Текст книги "Артиллерия"
Автор книги: Владимир Внуков
Жанр: Техническая литература, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 8 (всего у книги 24 страниц) [доступный отрывок для чтения: 8 страниц]
Волчок на службе в артиллерии
Жонглер в цирке держит на кончике тросточки тарелку. Чтобы тарелка не упала, жонглер заставляет ее быстро вращаться.
Рис. 119. Гироскоп
Рис. 120. Как изменится положение оси вращения гироскопа, получившего толчок
Каждый видел детскую игрушку «волчок». Пока «волчок» быстро вертится, он стоит на своей острой ножке.
Еще интереснее прибор, известный из физики – гироскоп (рис. 119 и 120).
Гироскоп состоит из маховика, который может вращаться вокруг трех осей: во-первых, вокруг своей основной оси, на которую он посажен; во-вторых, вместе с кольцом, поддерживающим основную ось, – вокруг горизонтальной оси, перпендикулярной к первой, и, в-третьих, вместе с внешним полукольцом – вокруг вертикальной оси.
У гироскопа есть замечательное свойство: когда он быстро вращается, он не только сохраняет положение своей оси в пространстве, но и сопротивляется всяким попыткам изменить ее положение.
Этой замечательной способностью вращающегося тела сохранять свою устойчивость и воспользовались артиллеристы: они заставили снаряд быстро вращаться в полете.
Ствол орудия не оставляют теперь гладким внутри, а растачивают в нем пологие винтообразные желобки-нарезы. Благодаря этому внутри ствола оказываются углубления и выступы. Едва снаряд двинется с места, его медный поясок врезается в эти выступы.
На мягкой меди пояска образуются тогда свои выступы и углубления.
Все вперед и вперед скользит снаряд в стволе по его нарезам, точно по рельсам.
Но нарезы идут винтообразно, как винтовая лестница. Поэтому снаряд, следуя по ходу нарезов, начинает быстро вращаться.
Вылетев из ствола, он сохраняет вращение и в воздухе. Вращается он в наших орудиях слева вверх направо, то-есть, если смотреть сзади, – по направлению движения часовой стрелки.
Снаряды различных орудий делают от 200 до 500 оборотов в секунду.
Колесо автомобиля на полном ходу делает в секунду около 16 оборотов, винт самолета – от 35 до 75. Снаряд вращается в тридцать раз быстрее автомобильного колеса и в пять-семь раз быстрее, чем воздушный винт самолета.
Эта огромная скорость достаточна, чтобы обеспечить устойчивость современного продолговатого снаряда в полете.
Летящий гироскоп
Но если бы снаряд был в полете вполне устойчив, он летел бы, как изображено на рисунке 121, и падал бы на землю не головой, а дном.
На самом же деле снаряд летит не так.
Еще один опыт с гироскопом поможет нам лучше понять особенности полета снаряда.
Поставим на гироскоп фигуру. В ее вытянутую руку вложим груз, как изображено на рисунке 119.
Вы думаете, вращающийся гироскоп наклонится вниз, в сторону груза? Ничуть не бывало: гироскоп повернется вокруг своей вертикальной оси слева направо.
Попробуйте теперь толкнуть гироскоп, ударить по одному из концов горизонтальной оси (рис. 120). Казалось бы, гироскоп должен от такого толчка повернуться на своей вертикальной оси.
Не тут-то было: на самом деле гироскоп начнет поворачиваться вокруг горизонтальной оси так, что фигура упадет с него.
В этом и заключается основное свойство гироскопа: он изменяет положение своей оси, двигаясь всегда под прямым углом к направлению действия внешней силы и в сторону своего вращения.
Быстро вращающийся в полете снаряд напоминает маховик гироскопа. Как и гироскоп, снаряд стремится сохранить положение своей оси в пространстве. Но при этом снаряд, конечно, опускается под линией бросания: траектория изгибается. Пока ось снаряда совпадала с касательной к траектории, сопротивление воздуха распределялось равномерно по всем точкам головной части снаряда и только замедляло его полет (рис. 115).
