Автор книги: Виктор Маркин
Жанр: Техническая литература, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 2 (всего у книги 14 страниц) [доступный отрывок для чтения: 4 страниц]
1.3 Выбор методов неразрушающего контроля
Обеспечение своевременного выявления структурных дефектов, снижающих требуемые физико-механические характеристики, является одной из наиболее актуальных проблем достижения высокого качества изготовляемых конструкций. Решение этой проблемы возможно лишь при условии оптимального выбора и применения наиболее эффективных методов и средств контроля качества.
Для выбора эффективных методов контроля качества необходимо учитывать физико-механические свойства материалов, характерные особенности внутренней структуры и структурных дефектов, геометрические параметры изделий (форму, размеры, перепады толщины), состояние поверхности изделия, условия проведения контроля, особенности технологии изготовления изделий.
Учитывая, что изготовление конструкций происходит в несколько этапов, на каждом из которых возможно образование дефектов, характерных для данной технологической стадии, необходимо проведение контроля качества на всех этапах с целью своевременного устранения, если это возможно, обнаруженных дефектов, либо исключение дальнейшего применения в технологической цепочке дефектного материала. Так, если при изготовлении силового каркаса необходимо контролировать нарушения заданной схемы армирования, то при заполнении каркаса матрицей требуется исследовать распределение плотности материала в объеме заготовки. После механической обработки полученной заготовки может возникнуть необходимость определять отклонения от заданных геометрических размеров конструкций, в особенности, если она сложной конфигурации и изготовлена из материала с заданной неоднородностью плотности. Следует особо подчеркнуть, что образованные на ранних стадиях технологического процесса дефекты, например, пропуски армирующих элементов, обнаружить в готовом изделии иногда практически невозможно. При выборе методов и средств контроля качества необходимо учитывать предъявляемые к ним требования [13].
При серийном производстве требуются методы, обладающие достаточной чувствительностью для выявления только недопустимых дефектов (в соответствии с техническими требованиями на материал), ранее выявленных и классифицированных. Они должны быть доступны, просты и высокопроизводительны.
В процессе отработки технологии требуются методы контроля (а в некоторых случаях – даже комплексы методов), позволяющие получить полную информацию о состоянии внутренней структуры материала и любых ее отклонениях от расчетных параметров, определить причины их возникновения, а также степень влияния на физико-механические и теплофизические свойства. Для этого применяют передовые методы различной сложности. В особых случаях необходимо разрабатывать новые методы, позволяющие решить поставленные задачи.
Важнейшими характеристиками технических возможностей методов контроля являются чувствительность и разрешающая способность, достоверность результатов контроля, надежность аппаратуры, требования по технике безопасности и к квалификации специалистов по проведению контроля.
Чувствительность метода определяется наименьшими размерами выявляемых дефектов:
– у поверхностных дефектов – шириной раскрытия у выхода на поверхность, протяженностью в глубь материала и по поверхности детали;
– у глубинных дефектов – размерами дефекта с указанием глубины залегания.
Сравнительные данные по чувствительности некоторых методов НК приведены в табл. 1.1 [21].
Разрешающая способность дефектоскопа определяется наименьшим расстоянием между двумя соседними минимальными дефектами, для которых возможна их раздельная регистрация. Измеряется она в единицах длины или числом линий на 1 мм. Предусматривается в технических требованиях на оптические приборы и радиационные дефектоскопы. Для ультразвуковых и токовихревых дефектоскопов может оговариваться лишь при необходимости, для магнитных методов – не указывается.
Достоверность результатов контроля определяется вероятностью пропуска деталей с явными дефектами или необоснованной браковкой годных деталей.
Требования по технике безопасности при применении различных методов значительно различаются. Например, магнитный, ультразвуковой и токовихревой контроль не требуют специальных мер защиты. При капиллярном контроле необходима защита от жидкостей, паров и органических растворителей, а также ультрафиолетового облучения, а при радиационном – от воздействия ионизирующих излучений и образующихся в воздухе вредных для организма человека газов – озона и оксидов азота.
Таблица 1.1
Чувствительность методов неразрушающего контроля
1.4 Основные факторы, влияющие на выбор метода неразрушающего контроля
При выборе метода контроля конкретных деталей или изделий необходимо учитывать (кроме специфических особенностей и технических возможностей каждого метода) следующие основные факторы [28]:
– характер (вид) дефекта и его расположение;
– условия работы деталей и технические требования на отбраковку;
– материал детали;
– состояние и шероховатость поверхности;
– форму и размер детали, зоны контроля;
– доступность детали и зоны контроля;
– условия контроля.
