Текст книги "3ds Max 2008. Секреты мастерства"
Автор книги: Владимир Верстак
Жанр: Программы, Компьютеры
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 34 (всего у книги 46 страниц)
Рис. 10.29. Схема материала решетки
Рис. 10.30. Фрагмент модели микроволновой печи вместе с текстурами
Сложное текстурирование
Не стоит пугаться названия упражнения. Оно подразумевает, что мы будем говорить о текстурировании сложных объектов, а не то, насколько сложно это сделать. В понятие «сложные объекты» я включаю такие объекты, к которым невозможно применить один из типов стандартного проецирования (планарный, цилиндрический, кубический) и ограничиться этим. Обычно такие объекты требуют совместного использования нескольких типов проецирования и (или) коррекции наложения текстурных координат вручную при помощи модификатора Unwrap UVW (Расправить UVW-проекцию) или дополнительных подключаемых модулей (например, Deep Paint).
На примере данного упражнения рассмотрим возможность текстурирования сложных объектов только средствами 3ds Max без использования сторонних программ.
На рис. 10.31 представлена модель резиновой детской игрушки, с которой вам предстоит работать.
Рис. 10.31. Модель игрушки
Прежде чем переходить к текстурированию, нужно провести предварительный анализ модели. Это необходимо по двум причинам:
■ для правильного текстурирования модели нужно понять, на какое минимальное количество элементов (групп выделения) необходимо разделить объект, чтобы применить к этим группам стандартные типы проецирования;
■ нужно определиться с количеством материалов, которые будут использоваться в данном объекте.
Поясню подробнее. Любой сложный предмет можно разложить на более простые. Например, у вас есть модель деревянной стремянки (лестницы). Если ни один из известных вам типов проецирования текстурных координат, таких как планарное, прямоугольное, цилиндрическое или любое другое, не может дать желаемого результата, то стоит разделить ее на две вертикальные жерди и некоторое количество поперечных ступенек. Тогда сразу становится очевидной возможность применения прямоугольного проецирования текстурных координат. Оно как нельзя лучше будет отвечать форме составляющих лестницу деталей.
Для объяснения второй причины возьмем модель персонажа, одетого в шорты и майку. Очевидно, что в данном случае необходимы как минимум три текстурные карты (голова, майка и шорты), а учитывая обувь, текстуру рук, ног и деталей головы, – может быть, и больше трех. Существует два подхода к созданию материала для такой модели.
■ Модель может иметь один материал с одной текстурой, на которой расположены сразу все текстурируемые элементы (голова, майка, шорты и т. д.), что очень часто используется для визуализации в реальном времени (например, в компьютерных играх).
■ Использование составного материала типа Multi/Sub-Object (Многокомпонентный), позволяющего применить к объекту сразу несколько материалов. При этом объект разделяется на несколько Material ID (Идентификатор материала), что позволяет работать с отдельным материалом (например, при замене текстуры майки не придется менять всю текстуру модели).
Второй подход, в отличие от первого, позволяет более гибко работать с отдельными материалами и применять процедурные карты (то есть карты текстур, генерируемые программно).
Модель игрушки, представленной на рис. 10.31, можно разделить на шесть составляющих ее частей по форме, близкой к стандартным для проецирования:
■ основание модели – планарное проецирование;
■ тело – цилиндрическое;
■ грива – сферическое;
■ лапы – цилиндрическое;
■ голова – сферическое;
■ уши – планарное.
Далее можно действовать одним из следующих способов.
■ Для выделенных частей модели последовательно добавлять в стек модификатор Mesh Select (Выделение поверхности) и UVW Map (UVW-проекция) в зависимости от типа наложения соответствующей выделенной геометрии.
■ Сразу применить модификатор Unwrap UVW (Расправить UVW-проекцию) и все действия по наложению проекционных координат проводить только с его помощью.
В данном разделе рассмотрим смешанный способ наложения проекционных координат: когда работа ведется попеременно с настройками то одного, то другого модификатора.
ПРИМЕЧАНИЕ
C выходом 3ds Max 8 практически всю работу по наложению проекционных координат, за исключением назначения выделенным подобъектам идентификаторов материала, стало можно выполнять при помощи модификатора Unwrap UVW (Расправить UVW-проекцию). В данном разделе будет рассмотрен способ, при котором это упражнение можно выполнить и в предыдущих версиях программы, начиная с пятой. Такой метод наложения проекционных координат является основополагающим и может пригодиться для текстурирования объектов практически любой сложности.