Рис. 121. Так летел бы вращающийся снаряд в безвоздушном пространстве
Но едва лишь ось снаряда начала отходить от касательной к траектории (это произошло в самом начале движения), как снаряд подставил сопротивлению воздуха свой бок (рис. 116).
Рис. 122. Как отражается на вращающемся снаряде полученный им толчок
Рис. 123. Одно из действий сопротивления воздуха на снаряд
Рис. 124. Коническое вращение головной части снаряда
Невращающийся снаряд опрокинулся бы при этом.
Но снаряд вращается. Как и маховик гироскопа, он стремится сохранить устойчивость; на действие внешней силы он отвечает поворотом в направлении, перпендикулярном тому, по которому действует сила. При этом он подчиняется такому правилу: если какая-то точка снаряда получила толчок, направленный перпендикулярно (по нормали) к оси снаряда, то от толчка голова снаряда отклонится в ту сторону, куда должна притти через три четверти оборота точка, получившая толчок (рис. 122).
Сопротивление воздуха толкает голову снаряда снизу вверх; снаряд отвечает на это тем, что поворачивает голову вправо, под прямым углом к направлению действия внешней силы и в сторону своего вращения (рис. 123).
В этом новом положении воздух сильнее давит на снаряд слева, стремится повернуть его голову вправо. Упрямый снаряд-гироскоп повернет ее вниз. Тогда воздух, действуя на снаряд сверху, начнет загибать его голову вниз. А снаряд-гироскоп сделает опять по-своему – и повернет ее влево. Как только воздух попробует свернуть голову снаряда влево, снаряд поднимет ее вверх. И такая борьба снаряда-гироскопа с силой сопротивления воздуха продолжается во все время полета: Голова снаряда перемещается то вправо, то вниз, то влево, то вверх, то-есть описывает около траектории круг, а ось снаряда описывает коническую поверхность (рис. 124).
Рис. 125. Так летит в воздухе «послушный» вращающийся снаряд
В результате, вращающийся снаряд летит все время головой вперед и в таком же положении падает на землю (рис. 125).
И получается, что та же самая сила сопротивления воздуха, которая мешала, опрокидывала невращающийся снаряд, начинает помогать, как только снаряд приобретает вращательное движение: сила сопротивления воздуха теперь уже «привязывает» голову снаряда к траектории, делает его послушным.
Теперь, когда мы уже узнали все силы, действующие на снаряд во время полета, мы должны понять разницу в очертаниях траекторий, показанных на рисунке 109
Рис. 126. Элементы траектории
На самом деле траектория всегда несимметрична: дальняя – нисходящая – ветвь у нее круче и короче восходящей, и снаряд падает круче, чем вылетает из орудия, то-есть угол падения снаряда всегда больше угла бросания (рис. 126).
Рис. 127. Полигональный снаряд Витворта
Рис. 128. Нарезной снаряд Шарбонье
Снаряд-копье
Вернемся теперь к вопросу – почему же не сделать очень длинный снаряд, так сказать, снаряд-копье?
Оказывается, такой снаряд был бы все же недостаточно устойчив в полете.
Чтобы обеспечить ему устойчивость, надо было бы вращать его еще раза в два-три быстрее, чем вращается современный снаряд.
Для этого и нарезы в орудии надо было бы сделать раза в два-три круче, чем их делают теперь.
Но тогда мягкий медный ведущий поясок снаряда не выдержал бы громадного давления, какое пришлось бы на его долю при такой крутой нарезке и при большом весе длинного снаряда.
Нужны, значит, какие-то новые технические приемы, чтобы обеспечить такому длинному и тяжелому снаряду достаточно быстрое вращение.
Что можно сделать в этом направлении?