Характер дефекта, например, поверхностные трещины с малой шириной раскрытия (0,5–5 мкм), могут быть обнаружены капиллярным методом, а внутренние скрытые дефекты – радиационным или ультразвуковым.
Учет условий работы деталей (знакопеременные нагрузки, работа в агрессивной среде, при высоких температурах, эрозионно-коррозионное воздействие) позволяет определить критические места конструкции и обратить на эти места особое внимание при выборе метода и проведении контроля.
Технические требования на отбраковку определяют количественные критерии и играют важную роль при выборе методов, обеспечивающих выявление только опасных дефектов.
Физические свойства материала деталей – постоянно действующий фактор, определяющий в значительной степени выбор метода неразрушающего контроля. Так, для капиллярных методов материал должен быть непористым, стойким к воздействию органических растворителей [1]. Для ультразвукового контроля на трещины материал должен быть однородным, обладать упругими свойствами и малым коэффициентом затухания ультразвуковых колебаний. Детали простой формы можно проверять всеми методами, а детали сложной формы и крупногабаритные изделия контролируют, как правило, по частям.
Определение зон контроля является важным фактором в выборе метода, так как знание их облегчает разработку методики и обнаружение дефектов. При этом следует иметь в виду, что ультразвуковой контроль поверхностными волнами не применим, если в проверяемой зоне имеются резкие переходы от одного сечения к другому (радиус галтели в месте перехода должен быть не менее λпов, где λпов – длина поверхностной волны). Кроме того, в зоне, подлежащей ультразвуковому контролю, как правило, не должно быть отверстий, заклепок, болтов и других отражателей ультразвуковой энергии.
Для токовихревого контроля радиусы галтельных переходов должны быть не менее 2 мм, а для капиллярного и магнитопорошкового методов в зоне контроля не должно быть уступов с углом менее 90°, подрезов и наплывов металла. Ширина проточек, радиусы галтелей и отверстий в зоне капиллярного контроля должны быть не менее 3 мм.
Чувствительность методов, особенно магнитопорошковых и капиллярных, зависит от шероховатости контролируемой поверхности и наличия на ней защитных покрытий. Для ультразвукового и капиллярного методов шероховатость должна соответствовать 5-му классу, а для магнитного и токовихревого должно быть не ниже 3-го класса. Для обнаружения трещин при капиллярном контроле необходимо обязательно удалять лакокрасочное покрытие.
Большинство методов (магнитный, капиллярный, токовихревой, ультразвуковой) могут быть применены для контроля при доступе с одной стороны. Методы просвечивания ионизирующими излучениями требуют доступа с обеих сторон детали. При этом с одной стороны находится источник излучения, а с другой – детектор [28].
Неразрушающий контроль качества позволяет не только контролировать, но и управлять качеством продукции, предсказывая ее свойства, параметры, причины отказа изделий. Методы неразрушающего контроля не являются универсальными, каждый из них имеет свою область наиболее эффективного применения. Большинство методов решают довольно узкий круг дефектоскопических задач: обеспечивают контроль изделий из определенного материала, рассчитаны на поиск дефектов определенного вида, предназначены для конструкций определенного размера и формы, поэтому достижение высокого качества возможно только в случае применения наиболее эффективных для каждой стадии изготовления методов и средств неразрушающего контроля.
Для выбора метода или комплекса методов контроля должны быть определены вид дефектов, подлежащих выявлению, объекты (зоны) контроля, а также должны быть заданы критерии на отбраковку. По этим данным определяют возможные методы, позволяющие решить поставленную задачу. Затем, принимая во внимание критерии на отбраковку, чувствительность и специфику методов, выбирают методы и средства неразрушающего контроля для применения. При равной чувствительности предпочтение отдается тому методу, который проще и доступнее в конкретных условиях, у которого выше достоверность результатов контроля и производительность [20].
Выбранные методы контроля полуфабрикатов и деталей должны фиксироваться в нормативной технологической документации.
