Текст книги "После «Структуры научных революций»"
Автор книги: Томас Кун
Жанр: Зарубежная образовательная литература, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 2 (всего у книги 26 страниц)
Часть 1
Переосмысление научных революций
Глава 1
Что такое научные революции?
Статья «Что такое научные революции?» впервые была опубликована в «The Probabilistic Revolution», volume I: Ideas in History, edited by Lorenz Kruger, Lorraine I Daston, and Michael Heidelberger (Cambridge, MA: MIT Press, 1987). Три примера, образующие основу статьи, были представлены в первой из трех лекций, объединенных общим заглавием «Природа концептуального изменения» и прочитанных в конце ноября 1980 г. в университете «Нотр-Дам» в рамках цикла лекций «Перспективы философии науки». Почти в том же виде, но под названием «От революций к важнейшим признакам» эта статья была прочитана на ежегодной конференции Общества когнитивной науки в августе 1981 г.
Прошло почти двадцать лет с тех пор, как я впервые провел различие между двумя типами развития науки – нормальным и революционным[3]3
T.S. Kuhn, «The Structure of Scientific Revolutions» (Chicago: University of Chicago Press, 1962).
Русский перевод: Кун Томас. Структура научных революций. М., ACi; 2001. – Примеч. пер.
[Закрыть]. Большая часть успешных научных исследований укладывается в изменение первого типа, которое вполне соответствует привычному образу: нормальная наука производит материал, который научное исследование добавляет к постоянно возрастающему запасу научного знания. Эта кумулятивная концепция развития науки хорошо известна, и именно она породила громадное количество методологической литературы. И она сама, и ее методологическое сопровождение применимы ко многим важным видам научной деятельности.
Однако развитие науки выказывает также признаки не-кумулятивности, эпизоды некумулятивного развития позволяют по-новому осветить важнейшие стороны научного познания. Здесь я попытаюсь выделить несколько ключевых идей, для начала дав описание трех примеров революционного изменения, а затем кратко рассмотрев три характерные черты, присущие всем этим примерам. Конечно, революционные изменения обладают и другими общими чертами, однако эти три особенности обеспечивают достаточную основу для теоретического анализа, которым я сейчас занят и которым неожиданно заинтересовался, когда заканчивал эту статью.
Прежде чем обратиться к первому примеру, позвольте мне – для тех, кто не очень хорошо знаком с моей терминологией – пояснить, что это за пример.
Революционное изменение частично определяется его отличием от нормального изменения, а нормальное изменение, как уже упомянуто, добавляет нечто к тому, что уже известно. Например, обычным результатом этого нормального процесса являются научные законы: иллюстрацией может служить закон Бойля. Его первооткрыватели предварительно имели понятие о давлении газа и его объеме, а также обладали инструментами для определения величины давления и объема. Открытие того факта, что для конкретного газа при постоянной температуре произведение давления на объем является константой, просто добавило что-то к нашему знанию о том, как ведут себя эти уже ранее известные переменные[4]4
Выражение «ранее известные» ввел К. Гемпель, показавший, что во многих случаях оно может заменять понятие «наблюдаемые» при рассмотрении разницы между терминами наблюдения и теоретическими терминами (см., в частности, его работу «Aspects of Scientific Explanation». New York: Free Press, 1965, pp. 208ff. – Русский перевод: Гемпель К.Г. Логика объяснения. М., 1998). Я заимствовал у него это выражение, потому что понятие ранее известного термина, по сути, является историческим и его употребление в рамках логического эмпиризма указывает на важную область пересечения между традиционным подходом в философии науки и более новым историческим подходом. В частности, тонкий аппарат, разработанный логическим эмпиризмом для формирования и определения теоретических терминов, часто можно целиком перенести в рамки исторического подхода и использовать при анализе образования новых понятий и определения новых терминов, что обычно происходит при введении новой теории. Более систематическая процедура частичного сохранения различия между эмпирическим и теоретическим посредством включения его в исторический подход была разработана Й.Д. Снидом («The Logical Structure of Mathematical Physics». Dordrecht: Reidel, 1971, pp. 1—64, 249–307). Вольфганг Штегмюллер уточнил и расширил подход Снида, предложив иерархию теоретических терминов, в которой каждый уровень вводится конкретной теорией, возникавшей в истории науки («The Structure and Dynamics of Theories». New York: Springer, 1976, pp. 40–67, 196–231). Общая картина лингвистических напластований обнаруживает интересные параллели с концепцией Мишеля Фуко, представленной им в: «The Archeology of Knowledge», trans. A.M. Sheridan Smith (New York: Pantheon, 1972). – Русский перевод: Фуко M. Археология знания. Киев, 1996.