Еще в шестидесятых годах девятнадцатого века англичанин Витворт предложил многоугольный (или, как говорят, полигональный) снаряд (рис. 127). Разумеется, и канал орудия Витворта представлял собой в сечении многоугольную призму, несколько скрученную, – вроде того, как скручивается веревка, – чтобы придать вращение этому снаряду.
В свое время это предложение не нашло широкого применения, а вскоре и вовсе было заброшено. Однако в наши дни его извлекли из архивов и проводят опыты со снарядами Витворта.
Есть и другие предложения. Уже после империалистической войны француз Шарбонье предложил и сумел изготовить снаряд с готовыми выступами, или, иначе, «нарезной снаряд» в десять калибров длиной (рис. 128). Снаряд этот имеет большие преимущества перед старыми: поперечная нагрузка у снаряда Шарбонье вдвое больше, чем у обычного, а поэтому и летит он заметно дальше. Вес снаряда Шарбонье примерно вдвое больше, чем вес старого снаряда, а потому в нем помещается значительно: больше взрывчатого вещества, чем в старом.
Во время своих опытов Шарбонье стрелял из 155-миллиметровой пушки снарядом в 90 килограммов весом вместо обычных 43. Снаряд этот пролетал 19 километров вместо обычных 16.
Но изготовлять такие снаряды с готовыми нарезами трудно и дорого, а заряжать орудие таким снарядом долго и неудобно: уже во время заряжания снаряд должен двигаться своими выступами по нарезам орудия.
Вот почему снаряды Шарбонье пока еще не нашли широкого применения.
В стратосферу
Как видите, много хлопот причинило артиллеристам сопротивление воздуха. Кое с чем удалось справиться, и притом с успехом: заставив снаряд вращаться, добились того, что он стал устойчив на полете, а головой начал следить за траекторией.
Но главное заключается в том, что сопротивление воздуха все же резко сокращает дальность полета снаряда.
Нельзя ли избавиться и от этого действия воздуха? Но для этого надо избавиться от сопротивления воздуха. А как же это сделать? Ведь воздухом окутана вся земля!
Да, вся земля окутана воздухом. Но зато плотность его различна на разных высотах. На большой высоте, в стратосфере, воздух сильно разрежен, сопротивление его ничтожно. Пусть хотя бы часть пути снаряд пролетит без воздействия воздуха!
Во время мировой войны немцы, испытывая одно из дальнобойных орудий, случайно установили, что дальность стрельбы из орудий резко увеличивается в том случае, если траектория снаряда поднимается выше 20 километров. Этот принцип они и использовали для создания специальных сверхдальнобойных орудий. Орудия эти были предназначены для варварского обстрела мирной столицы Франции-Парижа – с расстояния более 100 километров.
Снаряд этого орудия быстро пробивал нижний плотный слой воздуха и вырывался на простор стратосферы, входя в нее под углом в 45 градусов, то-есть как раз под углом наибольшей дальности полета в безвоздушном пространстве (рис. 129).
К этому времени снаряд сохранял еще скорость около 1000 метров в секунду. Такая скорость позволяла ему пролететь в безвоздушном пространстве около 100 километров, после чего он спускался на землю с заоблачных высот.
Рис. 129. Траектория снаряда сверхдальнобойной пушки, стрелявшей по Парижу
Какое же орудие необходимо для стрельбы на такое громадное расстояние?
Глава седьмая
Пушка Жюль Верна и «Царь-пушка»
Сверхдальнобойная пушка
Сверхдальнобойные пушки, стрелявшие по Парижу в 1918 году, значительно отличались по своему виду от обычных орудий (рис. 130). Прежде всего бросается в глаза необычайная длина их стволов, достигавшая 34 метров.
Рис. 130. Сверхдальнобойная пушка, стрелявшая по Парижу в 1918 году
Стволы имели в середине стойки, связанные стальными тягами с дульной и казенной частями орудий. Иначе при такой длине они грозили прогнуться под действием собственного веса. Да и так после каждого выстрела стволы колебались в течение двух-трех минут, как тонкие удочки.