Глава 2
Дефекты, возникающие в конструкциях при их изготовлении
2.1 Классификация дефектов в слоистых композитах
Использование при изготовлении изделий из композиционных материалов несовершенного оборудования, система управления которым не обеспечивает заданную точность поддержания параметров технологического процесса, приводит к возникновению в структуре материала конструкции различного рода дефектов, вызывающих снижение физико-механических характеристик или увеличение их разброса, снижение несущей способности конструкции и другие отрицательные эффекты. Появление дефектов в конструкциях из композитов, армированными непрерывными волокнами или ткаными материалами, может быть связано не только с отсутствием достаточно совершенного оборудования, но и с рядом других причин, связанных с субъективными факторами (нарушением технологического процесса, загрязненностью участка формирования структуры материала и др.) [3].
Изготовление конструкций из пространственно-армированных углерод-углеродных композиционных материалов (УУКМ) является сложным, длительным, многоступенчатым процессом и зависит от десятков технологических параметров, изменение любого из которых может привести к необратимым нарушениям заданной структуры. Наличие структурных дефектов часто становится решающим фактором, определяющим работоспособность конструкций, особенно в экстремальных условиях высокоскоростного температурного нагружения и жестких требований к абляционной стойкости материалов [6].
В табл. 2.1. представлены технологические методы переработки полимерных композиционных материалов и наиболее характерные дефекты, присущие тому или иному методу.
Для проведения анализа дефектов, встречающихся в конструкциях из полимерных композитов, удобно представить их в виде блок-схемы, разделив на различные группы по относительным размерам и другим параметрам (рисунок 2.1). При этом подходе дефекты разделены на два больших класса: производственные дефекты, которые появляются в конструкциях либо в процессе их изготовления, либо в процессе изготовления составляющих материал компонент, и эксплуатационные повреждения, возникающие в конструкции в процессе ее эксплуатации. Кроме этого производственные дефекты могут быть разделены на три группы: микро-, мини– и макродефекты.
Рисунок 2.1 – Классификационная схема производственных дефектов и эксплуатационных повреждений в конструкциях из КМ
Таблица 2.1
Характерные дефекты типовых методов формирования изделий из полимерных композиционных материалов
Метод контактного формирования (без прикатки, с прикаткой, с уплотнением)
Характеристика изделий: Крупногабаритные изделия сложной формы, оболочки, листы больших размеров
Дефекты формирования: Пористость, расслоения, разнотолщинность, неравномерное распределение связующего, участки неполного отверждения, увеличение разброса физико-механических характеристик, складки, разориентация волокон, участки с низким содержанием связующего, коробление изделия, риски на поверхности
Метод формирования эластичной диафрагмой
Характеристика изделий: Крупно– и среднегабаритные изделия сложной формы
Дефекты формирования: Неравномерное распределение связующего, разориентация волокон, расслоения, складки, участки неполного отверждения связующего, локальная пористость
Метод авто– и гидроклавного формования
Характеристика изделий: Крупно– и среднегабаритные изделия простой и сложной формы
Дефекты формирования: Расслоения, пористость, складки, разориентация армирующего материала
Метод вакуумного формования
Характеристика изделий: Среднегабаритные изделия простой и сложной формы
Дефекты формирования: Пористость, складки армирующих слоев, неравномерное распределение связующего, разориентация слоев
Метод сухой и мокрой намотки (однонаправленная)
Характеристика изделий: Крупно– и среднегабаритные изделия типа тел вращения (цилиндрические, сферические, конические, овалоидные, тороидальные оболочки), длинномерные конструкции в виде замкнутого профиля прямоугольной или другой формы
Дефекты формирования: Расслоения, пористость, неравномерное распределение связующего, утолщения в зоне нахлестов витков, участки неармированного связующего в зазорах между соседними витками, инородные включения, обрывы волокон, искривление волокон
Метод прессования тканей, пропитанных связующим, и однонаправленных препрегов
Характеристика изделий: Средне– и малогабаритные изделия простой и сложной формы
Дефекты формирования: Трещины, локальная пористость, расслоения, неравномерное распределение связующего, риски на поверхности
Микродефекты – это дефекты, размеры которых сравним с размерами армирующих элементов (элементарными волокнами) или с толщиной связующего между этими элементами. К микродефектам можно отнести дефекты, возникающие в элементарных армирующих волокнах, в прослойках, связующего между этими волокнами, а также на границе раздела волокно – матрица.