[Закрыть]. Громадное большинство научных достижений относится к этому нормальному виду развития. Но я не буду без нужды умножать примеры.
Революционные изменения являются иными и гораздо более проблематичными. Они включают в себя открытия, которые нельзя совместить с ранее используемыми понятиями. Чтобы сделать или ассимилировать такое открытие, человек должен изменить сам способ мышления и описания естественных феноменов. Открытие Ньютоном (в подобных случаях лучше говорить об «изобретении») второго закона движения принадлежит к этому типу. Понятия силы и массы, входящие в этот закон, отличаются от похожих понятий, использовавшихся до введения этого закона, и сам закон играет существенную роль в определении этих понятий.
Вторым, более развернутым, хотя и более простым примером может служить переход от астрономии Птолемея к астрономии Коперника. До этого перехода Солнце и Луна были планетами, а Земля планетой не была. После этого перехода Земля стала планетой, подобно Марсу и Юпитеру, Солнце стало звездой, а Луна превратилась в небесное тело нового вида – спутник.
Изменения подобного рода нельзя свести к исправлению чьих-то ошибок, содержащихся в системе Птолемея. Подобно переходу к законам движения Ньютона, они включают в себя изменения не только в законах природы, но также и в критериях, согласно которым термины, входящие в эти законы, применяются к природе. Более того, сами эти критерии частично зависят от теории, вместе с которой они вводятся.
Когда такие изменения в референции сопровождают изменения законов или теорий, развитие науки не может быть вполне кумулятивным. Нельзя перейти от старого к новому, просто добавив новое к уже известному. И это новое нельзя описать в словаре старого, и наоборот.
Рассмотрим составное предложение: «В системе Птолемея планеты вращались вокруг Земли; в системе Коперника они вращаются вокруг Солнца». Строго говоря, это предложение является бессвязным. Первое вхождение термина «планета» является птолемеевским, второе – коперниканским, и оба термина применяются к природе по-разному. Это составное предложение является истинным только вследствие отсутствия единого прочтения термина «планета».
Столь схематичные примеры лишь намекают на то, что происходит во время революционного изменения. Поэтому я хочу обратиться к более полным примерам, начав с того, который лет тридцать назад привел меня к осознанию революционных изменений, а именно: с перехода от физики Аристотеля к физике Ньютона. Здесь может быть рассмотрена лишь его небольшая часть, касающаяся проблем движения и механики, да и то весьма схематично. Вдобавок я переворачиваю историческую последовательность и описываю не то, что требовалось натуральному философу-аристотелианцу, чтобы прийти к ньютоновским понятиям, а то, что нужно мне, ньютонианцу, для того, чтобы прийти к понятиям философии природы Аристотеля. Я буду путешествовать в глубь веков, руководствуясь текстами, аналогично тому, как ранние ученые двигались вперед, руководствуясь не текстами, а самой природой.
Некоторые физические сочинения Аристотеля я впервые прочитал летом 1947 г. Будучи аспирантом-физиком, я хотел представить анализ конкретного случая развития механики для учебного курса по науке для неспециалистов. Неудивительно, что к текстам Аристотеля я подходил с позиций ньютоновской механики, которая казалась мне совершенно ясной. Я надеялся найти ответ на вопрос: что из механики было известно Аристотелю и что осталось открыть таким людям, как Галилей и Ньютон.
При таком подходе я быстро обнаружил, что Аристотель почти ничего не знал из механики. Практически все было сделано последующими поколениями, по большей части в XVI и XVII столетиях. Это был вполне стандартный вывод, и в принципе он мог быть справедливым. Однако он вызывал у меня беспокойство, поскольку, по мере чтения, Аристотель казался мне не только невеждой в механике, но и вообще чрезвычайно плохим ученым. В частности, его сочинения о движении казались мне наполненными ужасными ошибками – как в логике, так и в наблюдении.