Загрузите файл donkey_start.max, который находится в папке ExamplesГлава 10Donkey прилагаемого к книге DVD.
ПРИМЕЧАНИЕ
Если вы решите использовать в работе собственную модель, не забудьте преобразовать ее в Editable Mesh (Редактируемая поверхность) или Editable Poly (Редактируемая полигональная поверхность). Это необходимо, если у вас до сих пор была модель типа Patch (Патч-поверхность) или Surface (Поверхность). После этого у вас будет полигональная модель, и вы сможете работать в режиме редактирования полигонов (именно они нужны для создания выделений).
Выделите основание модели. Для этого выполните следующие действия.
1. Выделите модель ослика, щелкнув на ней в любом из окон проекций, и перейдите в режим редактирования Polygon (Полигон).
СОВЕТ
Для быстрого перехода в режим редактирования подобъектов существуют «горячие» клавиши: Vertex (Вершина) – 1, Edge (Ребро) – 2, Face (Грань) – 3, Polygon (Полигон) – 4, Element (Элемент) – 5.
2. В свитке Selection (Выделение) установите флажок Ignore Backfacing (Без обратной ориентации), чтобы случайно не выделить лишние полигоны.
3. Переключитесь в окно проекции Bottom (Cнизу), щелкнув на названии окна проекции правой кнопкой мыши и в появившемся контекстном меню выполнив команду Vews ► Bottom (Вид ► Снизу). Выделите основание модели (рис. 10.32).
Разверните свиток Surface Properties (Свойства поверхности) настроек объекта на командной панели и посмотрите, какой идентификатор материала присвоен выделенным полигонам. Если отличный от заданного по умолчанию (то есть не равен 1), то наберите в поле Set ID (Установить идентификатор материала) цифру 1 и нажмите Enter. Чтобы упростить дальнейшее выделение полигонов, присвойте выделению значимое имя. Для этого введите его в поле Named Selection Set (Название выделенной области) на панели инструментов, после чего подтвердите сделанные изменения нажатием клавиши Enter.
Примените к выделению планарное проецирование. Для этого используйте модификатор UVW Map (UVW-проекция) (рис. 10.33).
Рис. 10.32. Модель ослика с выделенным основанием
Рис. 10.33. Стек модификаторов с примененным модификатором UVW Map (UVW-проекция)
Обратите внимание, в какой плоскости расположен Gizmo (Габаритный контейнер) модификатора. У меня указано выравнивание по оси Y.
Прежде чем перейти к наложению проекционных координат на другие элементы модели, нужно разрушить стек модификаторов, щелкнув правой кнопкой мыши и выбрав команду Collapse All (Разрушить все) (это необязательное действие, но если периодически не разрушать стек, то это приведет к дополнительному расходованию ресурсов компьютера), и скрыть выделение, выполнив следующее.
1. В любом окне проекции щелкните на модели правой кнопкой мыши.
2. В появившемся контекстном меню выполните команду Convert To ► Convert to Editable Mesh (Преобразовать ► Преобразовать в редактируемую поверхность).
3. Не снимая выделение с основания модели, щелкните на кнопке Hide (Спрятать) в свитке Selection (Выделение), чтобы спрятать выделенные полигоны (они в ближайшее время не понадобятся, но могут мешать выделению других).
В результате в стеке модификаторов останется только строка Editable Mesh (Редактируемая поверхность). Текстурные координаты, которые были присвоены основанию модели, сохранятся вместе с геометрией.
Перейдем к туловищу модели. Для этого выполните следующие действия.
1. Выделите полигоны, необходимые для наложения проекционных координат.
СОВЕТ
Контролируйте процесс выделения полигонов во всех окнах проекций. Это поможет избежать выделения лишних полигонов и увидеть невыделенные.
2. Присвойте выделению идентификатор материала 2.
3. Присвойте выделению значимое имя, например body.
4. Примените к объекту модификатор UVW Map (UVW-проекция) с цилиндрическим типом проецирования.
5. Установите выравнивание Gizmo (Габаритный контейнер) модификатора по оси X при помощи переключателя в области Alignment (Выравнивание).
6. В области Alignment (Выравнивание) щелкните на кнопке Fit (Подогнать), чтобы Gizmo (Габаритный контейнер) трансформировался по форме выделения.
