Электронная библиотека » Том Джексон » » онлайн чтение - страница 4


  • Текст добавлен: 15 сентября 2020, 09:01


Автор книги: Том Джексон


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 14 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +

Атмосферное давление

«Природа не терпит пустоты» – это изречение уходит корнями во времена Аристотеля и античности. Но исследования возможности существование вакуума, привели к новому пониманию свойств атмосферы и созданию важнейшего инструмента для предсказания погоды.


С помощью ртутного столба Торричелли удалось доказать существование атмосферного давления, и это имело далеко идущие последствия не только для метеорологии, но и для фундаментальных наук, таких как физика и химия.


Эта история, как и многие научные истории XVII века, связана с именем Галилео Галилея, который уже прославился своими открытиями об устройстве Солнечной системы. В 1630 году, когда он был на пике славы, его попросили объяснить, почему сифонный насос не может поднять воду на холм. В то время принцип действия видели в том, что насос будет втягивать воду через сифон, создавая, по меньшей мере, возможность вакуума. Вода будет заполнять образовавшуюся пустоту, подчиняясь емкому афоризму Аристотеля, и потечет по трубе. Галилей предположил, что даже у силы вакуума есть свой предел. После смерти Галилея его помощник Эванджелиста Торричелли вернулся к этой проблеме и исследовал ее на модели сифона, уменьшенной в 10 раз. Он запаял один конец стеклянной трубки и наполнил ее ртутью, плотность которой в 14 раз больше плотности воды, и поместил открытый конец трубки в чашу с ртутью.

Уровень ртути в трубке всегда падал до 76 см. Оказалось, что у ртутного столба есть своя предельная высота, и она примерно в 14 раз меньше предельной высоты водяного столба в сифоне.

Вечный двигатель

Корнелиус Дреббель зарабатывал на жизнь, развлекая европейских правителей демонстрацией своих изобретений. Кроме подводной лодки, он также представил «перпетуум мобиле», или вечный двигатель. Это была хитроумная конструкция – кольцо из стеклянной трубки, заполненной водой, где с одной стороны было отверстие, а с другой – пузырь воздуха. Дреббель очень зрелищно демонстрировал, как вода постоянно перемещается в трубке. Он объяснял это приливными силами и астрологией, меняя объяснения в зависимости от собравшейся аудитории. Считается, что Шекспир в пьесе «Буря» 1611 года создал персонажа Ариэль, духа, порабощенного волшебником Просперо, вдохновившись «вечным двигателем» Дреббеля. На самом деле это устройство работало за счет естественных изменений температуры и давления воздуха, из-за чего вода перемещалась туда и обратно. Ученые того времени интересовались менее сложными J-образными версиями этого прибора, которые были прообразами термометров.


Это стало для Торричелли достаточным основанием, чтобы перевернуть теорию насосов и вакуума с ног на голову. Он обнаружил, что жидкость поднимается не за счет тяги, создаваемой вакуумом, а потому, что на нее давит вес воздуха. Столб достигал предельной высоты, когда его вес уравновешивался весом воздуха. Это снискало Торричелли славу изобретателя барометра – устройства для измерения атмосферного давления, хотя другие пытались сделать это и до него.

Подъемы и спады

В 1647 году Торричелли умер от тифа, и в следующем году француз Блез Паскаль продолжил его исследования. Он послал своего зятя Флорена Перье в Клермон-Ферран, к подножию Пюи-де-Дом – потухшего вулкана высотой 1460 м. Перье установил один ртутный барометр в городе, где на протяжении всего дня уровень ртути оставался неизменным, а другой такой же прибор взял в горы. Перье педантично замерял уровень ртути по мере своего восхождения и при каждой остановке обнаруживал, что чем выше он поднимался, тем ниже опускался уровень ртутного столба. Как и предполагал Паскаль, атмосферное давление падало с увеличением высоты, поскольку вес воздушного столба уменьшался. Но и на уровне моря давление время от времени колебалось. Падение уровня ртутного столба вскоре связали с периодами переменчивой, дождливой погоды, в то время как высокое давление предвещало погоду тихую и ясную. Однако в то время никто не понимал, почему это происходит.