Это было неправдоподобно, ибо Аристотель, в конце концов, был величайшим систематизатором античной логики. Спустя два тысячелетия после его смерти труды его играли почти такую же роль в логике, как труды Евклида в геометрии. Аристотель часто проявлял себя чрезвычайно тонким наблюдателем природы. В частности, в биологии его описания служили моделями, сыгравшими центральную роль при формировании современной биологической традиции в XVI и XVII столетиях.
Почему выдающиеся способности изменяли ему, когда он обращался к изучению движения и механики? Опять-таки если способности ему здесь изменяли, то почему его сочинения по физике привлекали столь серьезное внимание на протяжении многих столетий после смерти? Эти вопросы неотступно преследовали меня. Я мог бы легко поверить в то, что Аристотель ошибался, но казалось невероятным, что, обращаясь к физике, он вообще утрачивал разум. «Может, ошибаюсь я, а не Аристотель, – спрашивал я себя. – Возможно, для него и его современников слова означали не совсем то, что они означают для меня?»
Охваченный сомнениями, я продолжал ломать голову над его текстами, постепенно мои подозрения обрели прочную основу. Я сидел за своим письменным столом, перечитывая «Физику» Аристотеля с цветным карандашом в руке. Погруженный в размышления, я оторвался от текста и рассеянно взглянул в окно. Внезапно обрывки мыслей в моем сознании сложились в совершенно новую картину. Я вдруг понял, что Аристотель был очень хорошим физиком, но особого рода, о котором я никогда не думал. Теперь я смог понять, что он говорил, почему говорил и на чем основывался его авторитет. Утверждения, которые ранее казались мне ошибочными, теперь предстали в качестве элементов влиятельной и в целом успешной традиции.
Такого рода опыт – когда отдельные части вдруг объединяются по-новому – является первой общей чертой революционного изменения, которую я отмечу после дальнейшего рассмотрения примеров. Хотя научные революции не охватывают многих элементов, основное изменение нельзя воспринять постепенно, шаг за шагом. Оно представляет собой относительно неожиданную и цельную трансформацию, в которой некоторая часть приобретенного опыта организуется иначе и обнаруживает факты, которых не замечали раньше.
Чтобы конкретизировать все эти рассуждения, позвольте рассказать о некоторых деталях моего открытия способа чтения «Физики» Аристотеля, чтобы понимать ее смысл.
Первая иллюстрация многим известна. Когда термин «движение» встречается в физике Аристотеля, он говорит об изменении вообще, а не об изменении положения физического тела. Изменение положения, этот единственный предмет механики Галилея и Ньютона, является одним из подвидов движения для Аристотеля. Другие виды включают в себя рост (превращение желудя в дуб), изменение интенсивности (нагревание железной болванки) и многие другие более общие качественные изменения (переход от болезни к выздоровлению). Таким образом, хотя Аристотель осознает, что различные подвиды не похожи во всех отношениях, базисные характеристики, необходимые для выделения и анализа движения, должны быть применимы к изменениям всех видов. Это не просто метафора, ибо все варианты изменения рассматриваются как подобные друг другу, как образующие отдельное естественное семейство[5]5
Обо всем этом см. «Физику» Аристотеля, книга V, гл. 1–2 (224а21—226b16). У Аристотеля не было понятия изменения более широкого, чем понятие движения. Движение есть изменение субстанции, изменение из чего-то во что-то (225а1). Но изменение включает в себя также возникновение и уничтожение, то есть изменение из ничего во что-то и из чего-то в ничто (225а34—225b9), а это не является движением.
[Закрыть].
Вторым, еще более важным, аспектом физики Аристотеля является центральная роль качеств в его концептуальной структуре. Я имею в виду не просто стремление объяснить качества и их изменения, как делают другие физики. Физика Аристотеля переворачивает онтологическую иерархию материи и качества – ту иерархию, которая стала обычной с середины XVII столетия.