Наиболее характерными дефектами этой группы можно назвать микропоры, микротрещины, включения инородных кристаллов в структуру элементарных волокон, искривление фибрилл, разориентацию микрофибрилл и др. Микроскопические исследования дефектов армирующих элементарных волокон показали, что на поверхности стеклянных волокон имеются трещины глубиной 10-7 м, шириной 2 ∙ 10-7 м и длиной до 5 ∙ 10-5 м. Для борных волокон диаметром 10-4 м характерны поры и трещины размером до 8 ∙ 10-6 м, а также включение крупных кристаллов металлического бора в борную оболочку волокна. Трещины, встречающиеся на поверхности углеродных волокон, составляют в длину 2 ∙ 10-7 – 1 ∙ 10-6 м, а в ширину 1 ∙ 10-8 – 2 ∙ 10-7 м. Разориентация отдельных углеродных слоев (микрофибрилл) в волокнах достигается 17–23%.
В армирующих волокнах из армидных материалов размеры трещин достигают 8 ∙ 10-7 м.
Наличие дефектов на поверхности и в структуре элементарных армирующих волокон приводит к снижению их физико-механических характеристик и к увеличению разброса последних.
Минидефекты – это дефекты, размеры которых сравнимы с размерами толщины элементарного слоя композиционного материала. Они встречаются в виде структурных несовершенств и нарушений сплошности в элементарных слоях материала. К ним можно отнести:
– риски и царапины, соизмеримые с толщиной элементарного слоя;
– нарушение адгезионных связей на границе раздела волокно – матрица;
– волнистость и крутку армирующих волокон, разориентацию и их искривление;
– неравномерное распределение связующего в элементарном слое композита; разную степень натяжения армирующих волокон или нитей;
– обрывы отдельных элементарных волокон или нитей и другие дефекты.
Минидефекты связаны либо со структурным строением армирующего наполнителя, либо возникают в процессе технологической переработки составляющих компонент композиционного материала в изделие. К наиболее характерным структурным минидефектам можно отнести крутку элементарных волокон в нитях, регулярные и случайные искривления нитей, разориентацию армирующих волокон. Наличие этих дефектов в структуре материала является одной из причин того, что его физико-механические характеристики в изделиях значительно отличаются от подобных характеристик самих элементарных волокон. Крутка элементарных волокон, как известно, используется для повышения технологичности переработки нитей и жгутов в изделия. При этом устраняется пушение элементарных волокон и уменьшается их обрывность. Однако, наряду с этим, она приводит к снижению степени реализации упругих и прочностных показателей волокон в композиционном материале, которое сказывается при кручении высокомодульных волокон (борных и углеродных).
Разориентация армирующих волокон связана с их отклонением от заданного направления в процессе технологической переработки при изготовлении конструкций и обычно связана с несовершенством технологического оборудования или оснастки.
Регулярные искривления армирующих волокон свойственны в основном тканым наполнителям и определяются параметрами их переплетения. В отличие от регулярных искривлений случайные искривления являются в основном следствием несовершенства технологического процесса и наиболее часто возникают при изготовлении конструкций методом послойной намотки с последующей опрессовкой при термообработке, а также в процессе прессования изделий в замкнутой форме из-за неточности размеров заготовок, закладываемых в нее. Случайные искривления вызывают местное снижение жесткости материала и наиболее опасны в конструкциях, работающих на устойчивость.
Наиболее характерные минидефекты, связанные с нарушением сплошности структуры композиционных материалов, – поры и минитрещины в матрице. Появление пор связано с наличием в связующие большие количества растворителя или влаги, с неправильным выбором режимов термообработки (большая скорость нагрева, низкое давление). Кроме этого, на этапе пропитки материала при мокром методе формирования его структуры, могут образоваться воздушные пузырьки, запирающие каналы между волокнами и препятствующие капиллярному движению по ним связующего. Особенно большое количество мелких пузырьков, пор и раковин возникает при ручной выкладке конструкций из ткани, пропитанной полиэфирным связующим.
Анализ композиционных материалов с различной пористостью показывает, что с ростом длины пор и их содержания степень реализации прочностных и упругих параметров армирующих волокон в композитах уменьшается. Причем, наиболее опасны вытянутые поры, длина которых превышает критическую длину элементарного волокна в композиционном материале. Особенно пористость сказывается на сопротивлении слоистых материалов сдвиговым нагрузкам и в меньшей степени – изгибающим и растягивающим [14].
Наряду с этим, поры являются концентраторами напряжений в матрице и при внешнем воздействии на конструкцию или возникновении внутренних остаточных напряжений в материале могут быть источниками образования микро и минитрещин как в самой матрице, так и вдоль границы раздела волокно – матрица.
Минидефекты и большинство микродефектов статистическим образом распределены по объему композита и охватываются нижним пределом механических свойств композиционного материала.