Ртутная трубка Торричелли стала ключевым инструментом для нового поколения ученых эпохи Просвещения, а технология обработки стекла помогла создать первые точные термометры 50 лет спустя.


Метеосводки

Очевидно, что изменения в природе происходят не внезапно. Об их приближении можно догадаться по множеству признаков, за которыми удобнее всего было наблюдать на обширной территории, – тогда прогнозы погоды становились точнее. В 1654 году итальянский герцог и ученый-любитель создал такую систему наблюдения.


Фердинандо II Медичи активно поддерживал развитие новых наук в Италии эпохи Возрождения.


Фердинандо II Медичи, великий герцог Тосканский, жил в Палаццо Питти, роскошном здании в самом сердце Флоренции. Флоренция была центром эпохи Возрождения, и Фердинандо, увлеченный алхимик-любитель, общался с великими художниками, инженерами и представителями нового поколения ученых, такими как Галилей. Его завораживали новые изобретения и чудеса техники: гигрометр, измеряющий влажность; анемометр, измеряющий скорость ветра; барометр для измерения атмосферного давления; термоскоп – грубый прототип термометра. Считается, что Фердинандо, вдохновившись работами Галилея, изобрел термометр Галилея, в котором использовались стеклянные колбочки-поплавки, наполненные спиртом под разным давлением. Эти колбочки плавали в цилиндре с водой, то всплывая к поверхности, то опускаясь, так как с изменением температуры воздуха менялась их плотность. Устройство выглядело красиво, но пользоваться им было неудобно.

Первый метеоролог

Хотя создателями системы наблюдения за погодой считаются Медичи, первым метеорологом – человеком, систематически записывающим метеоданные – был Уильям Мерл. Он работал в Оксфорде в начале XIV века и вел ежедневный учет погоды на протяжении 15 лет. Его записи – старейшая информация такого рода, дошедшая до наших дней.

Полевые испытания

Фердинандо, один из самых богатых людей во всем мире (хотя богатство династии Медичи уже начинало таять), отправлял свои измерительные приборы в разные города Италии, а также современной Австрии, Франции и Польши, создавая таким образом первые метеостанции. Измерения, собранные в десяти географических точках, отправляли обратно во Флоренцию для анализа в Академии дель Чименто, которую основал брат Фердинандо – Леопольдо. Ее название приблизительно переводится как «академия испытаний» (а вернее, «экспериментов»). Академия могла бы стать первым в мире научным институтом, но Медичи видели в ней скорее клуб, к которому постепенно и вовсе потеряли интерес. Это привело к утрате собранных метеорологических измерений и сделанных на их основе выводов.

Передача информации на большие расстояния

Несмотря на то, что начинание Медичи потерпело неудачу, их пример помог создать целую сеть пунктов наблюдения за погодой в другой стране. Очередной прорыв в этой области произошел в 1849 году, когда в Смитсоновском Институте (в Вашингтоне, столице США) для сопоставления метеоданных стали использовать телеграф. Институт был основан в 1846 году, и первым его руководителем был Джозеф Генри, пионер в области электромагнитных технологий и один из изобретателей телеграфа. Ежедневно 150 станций по всей стране передавали сводки, из которых составлялась суточная карта погоды. Она вывешивалась в здании Смитсоновского института, и желающие могли с ней ознакомиться.

Породная толща

В 1669 году датчанин Нильс Стенсен, известный также как Николас Стено, сформулировал четыре основных принципа напластования горных пород, тем самым заложив основу современной геологии.

Интерес Стено к истории Земли и горным породам возник, когда он изучал окаменелости. Спустя несколько лет он создал всеобъемлющую теорию стратиграфии, науки, изучающей земную толщу – пласты горных пород, которые можно увидеть в любом каньоне или местности, подвергшейся сильной эрозии. Он представил теорию в 1669 году в эссе «О твердом, естественно содержащемся в твердом» (De solido intra solidum naturaliter contento). В его труде были изложены основные принципы физической геологии, науки, которая рассматривает горные породы, полезные ископаемые и крупные объекты рельефа планеты.