7. В стеке модификаторов щелкните на плюсике рядом с именем модификатора, затем выберите строку Gizmo (Габаритный контейнер), так вы перейдете в режим редактирования габаритного контейнера.
8. Вращайте габаритный контейнер так, чтобы зеленая вертикальная линия, указывающая на место стыка текстуры, находилась сзади (рис. 10.34).
Теперь нужно посмотреть на то, как выглядят получившиеся развертки текстурных координат. Для этого разрушьте стек модификаторов и добавьте в него модификатор Unwrap UVW (Расправить UVW-проекцию).
В свитке Parameters (Параметры) модификатора Unwrap UVW (Расправить UVW-проекцию) щелкните на кнопке Edit (Правка), после чего откроется окно Edit UVWs (Редактирование UVW) для редактирования текстурных координат. На данном этапе окно Edit UVWs (Редактирование UVW) нужно лишь для контроля правильности наложения текстурных координат.
На рис. 10.35 показан фрагмент окна Edit UVWs (Редактирование UVW) с выбранным для показа вторым идентификатором материала.
Рис. 10.34. Модель ослика с примененным к туловищу цилиндрическим проецированием
Рис. 10.35. Развертка цилиндрического проецирования для туловища ослика
На данном этапе не стоит выполнять какие-либо действия в редакторе текстурных координат. Это лучше сделать после присвоения координат проецирования всем элементам.
Удалите модификатор Unwrap UVW (Расправить UVW-проекцию) из стека модификаторов (он применялся только для того, чтобы можно было убедиться в правильности присвоения проекционных координат). После этого снова перейдите к выделению полигонов (на сей раз гривы ослика), предварительно спрятав выделенные полигоны туловища. После выделения нужных полигонов примените к выделению модификатор UVW Map (UVW-проекция) со сферическим типом проецирования (рис. 10.36).
На этот раз задача усложняется. Нужно не просто применить сферическое проецирование, но и правильно расположить его на выделении. Для этого выполните следующие действия.
1. Выберите режим редактирования габаритного контейнера, щелкнув на плюсике рядом с названием модификатора и далее на строке Gizmo (Габаритный контейнер).
2. Вращайте габаритный контейнер так, чтобы зеленая вертикальная линия, указывающая на место стыка текстуры, оказалась в передней части выделения, а наклон центральной оси габаритного контейнера соответствовал наклону выделения.
3. Передвиньте габаритный контейнер так, чтобы его ось оказалась впереди выделения.
После этого проверьте правильность наложения проекционных координат, присвоив модификатор Unwrap UVW (Расправить UVW-проекцию), как вы уже это делали для туловища ослика. Развертка гривы ослика должна выглядеть так, как показано на рис. 10.37.
Рис. 10.36. Модель ослика с примененным к гриве сферическим проецированием
Рис. 10.37. Развертка сферического проецирования для гривы ослика
Если у вас нет опыта работы с такого рода наложением проекционных координат, то требуемый результат может сразу не получиться, но нужно стремиться к тому, чтобы форма развертки не была «рваной» и соответствовала форме выделения.
Выделите поочередно правые и левые ноги. Для них применим цилиндрическое проецирование с крышками на торцах. Последовательность выполнения действий та же, что и в предыдущих случаях. Не забудьте назначить выделению идентификатор материала и контролировать выделение в окнах проекций (рис. 10.38).
Развертку для ног ослика делать значительно сложнее, чем в предыдущих случаях, поэтому наберитесь терпения и выполните все действия тщательно. От наложения проекционных координат будет зависеть внешний вид модели.
Перейдем к наложению текстурных координат для головы. Надеюсь, к этому времени вы уже поняли принцип работы с модификаторами и развертками, поэтому не стану вновь повторяться, а лишь представлю вашему вниманию положение Gizmo (Габаритный контейнер) модификатора UVW Map (UVW-проекция) со сферическим типом проецирования (рис. 10.39).
Обратите внимание, что зеленая линия (см. цветной рис. 10.39 на прилагаемом к книге DVD), означающая место стыка текстурной карты, обращена в противоположную от лицевой части сторону и ее ось повернута так, чтобы максимально широко развернуть текстуру. На рис. 10.40 представлена развертка текстурных координат для головы ослика.
Рис. 10.38. Развертка цилиндрического проецирования для ног ослика
Рис. 10.39. Модель ослика с примененным к голове сферическим проецированием
С ушами модели проделайте описанные выше действия следующим образом.
