании глубинных тайн Земли. Исследователи вскоре получат возможность узнать, как ведут себя различные вещества при тех давлениях, которые царствуют в самом центре Земли. Эта проблема чрезвычайно важна с познавательной точки зрения. Разведочные сейсмические волны показывают, что в глубинах залегают плотные вещества. Какие?
Об этом шел многолетний спор. Многие исследователи считали, что ядро Земли слагают породы с очень богатым содержанием железа. Причем одни полагали, что ядро это жидкое, другие считали его твердым, сдавленным чудовищными давлениями. Истина, пожалуй, в золотой середине.
«Если бы ядро Земли было жидким, то процессы, происходящие внутри нашей планеты, напоминали бы скорее атмосферные явления – смерчи, торнадо и другие “завихрения”, – подчеркнул директор Института физики высоких давлений. – Однако на практике мы видим большее сходство этих процессов с океаническими – тихими, плавными и спокойными»…
В общем, по мнению Стишова и его коллег, ядро нашей планеты по вязкости напоминает застывающее стекло или… густой мед! Они уверены в этом процентов на восемьдесят. Более точные выводы можно будет сделать, когда ученые смогут создать в лаборатории условия, сравнимые с реально существующими в недрах планеты. Пока же экспериментальные давления меньше тех, что существуют в ядре Земли примерно на порядок.
Кроме того, очередные эксперименты, бесспорно, дадут много новых сведений о возможном состоянии вещества не только в ядре нашей Земли, но и в недрах Юпитера, Сатурна и других планет.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?