Крупным планом

Первым изучать окаменелости под микроскопом начал естествоиспытатель Роберт Гук. В 1665 году он опубликовал свои наблюдения в книге «Микрография». В те времена микроскоп был совсем новым инструментом, и с его помощью Гук увидел сходство структуры живой и окаменелой древесины. Он предположил, что органический материал, погруженный в воду, богатую минеральными веществами, со временем превращается в камень.

Камни-языки

В 1666 году Стено препарировал акулу и с удивлением обнаружил сходство акульих зубов и каменистых образований треугольной формы, так называемых камней-языков. Стено заявил, что камни-языки в действительности были зубами живших в древности акул и что ткань тела акулы с течением времени постепенно замещалась минералами. Другими словами, окаменелости были образцами жизни разных исторических эпох.

Четыре принципа

Первый принцип Стено – принцип суперпозиции: «Во время образования какого-либо слоя под ним находилось другое твердое тело, которое препятствовало дальнейшему опусканию порошкообразного вещества…». Второй – принцип первичной горизонтальности слоев: «Во время образования одного из верхних слоев нижний слой уже приобрел твердую консистенцию…». Следующий – принцип непрерывности слоев по горизонтали: «Во время образования какого-либо слоя он был ограничен сбоку другим твердым телом или же покрывал весь земной шар. Отсюда следует также, что всюду, где заметны обнаженные куски слоев, можно найти их продолжение или открыть другое твердое тело». И наконец, последний – принцип первичных пространственных соотношений: «Во время образования какого-либо слоя лежащее наверху его вещество было целиком жидким и, следовательно, при образовании самого нижнего слоя ни одного из верхних слоев еще не существовало».


Научные интересы Стено были весьма разнообразны. Он исследовал не только процессы напластования горных пород и формирование окаменелостей, но и микроструктуру кристаллов, составляющих основу горных пород.


Температура

Понемногу человечество научилось измерять влажность воздуха, атмосферное давление, скорость и направление ветра. Но есть еще одна важная составляющая погодных измерений – температура. Путь к созданию надежного термометра оказался длинным.

Попыток измерить температуру воздуха было много, но создать точный прибор, который можно было бы изготавливать в больших количествах, было крайне трудно. Такой прибор, независимо от места и времени использования, должен показывать достоверные значения, которые можно было бы сравнить с показаниями такого же прибора в другом месте или в другое время. Для температурной шкалы нужны всего лишь верхняя и нижняя точки с равными делениями между ними – градусами. Сначала температуру пытались измерять с помощью термоскопов, но они оказались бесполезными: несмотря на то, что трубки, наполненные подкрашенным спиртом, работали исправно, показания были противоречивыми. Требовалось усовершенствовать прибор и создать более точную градуировку.


Среди записей Даниеля Фаренгейта от 1736 года можно увидеть сделанный от руки эскиз ртутной лампы.


Проект лежачего больного

В 1702 году датский астроном Оле Рёмер сломал ногу и какое-то время был прикован к постели, и чтобы не терять времени даром, он решил заняться улучшением термометра. Сперва Рёмер нашел стеклянную трубку с постоянным диаметром, в чем убедился, следя за шириной залитой в трубку капли ртути. Потом он припаял трубку к небольшому шарику, служившему резервуаром, и наполнил его спиртом, окрашенным шафраном в желтый цвет. По задумке спирт должен подниматься на высоту, равную ширине резервуара, когда температура поднималась на 10 градусов по шкале.

Термоскоп

При ближайшем рассмотрении видно, что термоскоп не слишком отличался от вечного двигателя Дреббеля начала XVII века. Чтобы отмечать повышение и понижение температуры, использовали свойства расширения и сжатия воздуха, заключенного в стеклянном шаре на верхнем конце трубки. При понижении температуры воздух сжимался, и жидкость (обычно вода) поднималась вверх по трубке. Повышение температуры приводило к расширению воздуха, и уровень воды падал. В термометре же все происходило наоборот. На некоторых термоскопах были указаны градусы, но ни одна градуировка не подходила для создания универсальной шкалы, которую можно было бы воспроизвести на другом устройстве.