1. Выделите полигоны, составляющие одно ухо.
2. Присвойте выделению идентификатор материала.
3. Примените модификатор UVW Map (UVW-проекция) с планарным типом проецирования.
4. Применив модификатор Unwrap UVW (Расправить UVW-проекцию), проверьте правильность наложения текстурных координат.
5. При необходимости сделайте соответствующие правки, вернувшись к редактированию Gizmo (Габаритный контейнер) модификатора UVW Map (UVW-проекция).
После выполненных операций развертка для ушей ослика должна выглядеть так, как показано на рис. 10.41 (в данном случае имеется в виду форма развертки, а не масштаб и положение в пространстве).
Рис. 10.40. Развертка сферического проецирования для головы ослика
Рис. 10.41. Развертка планарного проецирования для ушей ослика
Когда модели назначены все проекционные координаты, нужно разложить созданные развертки в пределах одной текстурной карты. Сделать это можно двумя способами: автоматически и вручную.
Чтобы закончить создание проекционных координат для модели ослика, выполните следующие действия.
1. Откройте все ранее спрятанные полигоны, для чего щелкните на кнопке Unhide All (Показать все) в свитке Selection (Выделение) настроек объекта Editable Mesh (Редактируемая поверхность).
2. Примените к модели ослика модификатор Unwrap UVW (Расправить UVW-проекцию).
3. В свитке Parameters (Параметры) настроек модификатора Unwrap UVW (Расправить UVW-проекцию) щелкните на кнопке Edit (Редактировать).
4. Выполните в появившемся окне правки текстурных координат команду Tools ► Pack UVs (Инструменты ► Разместить UV-проекции) и в открывшемся окне диалога Pack (Упаковать) щелкните по кнопке OK. В результате этих действий развертки заполнят свободное пространство в пределах текстурной карты (рис. 10.42). Передвигать и масштабировать придется вручную.
Теперь создадим текстуру для модели. Обычно я делаю это в программе Adobe Photoshop, но можно использовать любое другое приложение редактирования графики.
Прежде всего необходимо создать визуализацию текстурных координат и сохранить ее в виде растрового изображения. Для этого выполните команду Tools ► Render UVW Template (Инструменты ► Визуализация образца UVW) из меню окна Edit UVWs (Редактирование UVW) и, не изменяя настроек окна Render UVs (Визуализация UVs), щелкните на кнопке Render UV Template (Визуализация образца UV), а затем сохраните выполненную визуализацию. Откройте сохраненное изображение в программе растровой графики (например, Adobe Photoshop).
ПРИМЕЧАНИЕ
Можно воспользоваться и более простым способом – нужно максимально увеличить окно редактирования текстурных координат и сделать копию экрана, нажав на клавиатуре Print Screen. После этого создать в Adobe Photoshop новый документ с размерами не менее 512 х 512 пикселов (я обычно использую размер 1000 х 1000 или 1024 х 1024) и вставить изображение, нажав сочетание клавиш Ctrl+V (стандартное сочетание клавиш для вставки содержимого буфера обмена).
Выполните в Adobe Photoshop команду Select ► Color Range (Выделение ► Цветовой диапазон) и выделите черный цвет фона, после чего удалите его, нажав клавишу Delete (Удалить). Это позволит лучше видеть слой, который лежит ниже и на котором вы будете рисовать текстуру для модели (рис. 10.43).
Нарисуйте на нижнем слое текстуру для модели ослика. Добавляйте слои, цвета, используйте выдавливание и т. д. – и вы сможете получить великолепную модель.
Я всего лишь немного растушевал изображение, чтобы слегка оживить модель (рис. 10.44).
Рис. 10.42. Окончательный вид развертки текстуры для модели ослика
Рис. 10.43. Заготовка текстуры
Последнее, что осталось сделать, – создать материал и назначить ему в качестве карты цвета созданное растровое изображение. Для этого в 3ds Max 9 выполните следующие действия.
1. Откройте окно Material Editor (Редактор материалов) и выберите ячейку со свободным материалом.
2. В свитке Maps (Карты текстур) щелкните на кнопке None (Отсутствует) рядом с кнопкой Diffuse Color (Цвет рассеивания).
3. В открывшемся окне Material/Map Browser (Окно выбора материалов и карт) выберите из списка карту Bitmap (Растровое изображение).