Заряжание и наводка орудий выполнялись особыми механизмами с помощью электрических моторов.
Снаряды с готовыми выступами, калибром от 210 до 232 миллиметров, весили от 104 до 126 килограммов каждый.
А заряд, по слухам, весил почти вдвое больше: около 215 килограммов (рис.131). Это особенно резко отличает сверхдальнобойную пушку от обычных орудий, в которых вес заряда в несколько раз меньше веса снаряда. Например, в близкой по калибру 220-миллиметровой пушке заряд весит 26,3 килограмма, а снаряд – 103 килограмма, то-есть заряд почти в 4 раза легче снаряда.
Необычайной длине ствола и такому огромному весу заряда соответствовал, конечно, и огромный вес орудия. Орудие с установкой весило 750 тысяч килограммов, то-есть 750 тонн!
Вес этой пушки почти в 750 раз превышал вес 76-миллиметровой пушки и больше чем в 30 раз – вес обыкновенной пушки того же калибра.
Для перевозки такой пушки в разобранном виде вместе с установкой понадобился бы товарный поезд в 50 вагонов.
Вот какой огромный вес влечет за собой большое увеличение длины ствола и веса заряда!
Конечно, о подвижности такого орудия не может быть и речи.
Зато скорость снаряда получилась тоже огромная.
Именно увеличение длины ствола и веса заряда в сверхдальнобойной пушке дало начальную скорость снаряда, доходящую до 1700, а по некоторым сведениям, даже до 2000 метров в секунду! Примерно втрое-вчетверо больше скорости снаряда обычной 70-миллиметровой пушки!
А ведь и эта скорость, как мы знаем, очень велика.
Такая большая начальная скорость и позволила забросить снаряд в стратосферу.
Сверхдальнобойные пушки стреляли при угле возвышения около 50 градусов. При этом снаряд входил в стратосферу под углом в 45 градусов, то-есть под углом наибольшей дальности в пустоте.
Имеются ли сейчас сверхдальнобойные пушки?
После поражения в империалистической войне немцы заявили, что они взорвали и уничтожили свои сверхдальнобойные пушки. Но другие государства еще до окончания войны успели изготовить подобные же орудия.
Вот, например, французская 210-миллиметровая пушка (рис. 132). Она имеет ствол длиною в 110 калибров (24,1 метра) и стреляет на 120 километров снарядом весом в 108 килограммов. Вес этой пушки тоже не мал – она весит 320 тонн.
Можно ли стрелять еще дальше?
Конечно. Но это повлечет еще большее увеличение веса орудия. Кроме того, не будем забывать, что чем могущественнее орудие, чём оно дальнобойнее, тем короче его «жизнь». Ствол сверхдальнобойной пушки приходил в негодность после 50-70 выстрелов. И уже после первых десятков выстрелов значительно уменьшалась меткость орудия.
Рис. 131. Снаряд и заряд сверхдальнобойной пушки по сравнению со снарядом и зарядом обыкновенной пушки того же калибра
Рис. 132. Французская 210-миллиметровая сверхдальнобойная пушка
Можно построить и такую пушку, которая стреляла бы не на 100, а, скажем, на 200 километров. Но такая пушка была бы очень невыгодна: постройка ее стоила бы огромных денег, а выстрелить она могла бы всего лишь несколько раз.
В снаряде на Луну!
Но иногда, как говорят, цель оправдывает средства. Можно в некоторых случаях пойти на создание такой пушки, которая выдержала бы всего-навсего один только выстрел.
Если бы могли, например, построить такую пушку, которая выдержала бы всего один единственный выстрел, но зато этим выстрелом послала бы свой снаряд за пределы земной атмосферы, в космическое пространство, то, наверное, пошли бы на постройку такого орудия.
Ведь пользуясь этой пушкой, мы могли бы отправить снаряд, например, на Луну!
Эта идея не нова. О ней писал еще Жюль Верн в одном из своих фантастических романов «Из пушки на Луну». Герои романа для полета на Луну строят пушку с невероятно длинным стволом. Снаряд этой пушки – вагон прямого сообщения «Земля-Луна» со всеми удобствами!
Каковы же данные исполинской пушки Жюль Верна?
Длина ствола пушки – 275 метров; ее ствол в 8 с лишним раз длиннее ствола немецкой сверхдальнобойной пушки.
Вес снаряда – 8 000 килограммов– почти в 67 раз больше веса снаряда сверхдальнобойной пушки.
Вес заряда – 180 000 килограммов – почти в 840 раз больше веса заряда сверхдальнобойной пушки.
Начальная скорость – 16 000 метров в секунду, – в 8-9 раз больше той же скорости снаряда сверхдальнобойной пушки.
Только при этой скорости, по расчету, снаряд может оторваться от Земли, избегнуть притяжения Солнца и улететь в межпланетное пространство.
Возможно ли вообще придать снаряду такую скорость при выстреле из пушки Жюль Верна?
Герои Жюль Верна использовали для метания снаряда пироксилин.
Но никакое взрывчатое вещество, обращенное в газ, не может сообщить снаряду скорость выше некоторого предела.
Этот предел зависит от качеств взрывчатого вещества, веса заряда, веса снаряда и длины ствола.
Если подсчитать эту предельную скорость для снаряда пушки Жюль Верна, то окажется, что снаряд не может быть выброшен из нее со скоростью, большей 4000 метров в секунду.
Значит, скорости в 16 000 метров в секунду таким путем не достигнуть. А при меньшей скорости снаряду не улететь в космическое пространство.
Да и помимо этого, при скорости в 16 000 метров в секунду снаряд испытал бы чудовищное сопротивление воздуха. Это было бы такое же сопротивление, как при проникании обычного снаряда в плотную, твердую среду!
Конечно, при таком сопротивлении начальная скорость очень быстро уменьшилась бы: воздух затормозил бы снаряд в начале его полета.
Мы уже не будем говорить о том, что пассажиры снаряда-вагона были бы раздавлены в первые же сотые доли секунды движения снаряда: они не выдержали бы огромной силы толчка при быстром увеличении скорости от нуля до 16 000 метров в секунду.
Итак, для полета в межпланетное пространство пушечный снаряд непригоден.
Нужен другой «вагон», такой, который увеличивал бы скорость своего движения постепенно. В будущем это требование, пожалуй, как показывают теоретические исследования, сможет удовлетворить только снаряд-ракета, то-есть летательный аппарат с реактивным двигателем.
Ракета может двигаться и в безвоздушном пространстве, а скорость ее может возрастать менее стремительно, чем у пушечного снаряда. Она выбрасывает назад струю газа, образующегося при сгорании пороха или других горючих веществ, заключенных в самой ракете. При этом внутри ракеты возникает давление в сторону, противоположную истечению газов. Это и заставляет ее двигаться вперед.
Этот принцип движения пытаются применить и в артиллерии, в так называемых реактивных снарядах. Их не нужно бросать с большой начальной скоростью, а значит, не нужно тяжелого, прочного ствола.
Все это очень удобно; но реактивные снаряды пока имеют ряд крупных недостатков.
Основным недостатком их является малая меткость. Дело в том, что дальность и направление полета снаряда-ракеты зависят, главным образом, от скорости горения вещества, заключенного в снаряде, и от неизбежного изменения веса снаряда по мере сгорания этого вещества.
Добиться же закономерного горения вещества в полете снаряда-ракеты очень трудно.
Что же такое пушка?
Таким образом, вряд ли мы будем летать в пушечных снарядах на Луну. Но это отнюдь не означает, что не нужны орудия, которые могут бросать снаряды с большой скоростью и на большие расстояния.
Какими же способами достигается большая начальная скорость и дальнобойность?
На этот вопрос теперь ответить нетрудно. И пушка, стрелявшая по Парижу, и пушка Жюль Верна подсказывают нам правильный ответ: нужен большой заряд и длинный ствол. Большой заряд создаст большое давление пороховых газов; длинный ствол позволит газам дольше действовать на снаряд и разогнать его сильнее, дать ему большую начальную скорость.
Такие орудия, от которых мы требуем прежде всего дальнобойности, и называются пушками (рис. 133). Они рассчитаны на большой заряд пороха и имеют всегда относительно длинный ствол. Они выбрасывают снаряды с большими начальными скоростями, обычно не меньшими, чем 500 метров в секунду.
Рис. 133. Основные признаки пушки: сравнительно длинный ствол, большая начальная скорость снаряда, отлогая траектория
Длина современного пушечного ствола никогда не бывает меньше 25-27 калибров; это значит, что диаметр его канала уложится в длине ствола не менее двадцати пяти раз.
Пушечный снаряд вылетает из ствола с большой скоростью. Вследствие этого при стрельбе из пушки по не очень удаленным от нее целям нет надобности придавать ей большой угол возвышения, близкий к 45 градусам. Обычно для этого достаточно угла возвышения до 20 градусов. При таких углах снаряд в полете поднимается невысоко и траектория его не отличается крутизной, – иначе говоря, пушка имеет отлогую траекторию.
Но при стрельбе из пушек бывают и другие траектории. Снаряд пушки, стрелявшей по Парижу, поднимался на 40 километров при дальности полета немного более 100 километров. Угол возвышения этого орудия был очень велик – около 50 градусов. Подобные траектории нужны для пушек, рассчитанных на дальнюю и сверхдальнюю стрельбу.
Большая скорость снаряда, дальнобойность и обычно отлогая траектория – вот основные свойства пушки.
В соответствии с этими свойствами пушка хороша, а иногда и незаменима при стрельбе по одним целям и мало удобна или даже вовсе не пригодна при стрельбе по другим целям.
Пушка хорошо поражает прежде всего открытые цели, в особенности живые.
Рис. 134. При стрельбе шрапнелью отлогая траектория выгоднее крутой (точками показаны следы падения пуль)
Из рисунка 134 ясно, что чем траектория более отлога, тем больше живых целей может быть поражено одной шрапнелью.
Рис. 135. При стрельбе по вертикальной броне выгоднее отлогая траектория: при крутой траектории снаряд может скользнуть по бронз, но дробив ее
Удобна пушка и для стрельбы по вертикальным прочным сооружениям, например по стене или по вертикальной броне (рис. 135). Очевидно, что при отлогой траектории снаряду легче проникнуть в такую броню. А при крутой траектории он может скользнуть по броне, не пробив ее.
Хороша пушка и для стрельбы по быстро движущимся целям – самолетам, танкам. Тут очень важно, чтобы неприятельская машина за время полета снаряда не успела уйти далеко. Для этого нужен быстро летящий снаряд. Пушка как раз отвечает этим требованиям: ее снаряды выбрасываются с большой начальной скоростью, они летят быстро.
Наконец, пушка незаменима для обстрела дальних целей, например удаленных батарей неприятеля, его штабов, тылов, обозов на дорогах. Ведь основное свойство пушки – ее дальнобойность; например, французская 75-миллиметровая пушка образца 1926 года бросает снаряды на 15 километров, а 105-миллиметровые пушки стреляют еще дальше – на 18-20 километров.
И это, как мы знаем, вовсе не предел дальнобойности пушек.
Все дело лишь в их весе. Вспомним огромный вес сверхдальнобойной пушки.
А обычные пушки нельзя делать слишком тяжелыми: они должны обладать подвижностью. Это и ограничивает их дальнобойность.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?