Что за метод использовал Рёмер – неизвестно. В те времена изготовители термометров держали разработки в тайне, чтобы только они могли создавать и продавать устройства надлежащего качества. Считается, что он отметил на трубке две точки – точку замерзания и точку кипения воды – и нанес между ними семь делений, добавив еще одно, восьмое, ниже нулевой отметки. Верхней точке он присвоил значение 60, что означало, что вода замерзала при 7,5°Rø. Температура замерзания солевого раствора равнялась 0°Rø. На основе этого термометра Рёмер сделал еще несколько устройств для измерения температуры воздуха, воды и человеческого тела. А в 1708 году к нему в гости пожаловал молодой немецкий приборостроитель.

Шкала Фаренгейта

Гостем Рёмера был Даниель Фаренгейт, которому тогда едва исполнилось двадцать лет. Вдохновившись шкалой Рёмера, он создал собственную, которая значительно лучше прошла проверку временем. Фаренгейту понадобилось еще 16 лет, чтобы довести шкалу и устройство термометра до совершенства.

Преимуществом Фаренгейта были навыки стеклодува, которые позволили ему в 1714 году создать первые функциональные ртутные термометры. К 1724 году он переделал шкалу Рёмера, избавившись от бесполезных делений в полградуса, и установил три фиксированных точки на шкале, от которых можно было отталкиваться при градуировке. Нулевой точкой была температура смеси из воды, льда и соли (соединение нашатыря и морской соли) – самая холодная смесь, которую он мог приготовить независимо от времени года. Однако Фаренгейт старался выполнять большую часть работы с низкими температурами зимой, чтобы лед не таял слишком быстро.


Ирландский ученый XVII века Роберт Бойль, один из первых исследователей природы холода, использовал множество различных термоскопов и термометров, но не смог добиться точности в своих измерениях.


Второй отметкой была температура замерзания воды – 32°F – почти в четыре раза больше значения Рёмера. Третьей точкой была температура ротовой полости – 96°F – чуть ниже температуры тела здорового человека. Верхняя отметка, обозначающая точку кипения воды, была установлена на 212°F.

Фаренгейту не удалось заработать на продаже своих точных, но дорогих термометров, и в 1736 году он умер в нищете. Считается, что Фаренгейт слишком рьяно охранял свое изобретение, поэтому покупатели не могли оценить всех его достоинств. Не прошло и десяти лет, как научное сообщество приняло шкалу Фаренгейта за эталон, ею пользовались вплоть до XX века, пока ее не заменила десятичная шкала Цельсия. Однако в США до сих пор используют шкалу Фаренгейта.

Скорость света

Температурная шкала была побочным изобретением Оле Рёмера. Он уже вошел в историю в 1676 году, измерив скорость света. В то время он работал в Парижской обсерватории (на рисунке), изучал Ио – один из четырех крупных спутников Юпитера, открытых Галилеем в 1609 году. Когда Ио находится за Юпитером, его не видно с Земли, но Рёмер рассчитал траекторию движения спутника и точно знал время, когда Ио должен был появиться на небе. Сравнив свои наблюдения с расчетами, Рёмер обнаружил, что Ио всегда «задерживался» примерно на 10 минут, и понял, что свет доходил до Земли не сразу. Проходило некоторое время, прежде чем свет от спутника попадал в окуляр телескопа, причем время увеличивалось по мере удаления Земли (движущейся вокруг Солнца) от Юпитера. Используя эту разницу, Рёмер вычислил, что свет проходит 220 000 км в секунду, что на 25 % меньше современного значения. И до Рёмера были исследователи, которые пытались измерить скорость света при помощи ламп и прочих приспособлений, но он был первым, кому удалось получить конкретный результат.

Ветер

В период великих географических открытий мореплаватели совершили много успешных экспедиций. Но морские путешествия были бы невозможны без ветров, дующих над океанами. В 1735 году загадку направления ветров объяснил не кто иной, как… адвокат.



Теорию циркулирующих ячеек воздуха, сформулированную Джорджем Хэдли в XVIII веке, до сих пор используют при описании механизма возникновения ветров.