В ньютоновской физике тело состоит из частиц материи, и его качества являются следствием их связи, движения и взаимодействия. С другой стороны, в физике Аристотеля материя есть нечто несущественное. Это некий нейтральный субстрат, присутствующий там, где находится тело, то есть в каком-то пространстве или месте. Конкретное тело, субстанция, существующая в каком-то месте нейтрального субстрата, отличается тем, что субстрат, подобно губке, впитывает в себя качества – теплоту, влажность, цвет и т. п. Изменения связаны с изменением качеств, а не материи: одна и та же материя теряет одни качества и приобретает другие. Здесь существуют даже некоторые неявные законы сохранения, которым должны подчиняться качества[6]6
См. «Физику» Аристотеля, книга I, а также «О возникновении и уничтожении», книга II, гл. 1–4.
[Закрыть].
Физике Аристотеля присущи и другие общие особенности, причем имеющие большое значение. Однако я буду говорить только об этих двух, ссылаясь на другие лишь по необходимости. Теперь я хочу начать с того, что по мере осознания тех или иных особенностей позиции Аристотеля они начинают подкреплять друг друга и соединяются в некую целостность, обладающую общим и нераздельным смыслом. В моем опыте проникновения в тексты Аристотеля новые куски сразу укладывались в возникшую целостную картину.
Начнем с понятия качественной физики. Когда конкретный объект анализируют, выявляя качества, налагаемые на вездесущую нейтральную материю, то одним из этих качеств оказывается положение объекта или, в терминологии Аристотеля, его место. Таким образом, положение объекта, подобно влажности или сухости, является его качеством, которое изменяется, когда объект движется или его двигают.
Следовательно, для Аристотеля локальное движение (движение tout court в смысле Ньютона) является изменением качества или изменением состояния, а не состоянием самим по себе, как у Ньютона. Однако именно рассмотрение движения как изменения качества позволяет объединить его с остальными видами изменения – например, с превращением желудя в дуб или болезни в здоровье. Это объединение является той стороной физики Аристотеля, с которой я начал, но я мог бы начать и с чего-то другого. Концепция движения как изменения и концепция качественной физики обнаруживают глубокую взаимную зависимость и кажутся почти эквивалентными. Это первый пример слияния разных частей в некое единство.
Как только это становится ясно, и другие стороны аристотелевской физики, которые сами по себе кажутся нелепыми, начинают приобретать смысл. По большей части качественные изменения, в частности в области органической жизни, являются асимметричными, по крайней мере когда предоставлены самим себе. Желудь естественным образом развивается в дуб, но не наоборот. Больной человек часто выздоравливает сам по себе, однако нужен некий внешний агент, или считается, что нужен, для того чтобы он заболел. Единый массив качеств, конечный пункт изменения, представляет собой естественное состояние тела, и само по себе тело остается в этом состоянии.
Такая же асимметрия должна быть присуща локальному движению, то есть изменению положения, и так оно и есть. Качество, которое стремится реализовать камень или другое тяжелое тело, есть его положение в центре универсума; естественное положение огня находится на периферии. Это объясняет, почему камень, если ему не мешают, падает к центру, а огонь стремится к небесам. Они реализуют свои естественные свойства точно так же, как реализует их желудь в процессе роста. Таким образом, становится понятной другая, ранее казавшаяся странной, часть учения Аристотеля.
Можно продолжать в том же духе, постепенно включая отдельные элементы аристотелевской физики в целостную картину. Однако я завершу рассмотрение примера иллюстрацией, а именно учением Аристотеля о пустоте, или вакууме. Оно с особой ясностью показывает, каким образом утверждения, которые сами по себе кажутся произвольными, взаимно подкрепляют друг друга.
Аристотель утверждает, что пустота невозможна. С его точки зрения, понятие пустоты внутренне противоречиво. Теперь должно быть ясно, почему это так. Если положение есть качество, а качества не могут существовать отдельно от материи, то везде, где есть положение, где может находиться тело, должна существовать и материя. Но это значит, что везде в пространстве должна существовать материя: пустота, пространство без материи, становится чем-то вроде круглого квадрата[7]7
Здесь отсутствует один «ингредиент»: учение Аристотеля о месте, изложенное в «Физике», книга IV, как раз перед рассмотрением вопроса о вакууме. Место, по Аристотелю, всегда есть место тела или, точнее, внутренняя поверхность, содержащая или окружающая тело (212а2—7). Переходя к следующей теме, Аристотель говорит: «После того как место нами определено, а пустота необходимо должна быть местом, если она есть нечто лишенное тела, а в каком смысле место существует, в каком нет, нами сказано, [нам должно быть] ясно, что пустота так не существует – ни как нечто неотделимое, ни как отделимое» (214а16—214а20). (Цит. по: Аристотель. Соч. в 4-х томах. Т 3. М., Мысль, 1981. С. 137.) В заключительной части следующего абзаца говорится о том, что замена слова «место» словом «положение» не является просто ошибкой.
[Закрыть].
Это хороший аргумент, однако его предпосылка кажется произвольной. Аристотелю не обязательно истолковывать положение как некое качество. Возможно, это так, но мы уже заметили выше, что эта концепция лежит в основе истолкования им движения как изменения состояния, от нее зависят и другие аспекты его физики. Если бы пустота существовала, то универсум, или космос, Аристотеля не мог быть конечным. Поскольку материя и пространство коэкстенсивны, пространство заканчивается там, где заканчивается материя, и за пределами самой далекой сферы вообще ничего нет – ни пространства, ни материи.
Это учение тоже не кажется необходимым. Однако расширение сферы звезд в бесконечность поставило бы проблемы перед астрономией, поскольку эта сфера вместе со звездами вращалась вокруг Земли.
Другое, еще более важное затруднение возникает еще раньше. В бесконечном универсуме нет центра – любая точка может считаться таким центром, поэтому нет естественного положения, в котором камни и другие тяжелые тела могли бы реализовать свое естественное качество. Иначе говоря, в пустоте тело не могло бы знать, где его естественное место. Именно благодаря контакту со всеми положениями в универсуме через посредство всепроникающей материи тело способно найти путь к тому месту, в котором полностью реализуются его естественные качества. Только наличие материи придает пространству определенную структуру[8]8
См. об этом и других аргументах в «Физике» Аристотеля, книга IV, глава 8 (в частности, 214b27—215а24).
[Закрыть].
Таким образом, критика аристотелевского учения о пустоте угрожает и его теории естественного движения, и древней геоцентрической астрономии. Нет способа «исправить» взгляды Аристотеля на пустоту, не перестраивая значительной части всей его физики.
Хотя эти замечания являются упрощенными и неполными, все-таки они в достаточной мере иллюстрируют способ, с помощью которого аристотелева физика структурирует и описывает мир феноменов. Еще важнее, что они указывают, каким образом отдельные части этого описания, соединяясь вместе, образуют интегральную целостность, которая была разрушена и реформирована на пути к построению ньютоновой механики.
Теперь я сразу перейду ко второму примеру и обращусь к началу XIX столетия. 1800 год, помимо прочего, замечателен тем, что в этом году Вольта открыл электрическую батарею. Об этом открытии он сообщил в письме к сэру Джозефу Бэнксу, президенту Королевского общества[9]9
Alessandro Volta. «On the Electricity Excited by the mere Contact of Conducting Substances of Different Kinds», Philosophical Transactions, 90 (1800): 403–431. См. об этом: T.M. Brown. «The Electric Current in Early Nineteenth-Century French Physics». Historical Studies in the Physical Sciences I (1969): 61-103.
[Закрыть]. Письмо предназначалось для публикации и было снабжено иллюстрацией, воспроизведенной на рис. 1.
Для современного читателя в этом рисунке есть нечто странное, хотя эту странность редко замечают даже историки. Если мы взглянем на так называемые «столбики» (из монет) в нижней части рисунка, то, двигаясь справа и снизу вверх, сначала увидим пластинку из цинка, Z, затем – пластинку из серебра, А, потом – кусочек мокрой промокательной бумаги, затем – вторую пластинку из цинка и так далее. Цикл, состоящий из цинка, серебра и промокательной бумаги, повторяется целое число раз, в оригинале – восемь. Теперь допустим, вам дали взглянуть на эту диаграмму, а затем попросили воспроизвести ее по памяти. Скорее всего тот, кто хотя бы немного знаком с физикой, поместит сначала цинк (или серебро), затем – промокательную бумагу и лишь потом – серебро (или цинк). В электрической батарее, как все мы хорошо знаем, жидкость находится между двумя разными металлами.