4. В появившемся окне Select Bitmap Image File (Выбор растрового изображения) выберите сохраненную ранее текстурную карту для канала цвета.
5. Присвойте материал модели ослика, перетащив его мышью из окна редактора материалов на объект в окне проекции либо при выделенном объекте щелкнув на кнопке Assign Material to Selection (Назначить материал выделенным объектам)
находящейся на панели инструментов окна Material Editor (Редактор материалов).
Чтобы модель выглядела более реалистично, сделайте текстурные карты для выдавливания и глянца ее поверхности. То, что получилось у меня, показано на рис. 10.45.
Конечно, чтобы создать красивую реалистичную модель, требуется достаточно много времени для рисования текстур. Порой это занимает не меньше времени, чем само моделирование объекта.
Рис. 10.44. Текстурная карта цвета для модели ослика
Рис. 10.45. Результат финальной визуализации модели ослика с картой цвета
ПРИМЕЧАНИЕ
Законченная модель ослика с присвоенными проекционными координатами находится на DVD, прилагаемом к книге, в папке ExamplesГлава 10Donkey. Файл сцены называется donkey_end.max.
Глава 11
Визуализация
• Интеграция трехмерной графики и фотографии
• Маскирование объектов
• Объекты в фокусе камеры
• Работаем с Video Post (Видеомонтаж)
Существует много вариантов, позволяющих получить хорошее изображение при визуализации, но при этом всегда найдется способ, чтобы улучшить его. В данной главе мы поговорим о том, как это сделать. Для этого мы рассмотрим методы работы с фотографиями, исследуем возможность улучшения визуализации за счет создания глубины резкости изображения.
Интеграция трехмерной графики и фотографииКогда я работал в рекламном агентстве, специализирующемся на наружной рекламе, мне часто приходилось иметь дело с проектами, требующими размещения рекламных конструкций на фотографии. В этом упражнении мы поговорим о рекламной конструкции и способе ее подачи в программе 3ds Max. На примере создания стелы для банка я объясню процесс построения целостного изображения на основе трехмерной графики и фотографии.
Предположим, у вас есть идея для проекта, ее конструктивное решение. Но заказчику мало просто описать проект, он хочет видеть его таким, каким он будет в жизни. Попробуем выполнить пожелания заказчика.
Все начинается с фотографии. Прежде всего нужно определить, какого качества необходимо распечатать проект для заказчика. Это служит отправной точкой для задания разрешения при сканировании (если, конечно, вы не пользуетесь цифровым фотоаппаратом). Если фотография имеет размер 9 x 12 см, а вывести на печать нужно формат А4, я сканирую с разрешением 300 dpi и предпочитаю работать с форматом TIFF. Получив цифровое изображение, можно считать подготовительную часть законченной (рис. 11.1).
Рис. 11.1. Отсканированное изображение, которое будет использоваться в качестве фона
Теперь надо разместить фотографию в качестве фонового изображения в окне проекции Perspective (Перспектива), а также в качестве карты окружающей среды, что позволит не только видеть фотографию в окне проекции, но и визуализировать ее. Для этого сделайте следующее.
1. Выполните команду Rendering ► Environment (Визуализация ► Окружающая среда).
2. В свитке Common Parameters (Общие параметры) открывшегося окна Environment and Effects (Окружающая среда и эффекты) щелкните на кнопке None (Отсутствует).
3. В появившемся окне Material/Map Browser (Окно выбора материалов и карт) выберите из списка Bitmap (Растровое изображение). Откроется окно Select Bitmap Image File (Выбор растрового изображения).
4. Укажите путь к файлу фонового изображения и щелкните на кнопке Open (Открыть) (рис. 11.2), после чего закройте окно Environment and Effects (Окружающая среда и эффекты).
Рис. 11.2. Свиток Common Parameters (Общие параметры) после добавления файла фонового изображения
СОВЕТ
В окне Select Bitmap Image File (Выбор растрового изображения) не спешите, выбрав файл, щелкать на кнопке Open (Открыть). Обратите внимание на строку статистики внизу окна. Вам понадобится указанное там разрешение изображения в пикселах. Именно этот размер лучше всего выставлять для визуализации проекта как оптимальный с точки зрения качества.
Иногда в процессе работы требуется небольшая коррекция растрового изображения, которую можно выполнить, не выходя из 3ds Max и не загружая его в программы редактирования растровых изображений. Для этого достаточно скопировать карту фонового изображения из свитка Common Parameters (Общие параметры) окна Environment and Effects (Окружающая среда и эффекты) в Material Editor (Редактор материалов). Для копирования сделайте следующее. Откройте редактор материалов, выполнив команду Rendering ► Material Editor (Визуализация ► Редактор материалов) или нажав клавишу M. Щелкните на кнопке с названием файла фонового изображения в окне Environment and Effects (Окружающая среда и эффекты) и, не отпуская кнопку мыши, перетащите ее в любую свободную ячейку образца материала окна Material Editor (Редактор материалов), а в качестве метода копирования установите Instance (Привязка).
При необходимости редактирования изображения откройте свиток Bitmap Parameters (Параметры растрового изображения) или Output (Результат) в окне Material Editor (Редактор материалов). При помощи этих свитков можно подкорректировать размер выходного изображения, провести цветокоррекцию, изменить яркость, насыщенность и другие параметры растрового изображения.
Теперь нужно разместить это же растровое изображение в окне проекции и изменить параметры визуализации. Для этого сделайте следующее.
1. Выполните команду Views ► Viewport Background (Вид ► Фон окна проекции).
2. В появившемся окне Viewport Background (Фон окна проекции) установите флажки Use Environment Background (Использовать фон окружающей среды) и Display Background (Показать фон).
3. В качестве окна проекции, в котором должен отображаться фон, выберите из раскрывающегося списка Viewport (Окно проекции) строку Perspective (Перспектива) (рис. 11.3).
Рис. 11.3. Окно Viewport Background (Фон окна проекции) с настройками для фонового изображения
4. Закончив настройку, щелкните на кнопке OK.
5. Выполните команду Rendering ► Render (Визуализация ► Визуализировать), в результате чего откроется окно Render Scene (Визуализация сцены).
6. В области Output Size (Выходной размер) свитка Common Parameters (Общие параметры) укажите значение ширины и высоты в пикселах в соответствии с размером фонового изображения (помните, я советовал при открытии файла обратить внимание на размер изображения).
После выполнения данных действий в окне проекции Perspective (Перспектива) появится фотография в качестве фонового изображения.
Проанализируем фоновое изображение. Первое, что нужно сделать, – определить точку в пространстве, с которой производилась съемка (это необходимо для правильной постановки камеры в сцене), а также сделать анализ света и тени (пригодится для выставления источников света).
Начнем с камеры. Фотоаппарат находился на уровне глаз фотографа, значит, и камеру в сцене надо разместить на высоте 1600-1700 мм (за нулевую отметку земли возьмем начало координат по оси Z). Чтобы проще было согласовывать объекты сцены с фоновым изображением, лучше использовать Target Camera (Направленная камера). Target (Цель) камеры будет находиться несколько выше самой камеры, так как фотография предположительно была сделана под небольшим углом. Идеальный вариант – знать реальные размеры объектов на фотографии, например столбов, и расстояние от них до точки съемки, чтобы максимально верно выставить камеру и объекты сцены.
Что же касается освещения на фотографии, то, судя по теням от машины и столба, можно предположить, что солнце находилось слева и немного впереди.
СОВЕТ
Особую роль в работе такого рода играет последовательность действий. В данном примере можно было сначала построить всю геометрию (плоскость земли и саму стелу) согласно реальным размерам, и только потом начинать работу с фотографией. Но гораздо чаще приходится строить объекты, применяя фотографию, то есть заниматься непосредственной подгонкой изображения (например, добавить несколько мелких деталей в интерьер комнаты).
Допустим, что у вас уже есть модель стелы и сейчас нужно только экспортировать ее в сцену.
ПРИМЕЧАНИЕ
Вы можете загрузить объекты сцены из файла stela_start.max, расположенного в папке ExamplesГлава 11Stela прилагаемого к книге DVD.
Чтобы показать тень, падающую от стелы на землю, необходимо построить плоскость. Для этого выполните команду Create ► Standard Primitives ► Plane (Создание ► Простые примитивы ► Плоскость). В окне проекции To p (Сверху) щелкните кнопкой мыши в верхнем левом углу и, удерживая ее нажатой, переместите указатель в правый нижний угол, построив таким образом плоскость (рис. 11.4).