2.2 Дефекты типа отслоений и их влияние на несущую способность конструкций
Конструкции из композитов очень чувствительны к технологическим дефектам, например, к расслоениям, непроклеям и трещинам, а также ко вновь образовавшимся дефектам (например, к надрезам поверхностных слоев). Дефекты типа расслоений могут появляться также на стадиях транспортировки, хранения и эксплуатации.
Они могут вызываться температурными напряжениями, локальными нагрузками, например, ударами по поверхности конструкции. Для поверхностного отслоения характерно выпучивание тонкого отслоившегося участка, которое может происходить при сжатии, поверхностном нагреве или растяжении из-за эффекта Пуассона, поэтому механика поверхностных отслоений обязательно должна учитывать геометрическую нелинейность хотя бы для отслоившейся области.
Типичные примеры отслоений приведены на рисунке 2.2. Процесс отслоения требует энергетических затрат, при этом потенциальная энергия изгиба накапливается только в отслоении, а работа разрушения складывается из работы, затрачиваемой на разрушение матричной прослойки и идущей на продвижение трещины в отслоении.
Каждому типу отслоений, представленных на рисунке 2.2, соответствуют свои критерии и границы устойчивости, определяемые по Гриффитсу или Эйлеру [14].
Рост отслоений в слоистых композитах при длительно действующих или циклических нагрузках происходит устойчиво, если параметры отслоения принадлежат области устойчивости по Гриффитсу.
Однако при длительном нагружении в матрице и армирующих элементах возникают рассеянные повреждения, которые снижают сопротивление отслоений.
Для расчета роста отслоений в сжатых элементах нужно учитывать энергию изгиба, высвобождающуюся при росте выпученного отслоения. Некоторые качественные особенности роста отслоения, изображенного на рисунке 2.2, в, приведены на рисунке 2.3. Кривые 1–3 соответствуют начальным состояниям. Кривая 1 относится к случаю, когда начальный размер отслоения достаточно велик, но начальное состояние субравновесно. После окончания инкубационной стадии продолжительностью t* размер l начинает расти. Картина роста отслоения качественно сходна с той, которая наблюдается в случае растяжения.
Рисунок 2.2 – Примеры отслоений в композитах:
а – открытое отслоение при растяжении, б – эллипсоидальное при растяжении, в – сжатое в условиях цилиндрического изгиба, г – эллипсоидальное при сжатии, д – кромочное, е – кромочное с вторичной трещиной
Кривая 2 соответствует случаю, когда начальное состояние также субравновесно, поэтому существует некоторая относительно непродолжительная инкубационная стадия. После подрастания отслоения до неустойчивого состояния происходит скачок до нового субравновесного состояния. Новый размер отслоения может быть оценен, исходя из соотношения энергетического баланса. При скачкообразном подрастании отслоения мера повреждения падает практически до нуля, поскольку фронт отслоения переходит в малоповрежденную область матричной прослойки (см. рисунок 2.3, б, кривая 3). Далее следует вторая инкубационная стадия. После того как будет накоплено достаточное повреждение, фронт отслоения снова стягивается. Дальнейший рост происходит устойчиво.
Рисунок 2.3 – Диаграмма отслоений в композите при сжатии:
а – рост отслоений; б – накопление микроповреждений на фронте
Кривая 3 соответствует значениям отслоения, при которых начальная точка находится в весьма узкой полосе, заключенной между областью, где выпучивания нет, и областью, в которой отрезок устойчивого роста отслоения завершается полным отщеплением наружного слоя.
Значения критической деформации для конструкционных композитов достаточно высоки (порядка 10-3), поэтому типичное поведение сжатых отслоений описывается кривыми 1 на рисунке 2.3, а, б.
Обычно уже в ненагруженном элементе отслоение имеет начальный прогиб, полученный, например, в процессе изготовления.
Расслоения могут происходить в слоистых композиционных материалах при механической обработке конструкции или детали, определенной технологическим процессом изготовления. Механическая обработка композиционных материалов имеет ряд особенностей, отличающих их от аналогичной обработки металлов. Наличие слоистой структуры композита способствует тому, что при износе режущих инструментов происходит расслоение материала. Кроме того, при перерезании армирующих волокон, особенно при перекрестном армировании, наблюдается разлохмачивание перерезанных волокон, что приводит к ухудшению качества поверхностного слоя, способствующему возрастанию влагопоглощения и снижению несущей способности конструкции.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?