Приняв к сведению эту головоломку, начинаешь понимать, что для Вольты и его последователей отдельный элемент состоит из двух металлических пластинок, соединенных вместе. Источником силы является контакт металлов, в котором Вольта обнаружил источник электрического напряжения. Тогда роль жидкости состоит просто в том, чтобы связывать один элемент с другим, не создавая потенциала, способного нейтрализовать первоначальный эффект. Изучая текст Вольты дальше, приходишь к выводу, что свое новое открытие он относил к электростатике. Биметаллическое соединение оказывается конденсатором, или лейденской банкой, которая заряжает саму себя. Тогда столбик из отдельных элементов представляется как ансамбль или «батарея» самозаряжающихся лейденских банок. Вот так термин «батарея» начинает применяться к электричеству. Подтверждением может служить верхняя часть рисунка Вольты, иллюстрирующая структуру, которую он называет «связкой чашек».
Рис. 1
Хотя этот рисунок очень похож на диаграммы в современных элементарных учебниках, здесь опять-таки имеется странность. Почему чашки на двух концах диаграммы содержат только один кусок металла? Почему Вольта включает две половинки элемента? Ответ прежний. Для Вольты чашки являются не элементами, а простыми емкостями для жидкости, связывающей элементы. Сами элементы являются биметаллическими подковообразными прутиками. Незанятые места в крайних чашках мы должны представлять себе как связанные дополнительным прутом. В диаграмме Вольты нет половинок элементов.
Как и в предшествующем примере, такой взгляд на электрическую батарею приводит к разнообразным следствиям. Как показано на рис. 2, например, переход от представлений Вольты к современным сохраняет направление потока. Современное изображение элемента (рис. 2, в) можно получить из диаграммы Вольты (рис. 2, а) посредством перемещения левой пластины по кругу (рис. 2, б). При этом то, что было внутренним потоком, становится внешним, и наоборот. В диаграмме Вольты внешний поток идет от черной пластины к белой, поэтому черная пластина является положительной. В современном изображении и направление потока, и полярность противоположны.
Концептуально гораздо более важным является изменение понимания источника тока. Для Вольты существенным элементом ячейки и источником тока было соприкосновение металлических пластин. Когда ячейка была вывернута и жидкость стала соприкасаться с двумя металлическими пластинами, источником тока стал химический эффект этих взаимодействий.
Когда обе эти точки зрения были сопоставлены, то первая получила известность как контактная теория, а вторая – как химическая теория электрической батареи.
Рис. 2
Это лишь наиболее очевидные следствия электростатического понимания электрической батареи, но имеются и другие. Например, концепция Вольты не замечает концептуальной роли внешней цепи. То, что представляется нам внешней цепью, для Вольты является путем разряда, подобного разряду, который разряжает лейденскую банку. Поэтому ранние рисунки батареи не показывают внешней цепи, если нет стороннего вмешательства, например, электролиза или нагревания проволоки. Не раньше 1840-х годов в книгах по электричеству начинают появляться современные изображения электрических ячеек. На них уже можно видеть либо внешнюю цепь, либо указания на ее присутствие[10]10
Иллюстрации взяты из книги: A. de la Rive, «Traite d’electricite theorique et appliquee», vol. 2 (Paris: J.B. Bailiere, 1856), pp. 600, 656. Структурно похожие, но схематичные рисунки встречаются в экспериментальных исследованиях Фарадея с начала 1830-х гг. Мой выбор 1840-х годов в качестве периода, когда такие диаграммы стали стандартными, объясняется случайным подбором текстов по теории электричества, имевшихся у меня в руках. Во всяком случае, любое систематическое исследование должно было отметить разницу в английской, французской и немецкой реакциях на химическую теорию электрических батарей.
[Закрыть] (см. рис. 3 и 4).
Рис. 3
Рис. 4
Наконец, электростатическое истолкование электрической батареи ведет к отличному от современного пониманию электрического сопротивления. В тот период существовала электростатическая концепция сопротивления. Для изоляционного материала данного сечения сопротивление измеряли посредством толщины, которая позволяла ему не разрушаться и оставаться изолятором при данном напряжении. Для проводника определенного сечения сопротивление измеряли посредством той его длины, при которой он не расплавлялся, когда через него пропускали ток.