Теория Солнечного тепла

В конце 1670-х годов ученый Эдмунд Галлей – известный тем, что предсказал возвращение кометы, которая теперь носит его имя, – отправился на крошечный остров Святой Елены в Южной Атлантике. Помимо отчетов о путешествии, Галлей составил подробную карту пассатов и предложил теорию возникновения ветров. В ней говорилось, что основным источником движения воздуха является солнечное тепло. Он предположил, что теплый воздух поднимается и распространяется в атмосфере, создавая таким образом ветры. По мнению Галлея, пассаты дули на запад, следуя за движением Солнца в небе. Такое представление было созвучно древнекитайским идеям, которые вызывали недовольство Ван Чуна за 1600 лет до этого, – и теория Галлея тоже была признана несостоятельной.


Европейские путешественники, желавшие пересечь Атлантику на парусном судне и достичь экзотических стран, должны были поймать пассаты, дующие с северо-востока в направлении Карибского бассейна и Южной Америки. Чтобы вернуться домой, они разворачивали корабль на север, чтобы поймать западные ветры. Если путь лежал на восток, в Индию, корабль должен был плыть на юго-запад почти до Бразилии, пересечь экватор и поймать западные ветры у мыса Доброй Надежды, чтобы обогнуть Африку и попасть в Индийский океан. Штурманы научились быть осторожными в тропических морях (около 30° от экватора), где ветры часто ослабевали и корабли не могли продолжить плавание. Эти районы носили название «Конские широты» – когда во время штиля запасы пресной воды истощались, лошади были первым грузом, который отправляли за борт (хотя существуют и другие объяснения).

Циркуляция воздуха

Гипотезы о том, почему ветры дуют определенным образом, предлагали несколько ученых, и одним из них был Эдмунд Галлей. Спустя 50 лет Джордж Хэдли, адвокат и метеоролог-любитель, опроверг гипотезу Галлея. Он считал, что пассаты представляют собой нижний слой циркулирующего в атмосфере воздуха. Нагретый Солнцем воздух на экваторе поднимается вверх и распространяется на север на несколько километров над поверхностью Земли. Над тропиками воздух остывает, снова опускается к поверхности и возвращается к экватору в виде ветра. Такая модель циркуляции воздуха называется ячейкой Хэдли. Их всего две: к северу и к югу от экватора, и они опоясывают земной шар.

Эффект Кориолиса

Почему ветры дуют не строго с севера на юг или с юга на север? Почему курс господствующих ветров меняется? Джордж Хэдли понял, что это происходит из-за вращения Земли с запада на восток, но объяснить, как это происходит, он не смог. Французский математик Гаспар-Гюстав де Кориолис сделал это веком позже. Эффект Кориолиса можно наблюдать на поверхности вращающихся сфер. Ветры (или другие объекты), движущиеся по прямой, описывают дугу по поверхности. К северу от экватора ветры поворачивают направо, поэтому южные потоки пассатов отклоняются к юго-западу, а северные потоки – к востоку (и становятся западными). К югу от экватора ветры отклоняются влево. Теоретически это означает, что водовороты – в том числе те, которые возникают в сливе бытовой раковины для умывания, – должны вращаться в северном полушарии по часовой стрелке, а в южном – против нее. Путешественники, проверяя это, часто бывают разочарованы. Даже небольшое возмущение воды, например всплеск или брызги, может пересилить воздействие вращения Земли.


Рядом с ячейкой Хэдли формируются похожие ячейки, с той лишь разницей, что поверхностные ветры дуют в направлении полюсов и отклоняются от курса из-за вращения Земли, становясь западными ветрами. В полярных районах еще один вид ячеек производит слабые, но очень холодные восточные ветры.


Вершиной кораблестроения в XIX веке были клиперы. Даже когда корабли стали металлическими и у них появились двигатели, в дальние плавания в Индию и Австралию ходили на клиперах – маневренных судах, созданных, чтобы ловить сильные юго-западные ветры.


Страницы книги >> Предыдущая | 1 2 3 4 5 | Следующая
  • 2.7 Оценок: 3

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации