Текст книги "Изобретено в СССР"
Автор книги: Тим Скоренко
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 11 (всего у книги 39 страниц) [доступный отрывок для чтения: 13 страниц]
Самыми первыми циклическими ускорителями частиц стали циклотроны. В циклотроне пучки частиц, подгоняемые высокочастотным электрическим полем, движутся по спиральной траектории в постоянном и однородном магнитном поле. Циклотрон представляет собой вакуумную камеру, в которой расположены два полуцилиндра (дуанта), раздвинутых на небольшое расстояние, и мощный электромагнит. Пучок частиц движется по заданной магнитным полем траектории и каждый раз, попадая в зазор между дуантами, получает разгонный импульс от электрического поля. Траектория частиц при этом представляет собой спираль. На последнем, самом широком витке спирали частицы выводятся на прямолинейную траекторию и отправляются в мишень.
Обычный циклотрон позволяет разгонять протоны до энергий 20–25 МэВ. Его специфическая модификация (изохронный циклотрон) с переменным магнитным полем позволяет достигать около 1000 МэВ энергии, что тоже относительно мало в сравнении с ускорителями других типов. Зато циклотрон может быть достаточно компактным и потому ускорители этого типа применяются в практических, а не только в исследовательских целях – например, медицинские циклотроны генерируют пучки частиц для радиационной терапии.
Саму идею циклического ускорителя впервые выдвинули в Германии в середине 1920-х годов. Ещё в 1927 году физик Макс Штеенбек разрабатывал подобную систему для компании Siemens, но дальше чертежей дело не пошло. Впоследствии Штеенбек построил первый в мире работающий бетатрон (это ещё одна разновидность циклического ускорителя). В 1929 году венгерский физик Лео Силард запатентовал циклотрон, но его система тоже осталась на бумаге.
В итоге первый в мире циклический ускоритель частиц был построен в 1932 году в США, в Калифорнийском университете в Беркли. Патент на систему принадлежал физику Эрнесту Лоуренсу, немалый вклад в разработку сделал его же студент Милтон Стэнли Ливингстон. Занятно, но первый пробный циклотрончик (иначе не скажешь) они построили двумя годами раньше – он разгонял частицы всего до 80 кэВ, но Ливингстон защитил на этом материале диссертацию. Так или иначе в последующие годы под руководством Лоуренса было построено несколько циклотронов всё большей и большей энергии – к 1939 году он разогнал частицы в циклотроне до 16 МэВ.
В СССР шла аналогичная работа. У советских физиков 1930-х годов был доступ к материалам зарубежных коллег, и практически сразу после постройки Лоуренсом циклотрона в 1932 году физики Лев Мысовский и Георгий Гамов разработали проект метрового циклотрона для Радиевого института в Ленинграде. В работе также принимали участие знаменитый в будущем, а пока совсем молодой Игорь Курчатов и один из основателей Радиевого института Виталий Хлопин. В 1937 году был запущен первый советский (и европейский) циклотрон. Гамов этого не застал. Из группы специалистов, работавших над устройством, он больше всего времени проводил за границей в рабочих командировках, в период с 1928 по 1931 год объездил ведущие лаборатории мира, а в 1933-м во время очередной командировки на Сольвеевский конгресс в Брюсселе Гамов отказался возвращаться и спустя семь лет стал гражданином США.
С циклотрона Радиевого института началась работа над ускорителями в СССР – наравне с работой, которая велась в США, Германии, Дании и других странах мира. Новые схемы циклических ускорителей, позволяющие преодолевать различные ограничения, появлялись и продолжают появляться регулярно. В 1945 году физик Эдвин Макмиллан разработал и построил первый синхротрон; годом позже под его же руководством 470-сантиметровый циклотрон в лаборатории Лоуренса (ныне Национальной лаборатории им. Лоуренса в Беркли) был модифицирован в синхроциклотрон; в 1954 году в Беркли появился первый беватрон (то есть ускоритель с энергией порядка нескольких ГэВ); в 1970-м в национальной ускорительной лаборатории им. Энрико Ферми – первый тэватрон (с энергией порядка нескольких ТэВ) и т. д.
В эту «гонку тронов» внесли свой вклад и советские учёные.
Принцип автофазировкиНад разработкой ускорителей в СССР работало немало выдающихся учёных, но именно изобретательское направление ассоциируется с конкретным человеком – Владимиром Иосифовичем Векслером. Векслер родился в 1907 году, в 1931-м окончил Московский энергетический институт, после работал во Всесоюзном электротехническом институте, потом в Физическом институте АН СССР – в общем, его трудовой путь можно назвать примером идеальной советской научной карьеры, которой чудом не коснулись ни сталинские репрессии, ни изоляция от мирового сообщества (не без оговорок, но об этом я расскажу позже), ни регулярные смены курса правящей партии.
В 1940 году Векслер защитил докторскую и остался работать в Физическом институте АН СССР. Он активно публиковался в научных журналах и считался одним из молодых светил советской ядерной физики. А в 1944 году Векслер первым в мире сформулировал принцип автофазировки.
Как уже говорилось ранее, когда пучок заряженных частиц разгоняется в циклическом ускорителе, он многократно проходит через ускоряющие промежутки. Для эффективного разгона необходимо, чтобы в эти моменты направление движения частицы и направление электрического поля совпадали, то есть движение частицы и изменение поля надо синхронизировать. Для синхронизации частота обращения частицы должна быть или равна, или кратна частоте электрического поля, при этом частица всегда будет пролетать ускоряющий промежуток при одном и том же значении фазы поля, получать энергию – и ускоряться. Именно на таком принципе и работает циклотрон: в нём частицы движутся в постоянном магнитном поле с постоянной частотой обращения, равной частоте ускоряющего поля.
Но при достижении энергией частицы достаточно высокого значения синхронизация сбивается. Связано это вот с чем. При скоростях, значительно меньших скорости света, кинетическая энергия пропорциональна квадрату скорости:
Но если скорости приближаются к скорости света, то, в соответствии с теорией относительности равенство нарушается (что эквивалентно возрастанию массы m). А это, в свою очередь, ведёт к замедлению обращения частицы по мере роста энергии – собственно, период обращения частицы становится прямо пропорциональным её энергии.
Частота обращения уменьшается, перестаёт совпадать с частотой разгоняющего электрического поля, и частицы выпадают из ускоряемого пучка. Если у нас одна частица, то мы можем подгонять под изменение её частоты обращения частоту поля, снижая по ходу ускорения или изменяя величину магнитного поля. Но если частиц миллионы и миллиарды, то у них существует разброс энергий (иначе говоря, каждая ведёт себя немного по-своему) и подстроиться под все попросту невозможно. Это и есть естественное ограничение циклотрона – как уже говорилось, он позволяет разогнать частицы не более чем до 20–25 МэВ.
Итак, Владимир Векслер, исследуя описанную проблему, открыл физическое явление, названное им принципом автофазировки частиц. Представьте себе, что в процессе ускорения мы плавно увеличиваем период частоты ускоряющего поля. Некоторым частицам «повезёт»: период их обращения будет изменяться с точно такой же скоростью, и при прохождении через разгоняющий промежуток они станут получать на каждом обороте одинаковую порцию энергии для разгона. Такие частицы называются равновесными. Векслер же обнаружил, что остальные частицы с энергией, близкой к энергии равновесных частиц, тоже могут разгоняться, не «выпадая» из ускоряемого пучка, просто несколько иным путём!
Если частица имеет изначально чуть большую энергию, чем её равновесные «коллеги», то её период обращения возрастает быстрее и на очередном витке она запаздывает при подходе к ускоряющим электродам. Иначе говоря, она попадает туда в момент уменьшения поля, получает меньшую энергию и период её обращения уменьшается. Так, виток за витком, частица постепенно уменьшает период обращения вплоть до момента, когда он идеально совпадает с периодом обращения равновесной частицы, – иначе говоря, приближается к резонансу.
Но на этом уменьшение не останавливается, и частица продолжает приобретать энергию, меньшую, чем равновесная, постепенно уходя в другую крайность. Эффект начинает работать в обратную сторону: частица имеет меньшую энергию, чем равновесная, её период обращения уменьшается, и на очередном витке она проходит ускоряющий промежуток слишком рано, в момент увеличения поля. В целом же и отстающие, и опережающие частицы колеблются около равновесной фазы и постепенно собираются к ней – это и называется автофазировкой.
Визуально её можно представить вот так:
Пересечения штриховой линии с графиком колебания энергии частицы – это те самые точки, в которых частица получает ускорение. Хорошо видно, что частица колеблется вокруг нужной фазы. Энергию она приобретает неравномерно – то побольше, то поменьше.
Вы скажете: это же открытие, а книга-то об изобретениях! С одной стороны, вы будете правы. Но с другой – именно открытие принципа автофазировки привело к появлению нового поколения ускорителей частиц, то есть к изобретению в прямом смысле слова. И это изобретение первым тоже описал именно Владимир Векслер.
Микротрон и синхротронПринцип автофазировки лёг в основу нового класса приборов – резонансных ускорителей, описанных Векслером в 1944 году. Устойчивость нужных режимов для подобных ускорителей математически рассчитал коллега Векслера по ФИАН Евгений Фейнберг.
Первыми двумя представителями этого класса стали микротрон и синхротрон. В микротроне магнитное поле и частота электрического поля постоянны, а период обращения (и траектория) частиц меняется так, что на каждом следующем обороте они все равно проходят ускоряющий промежуток в нужной фазе поля. В синхротроне орбиты частиц не меняются, возрастает только магнитное поле, а электрическое имеет постоянную частоту. Принцип, который лёг в основу обеих схем, Векслер описал в знаменитом докладе «Новый метод ускорения релятивистских частиц» 25 апреля 1944 года. Этот доклад ссылается и на Лоуренса, и на Керста (изобретателя изохронного циклотрона), но вводит понятие автофазировки, открывая бесконечное поле для новых разработок в области ускорения частиц.
Но Векслеру не повезло, причём не повезло дважды. Во-первых, в Европе свирепствовала война. Да, в ней уже произошёл перелом, советские войска теснили фашистов, наконец-то забрезжил свет победы – но, объективно говоря, Европе и СССР было не до науки. Конечно, учёные продолжали вести исследования, публиковать статьи, делать открытия, но темпы этой работы были очень низкими, в том числе из-за нарушенных каналов связи между научными сообществами.
Кроме того, Векслеру не повезло с тем, что внешнеполитические отношения сильно охладились. Сделай он своё открытие в 1930-е годы – и его статья в считаные недели была бы переведена на английский и появилась в научных журналах США и Великобритании. Но начиная с середины сороковых количество «творческих командировок» сократилось в разы, научные статьи чаще всего оставались внутри советского исследовательского сообщества и переводились с большой задержкой. Поэтому работа Векслера осталась незамеченной миром, несмотря на то что в июле 1944 года он опубликовал статью под названием «О новом методе ускорения релятивистских частиц».
В результате в 1945 году, несколько позже Векслера, принцип автофазировки независимо сформулировал американский физик Эдвин Макмиллан, уже упоминавшийся в этой главе. Он же, базируясь на принципе автофазировки, спроектировал первый в истории синхротрон. Знаменитый Большой адронный коллайдер является по конструкции именно синхротроном, и энергии, до которых он может разогнать частицы, достигают 6,5 ТэВ. Впоследствии, к слову, справедливость была восстановлена: Макмиллан признал первенство Векслера в открытии, а в 1963 году оба учёных разделили премию «Атомы для мира» (Atoms for Peace Award) за вклад в технологии мирного использования атома (Векслер стал единственным русским обладателем этой награды).
Если конкретизировать, то резонансный ускоритель, который Векслер приводил в своей статье в качестве теоретического примера, всё-таки микротрон. Вот почему нередко можно услышать утверждение, что «Векслер изобрёл микротрон, а Макмиллан – синхротрон». Но это не совсем корректно. Я бы сказал, что оба исследователя примерно в одно время независимо изобрели и то и другое. Что интересно, новую схему ускорителя Векслер в своей работе описал в сугубо теоретических целях, чтобы на примере мысленного эксперимента продемонстрировать принцип автофазировки. Иначе говоря, Векслер если и думал в тот момент о физическом воплощении микротрона, сам не сделал сколь-нибудь заметных шагов к реализации идеи.
В 1960-х годах другой советский физик, Андрей Коломенский, усовершенствовал идею Векслера, предложив концепцию разрезного микротрона. По сути, он представляет собой тот же микротрон, который разрезан пополам, а полукруглые его половинки раздвинуты. При этом ускоряющий резонатор, придающий частицам разгонный импульс, остаётся между половинками. Таким образом получается гибрид циклического и линейного ускорителей – частицы разгоняются на линейном участке, разворачиваются по полукруглой траектории в одной из половинок, снова разгоняются. Это позволяет достигнуть равномерного и постоянного разгона – внутри разрезного микротрона всегда присутствуют частицы, находящиеся на той или иной стадии ускорения. Это и есть преимущество микротрона перед другими ускорителями: они обычно работают в импульсном режиме, разгоняя частицы в течение коротких периодов времени, микротрон же позволяет получать частицы высокой энергии практически непрерывно.
Несмотря на то что теоретические выкладки по микротрону были сделаны в СССР, первый экспериментальный микротрон «в металле» построили в 1948 году в Оттаве, а первую практически использовавшуюся для экспериментов машину сделали ещё позже – в 1961 году в Университете Западного Онтарио (Лондон, Канада). Разрезные микротроны ввиду непрерывности потока частиц с 1970-х используются не только в лабораторных исследованиях, но и на практике – для радиотерапии.
Глава 14. Смотреть вглубь
На самом деле для микроскопии годится практически любое излучение. Оптические микроскопы используют электромагнитные волны видимого спектра (свет), электронные формируют изображение с помощью высокоэнергетического пучка электронов, рентгеновские применяются для исследования объектов, размеры которых сопоставимы с длиной волны рентгеновского излучения. Существуют сканирующие зондовые микроскопы, к слову относительно новые, изобретённые только в 1980-х годах, которые изучают поверхность с помощью физического зонда (кантилевера) – он напоминает щуп, только его игла имеет диаметр от 1 до 100 нанометров. И это далеко не всё: микроскопия применяется в сотнях различных отраслей, и везде – своя специфика, свои требования к точности измерений.
Акустический микроскоп использует в качестве инструмента волны ультравысоких частот – обычно от 5 до 400 мегагерц. Для сравнения: человеческое ухо слышит звуки частотой до 20 килогерц. Идея состоит в том, что звук в материалах ведёт себя подобно свету: акустические волны могут преломляться, поглощаться или отражаться от поверхности и внутренних структур вещества. Полученную в результате взаимодействия с образцом акустическую картину визуализируют – так же, как визуализируются изображения внутренних органов в процессе УЗИ. Собственно, ультразвуковые исследования в медицине – это ближайший родственник акустической микроскопии.
В поисках дефектовНачало всему направлению акустической микроскопии положил советский физик Сергей Яковлевич Соколов.
Он родился 8 октября 1897 года в селе Кряжим Саратовской губернии в бедной крестьянской семье. Всего в семье было 17 детей, а выжило только четверо, и, как бы страшно это ни звучало, такую картину можно назвать типичной для тех лет. Сергей не просто выжил – он не последовал желаниям отца, который видел в сыне наследника крестьянского хозяйства, а по настоянию бабушки пошёл учиться в церковно-приходскую школу, потом – в сельское училище и, наконец, сдал вступительные экзамены в среднетехническое училище в Саратове. Он был единственным из семьи Соколовых, кто попытался выбиться в люди, и у него это получилось.
Училище Соколов окончил уже при советской власти, отслужил в рядах РККА и поступил в Петроградский электротехнический институт имени В. И. Ульянова (Ленина), то есть в ЛЭТИ. С ЛЭТИ оказалась связана вся дальнейшая жизнь Соколова: отучившись, он стал ассистентом кафедры специальной радиотехники и работал первое время под руководством светила электротехнической науки Леонида Мандельштама, впоследствии – номинанта на Нобелевскую премию за открытие комбинационного рассеяния света. Но Мандельштам в ЛЭТИ не задержался, проработав там меньше года, а вот Соколов остался в альма-матер навсегда, посвятив ей 32 года – с 1925-го по 1957-й. Помимо ЛЭТИ, Соколов активно сотрудничал с Центральной радиолабораторией (ЦРЛ).
Практически сразу Соколов выбрал направление деятельности – он заинтересовался темой преобразования электрических сигналов в акустические волны, стал конструировать кварцевые вибраторы, а в 1929 году возглавил акустический отдел ЦРЛ. Вообще говоря, именно с подачи Соколова электроакустику выделили в отдельное исследовательское направление, которое позже переродилось в кафедру акустики ЛЭТИ и электроакустическую лабораторию. Стоит заметить, что в те годы ситуация в ЛЭТИ не была уникальной – изучение акустики во всём мире находилось примерно на одном, не очень высоком уровне; выделялся ряд серьёзных исследователей вопроса, но ситуация, в которой на этой теме фокусировались целые кафедры, была скорее исключением, чем правилом.
В 1927 году Соколов открыл явление, которое подтолкнуло всю его дальнейшую работу и карьеру. Он обнаружил, что ультразвуковые волны определённых частот (0,5–25 мегагерц) могут распространяться внутри металлов почти без поглощения. Это сразу навело его на мысль об ультразвуковой дефектоскопии, и уже в 1928 году Соколов спроектировал и построил в лаборатории первый акустический дефектоскоп – устройство для «прослушивания» материалов и обнаружения в них различных дефектов – каверн, включений и расслоений. Точность ультразвукового дефектоскопа была значительно выше точности любых других методов: он позволял обнаруживать микроскопические трещины и раковины в металлических изделиях.
Общий принцип работы акустического дефектоскопа таков. Звуковые волны не преломляются внутри однородного материала, но изменяют траекторию движения на границах раздела сред. Поэтому, если внутри металла имеются включения других материалов или пустоты, то есть области с другими упругими свойствами и плотностью, волны будут отражаться или преломляться. Чем меньше длина волны (то есть чем выше частота), тем более мелкие дефекты можно обнаружить.
Сегодня широко применяются акустические дефектоскопы самых разных систем и конструкций; многие из них разработал на основе базовой модели сам Соколов. На своё изобретение он получил авторское свидетельство, а в 1942 году удостоился Государственной премии СССР.
Но дефектоскопия была лишь первым шагом.
Опережая времяТот факт, что дефектоскоп способен обнаруживать очень малые погрешности, навёл Соколова на следующую мысль: а нельзя ли с помощью ультразвука «видеть» детали, слишком мелкие для того, чтобы быть заметными невооружённым глазом и при этом скрытые от оптических устройств? Иначе говоря, построить акустический микроскоп, который позволит «видеть» малые предметы и неоднородности, расположенные внутри непрозрачных сред – в дереве, металле, глине и т. д.
Основной проблемой тут было преобразование акустических сигналов в видимую картинку. Дефектоскоп просто выдавал сигнал, микроскоп же должен был иметь на выходе изображение. Первый метод, предложенный Соколовым в 1935 году, назывался методом поверхностного рельефа. Исследуемый объект погружался в жидкость (потому что жидкость – это лучшая, чем воздух, среда для распространения акустических волн), и снизу на него воздействовали ультразвуком. В зоне выхода отражённых или преломлённых акустических сигналов из жидкости на поверхности создаётся давление звукового излучения, пропорциональное интенсивности звука. На ту же поверхность направляется опорная волна аналогичной частоты – происходит интерференция волн и образуется стоячая волна. Если осветить эту зону пучком когерентных световых волн, его отражение на экране сформирует изображение объекта, через который прошли ультразвуковые волны, – такой метод называется акустической голографией. По теме поверхностного рельефа в 1935 году Соколов защитил докторскую диссертацию – она называлась «Ультраакустические колебания и их применение». Другой, более поздний метод визуализации, предложенный Соколовым в 1941 году, имел в своей основе электронно-лучевую трубку. Именно прибор с электроакустической трубкой Соколов сам называл акустическим микроскопом.
Правда, из-за войны Соколову пришлось приостановить исследования – он сосредоточился на дефектоскопии и, в частности, предложил применять свои приборы для проверки склейки самолётных крыльев и фюзеляжей (за эту работу он в 1945 году получил орден Красного Знамени). В середине сороковых он вернулся к теме ультразвукового микроскопа и довёл систему с ЭЛТ до рабочего состояния, получив в 1948 году авторское свидетельство, а в 1951-м – Госпремию.
Соколову повезло ещё и с тем, что его дефектоскопы и микроскопы не остались засекреченной разработкой. После советского авторского свидетельства на дефектоскоп (1936) Соколов получил также патент Великобритании № 477139 (1937) и патент США № 2164125 (1939). Публикации учёного переводились на другие языки, а после войны он побывал в нескольких европейских командировках и выступал с докладами по теме «звуковидения», как это называлось в те годы. Американский патент Соколова, к слову, впоследствии многократно цитировался и использовался в патентах других изобретателей, в последний раз – в 1997 (!) году.
Но если дефектоскоп практически сразу после изобретения стал широко используемым прибором, то с ультразвуковым микроскопом Соколов серьёзно опередил своё время.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?