Сопротивление можно измерять таким способом, но результаты измерения несовместимы с законом Ома. Для получения этих результатов нужно представить электрическую батарею в виде гидродинамической модели. Здесь сопротивление становится похоже на трение протекающей воды о стенки трубы. Включение сюда закона Ома потребовало некумулятивного изменения подобного рода, поэтому для многих людей его принятие оказалось очень трудным. Это дает нам стандартный пример важного открытия, которое первоначально отвергалось или игнорировалось.
На этом я заканчиваю рассмотрение второго примера и перехожу к третьему, более современному и несколько более сложному.
До сих пор идут споры об источниках квантовой теории[11]11
Более полный вариант с подтверждающими фактами см. в моей работе: «Black-Body Theory and the Quantum Discontinuity», 1984–1912 (Oxford and New York: Clarendon and Oxford University Presses, 1978).
[Закрыть]. Главный предмет обсуждения – работа Макса Планка по проблеме черного тела – работа, ход которой можно представить следующим образом. Сначала Планк решил проблему черного тела в 1900 г., используя классический метод, разработанный австрийским физиком Людвигом Больцманом. Через шесть лет в его выводе была обнаружена небольшая, но принципиальная ошибка, затрагивающая один из важнейших элементов этого вывода. Планк исправил решение, но при этом был вынужден радикально отойти от традиции. В конечном счете этот разрыв с традицией привел к перестройке значительной части физики.
Начнем с Больцмана, который представлял себе газ как совокупность множества крохотных молекул, быстро движущихся в замкнутом сосуде и сталкивающихся друг с другом и со стенками сосуда. Из работ других физиков Больцман знал, какова средняя скорость молекул (точнее, каков в среднем квадрат их скорости). Но многие молекулы двигались, конечно, с меньшей, чем средняя, скоростью, а какие-то из них двигались быстрее. Больцман хотел установить, какая часть молекул двигалась с ½ от средней скорости, какая часть – с 4/3 средней скорости и так далее. Ни сам вопрос, ни ответ, который он нашел, не были открытием. Однако Больцман пришел к ответу новым путем, исходя из теории вероятностей, и этот путь имел фундаментальное значение для Планка.
Для нас здесь важен лишь один аспект метода Больцмана. Он рассматривал общую кинетическую энергию молекул Е. Чтобы использовать теорию вероятностей, он мысленно разделял эту энергию на маленькие кусочки, или элементы, величины г, как показано на рис. 5. Затем воображал случайное распределение молекул среди этих кусочков, вытаскивая пронумерованные бумажки из урны, чтобы установить место каждой молекулы, а потом исключая все распределения с общей энергией, отличной от Е. Например, если первая молекула попадала в последний отрезок (энергия Е), то единственно приемлемым распределением оказывалось бы такое, при котором все другие молекулы попадали в первый отрезок (энергия о).
Ясно, что такое распределение молекул в высшей степени невероятно. Более правдоподобной выглядит ситуация, когда большая часть молекул обладает какой-то энергией, и с помощью теории вероятностей можно обнаружить наиболее вероятное распределение энергии среди молекул. Больцман показал, как это сделать, и его результат совпадал с тем, что было получено ранее им самим и другими физиками.
Рис. 5
Этот способ решения проблемы был изобретен в 1877 г., а через двадцать три года, в конце 1900 г., Макс Планк применил его для решения иной проблемы – проблемы излучения черного тела. С физической точки зрения проблема состояла в том, чтобы объяснить, каким образом изменяется цвет нагретого тела в зависимости от его температуры.
Представьте, например, излучение железной болванки, которая по мере повышения температуры сначала начинает исходить жаром (инфракрасное излучение), потом краснеет и в конце концов становится ослепительно белой. Для анализа ситуации Планк вообразил контейнер, наполненный разного рода излучениями, то есть светом, теплом, радиоволнами и т. п. Вдобавок предположил, что в контейнере имеется некоторое количество «резонаторов» (представляя их в виде тонких электрических камертонов, каждый из которых настроен на излучение одной определенной частоты). Эти резонаторы поглощают энергию из общего потока излучения, и Планк ставит вопрос: как энергия, отбираемая каждым резонатором, зависит от ее частоты? Каково частотное распределение энергии среди резонаторов?