Плоскость нужна для того, чтобы отобразить на ней тень от стелы, поэтому она должна находиться на уровне земли и быть не меньше, чем предполагаемая тень. Кроме того, я использую грани плоскости для выравнивания ее относительно точек схода.
Рис. 11.4. Взаимное расположение объектов сцены
Построив плоскость и установив на нее стелу, можно считать работу с геометрией законченной. Теперь перейдем к построению камеры, для чего сделайте следующее.
1. Выполните команду Create ► Cameras ► Target Camera (Создание ► Камеры ► Направленная камера) главного меню.
2. В окне проекции To p (Сверху) щелкните немного левее стелы и переместите указатель мыши в направлении, противоположном фронтальной стороне стелы. После того как вы отпустите кнопку мыши, камера будет построена.
3. Не снимая выделения с камеры, щелкните правой кнопкой мыши на кнопке Select and Move (Выделить и переместить)
расположенной на панели инструментов.
4. В открывшемся окне Move Transform Type-In (Ввод значений перемещения) задайте абсолютное значение по оси Z равным 1700 (расстояние от земли до камеры). Камера займет свое положение в пространстве по оси Z, и двигать ее в этой плоскости больше не следует (рис. 11.5).
Рис. 11.5. Окно Move Transform Type-In (Ввод значений перемещения) со значением высоты камеры над землей
Теперь окно проекции Perspective (Перспектива) можно заменить окном вида из камеры. Для этого щелкните правой кнопкой мыши на названии окна (в левом верхнем углу) и в появившемся контекстном меню выберите Views ► Camera (Вид ► Камера).
Продолжим настройку положения камеры в пространстве. Для согласования линии горизонта камеры с горизонтом на фотографии надо включить показ горизонта камеры в окне вида из камеры. Для этого выполните следующие действия.
1. Выделите камеру в окне проекции Top (Сверху).
2. Щелкните на вкладке Modify (Изменение)
командной панели, в результате чего появится доступ к настройкам параметров камеры.
3. В свитке Parameters (Параметры) установите флажок Show Horizon (Показать горизонт). В окне проекции появится черная горизонтальная линия, указывающая на положение линии горизонта в пространстве.
На рис. 11.6 показаны составляющие правильной настройки камеры и освещения для фонового изображения.
Рис. 11.6. Схема положения объектов сцены относительно изображения фона
Для наглядности (это не обязательно) я провел две линии: параллельно бордюрному камню и по краю газона (они обычно параллельны). На пересечении мы получили точку схода, а следовательно, и линию горизонта фотографии.
Используя инструмент Select and Move (Выделить и переместить)
передвиньте Target (Цель) камеры по оси Z так, чтобы черная горизонтальная линия (горизонт камеры) совпала с точкой схода. Затем переместите камеру по осям X и Y, чтобы стела заняла то место, которое для нее предназначено, то есть справа от дороги, на газоне. Стелу предполагается расположить перпендикулярно дороге, следовательно, стелу можно установить по левой грани плоскости. Кроме того, она размещена в пространстве так, что ее боковая грань расположена параллельно дороге. На рис. 11.7 показано окончательное расположение камеры и источников света в окне проекции Top (Сверху).
Рис. 11.7. Расположение объектов сцены в окне проекции Top (Сверху)
В сцене будет три источника света: два Omni (Всенаправленный) и Target Direct (Нацеленный направленный). В качестве источника света, который будет генерировать тени, я выбрал Target Direct (Нацеленный направленный), как наиболее близкий по теням к солнцу (у солнца лучи почти параллельны, как и у этого источника света). Он размещен в сцене согласно ранее проведенному анализу фотографии, то есть слева и немного впереди. Для этого источника света сделайте следующее.
1. Выделите Target Direct (Нацеленный направленный) в окне проекции Top (Сверху).
2. Щелкните на вкладке Modify (Изменение)
командной панели, в результате чего появится доступ к настройкам параметров источника света.
3. В области Shadows (Тени) свитка General Parameters (Общие параметры) установите флажок On (Включить).
4. В свитке Shadow Map Params (Параметры карты тени) задайте параметру Size (Размер) значение, равное 1000, что позволит генерировать тень с более ровными краями.
Теперь нужно назначить плоскости материал Matte/Shadow (Матовое покрытие/ тень). Он позволяет объектам принимать тени, при этом оставаясь невидимым. Чтобы присвоить плоскости данный материал и настроить его параметры, выполните следующие действия.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.