В таком понимании проблема Планка становится очень близкой к проблеме Больцмана, Планк применяет для ее решения вероятностную технику Больцмана. Грубо говоря, использует теорию вероятностей для нахождения пропорций, в которых резонаторы попадают в каждую отдельную ячейку, – точно так, как Больцман находил распределение молекул.
Его ответ соответствовал экспериментальным результатам лучше, чем любой другой, однако между его проблемой и проблемой Больцмана обнаружилось неожиданное различие. Для Больцмана ячейка величины s могла иметь много разных значений, что не влияло на результат. Несмотря на то что допустимые значения были взаимосвязаны и не являлись слишком большими или слишком маленькими, могло существовать бесконечно много удовлетворительных значений.
Проблема Планка показала иное: величину ячейки s детерминировали другие стороны физики. Она могла иметь лишь единственное значение, задаваемое знаменитой формулой ε = hv, в которой v является частотным резонатором, a h представляет собой универсальную константу, впоследствии названную именем Планка.
Планк, конечно, недоумевал относительно причины ограничения величины ячейки, но твердо следовал избранному пути. За исключением этой небольшой трудности, он все-таки решил свою проблему, а его подход остался близок подходу Больцмана. В частности, что наиболее важно, в обоих решениях разделение общей энергии Е по ячейкам величины 8 было мысленным, осуществляемым статистически. Молекулы и резонаторы могли распределяться по всей линии и подчинялись стандартным законам классической физики.
Описанная выше работа была проделана в конце 1900 г. Шесть лет спустя, в середине 1906 г., два других физика показали, что результат Планка не мог быть получен тем способом, который он использовал. Требовалось небольшое, но абсолютно решающее изменение рассуждений. Резонаторы не могли располагаться по всей непрерывной линии энергии, они могли располагаться только в особых ячейках. Иначе говоря, резонатор мог обладать энергией о, ε, 2ε, 3ε и т. д., но не (⅓)ε, (⅘)ε и т. д. Энергия резонатора также изменяется не непрерывно, а скачками на величину ε или кратную ε.
После этого рассуждение Планка стало совершенно иным и в то же время почти не изменилось. Математически оно не изменилось, поэтому читатели видели в его статье 1900 г. изложение стандартного нового аргумента. Однако физически сущности, к которым относился математический вывод, стали совершенно иными. В частности, элемент ε, возникший из мысленного разделения общей энергии, превратился в физический атом энергии, который может быть присущ каждому резонатору только в количестве 0, 1, 2, 3 и т. д. На рис. 6 это изменение представлено так, что оно напоминает вывернутую наизнанку электрическую батарею из моего последнего примера. Опять-таки эта трансформация является настолько тонкой, что ее трудно заметить. И вновь изменение носит принципиальный характер. Уже сам резонатор из знакомой вещи, подчиняющейся обычным физическим законам, превращается в нечто странное, несовместимое с традиционными методами физики. Как известно большинству из вас, подобные изменения продолжали происходить на протяжении двадцати лет – по мере того как обнаруживались новые сходные неклассические феномены.
Рис. 6
Я не буду говорить об этих более поздних изменениях, а завершу пример указанием на изменения иного рода, сопровождающие первые. При обсуждении более ранних примеров я упоминал, что за революциями всегда следовало изменение способа, которым термины типа «движение» или «элемент» применялись к природе. В данном примере изменение реально происходило с самими словами, что по-новому освещало особенности ситуации в физике, которые революция выдвинула на передний план.
Когда Планк к 1909 г. пришел к убеждению, что прерывность реальна, он обратился к словарю, который до того был стандартным. Ранее он говорил о ячейке размером s как об энергии «элемента». Теперь, с 1909 г., начал говорить об энергии «кванта», ибо в словаре немецких физиков «квант» истолковывался как отдельный элемент, как сущность, подобная атому и пребывающая сама по себе. Хотя величина s была лишь мерой мысленного разделения, она являлась не квантом, а элементом.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.