Электронная библиотека » Вячеслав Дубынин » » онлайн чтение - страница 2


  • Текст добавлен: 25 декабря 2020, 18:25


Автор книги: Вячеслав Дубынин


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 32 страниц) [доступный отрывок для чтения: 11 страниц]

Шрифт:
- 100% +
Нейронные сети

Изображенная в нижней части рис. 1.1 нейронная сеть состоит всего из пяти нервных клеток, и если вспомнить, что дендриты принимают информацию, а аксоны передают, то становится ясно, в какую сторону по этой сети идут сигналы. Они идут от нейрона 1, он на входе, дальше к нейронам 2 и 3, а от них уже к нейронам 4 и 5, которые в итоге передают возбуждение на мышцы (6) и на внутренние органы (7).

Нейроны, которые изображены на схеме, относятся к четырем функциональным группам. Те, которые находятся на входе в нейросеть, как правило, связаны с органами чувств, их называют сенсорные. Они ощущают прикосновения или, например, улавливают запах.

Нейроны, которые расположены на выходе, – это мотонейроны (двигательные нейроны) и вегетативные нейроны. Первые из них запускают сокращение мышц, и любое наше мышечное сокращение начинается с импульса, возникшего в мотонейронах. Вегетативные нейроны работают с внутренними органами, такими как сердце, сосуды, кишечник, бронхи. Важная разница между мотонейронами и вегетативными нейронами состоит в том, что мотонейронами мы умеем управлять произвольно, а вегетативными, как правило, нет. Эволюция не дала сознанию вход в эту часть нейросети.

Если вспомнить аналогию мозга и компьютерного центра, то получается, что наше сознание – это пользователь, который постоянно имеет дело с тысячами компьютеров. Некоторыми из них он может управлять; другие просто видит и может понять, что они работают, а пароля у него нет. Например, сердце может биться чаще или реже. Волевым усилием, без долголетней йоговской тренировки, человек не может этим управлять. Каждый, наверное, знает, что почувствовать сердцебиение можно, а изменить крайне непросто. Наконец, в нашем «компьютерном центре» есть такие вычислительные устройства, которые явно что-то делают, но сознание вообще не в курсе специфики их активности. Это относится, например, к выделению гормонов. Данной функцией занимается та часть головного мозга, которая называется гипоталамус. Но наше сознание (центры коры больших полушарий) совершенно не отслеживает этот процесс. Возьмем гормон роста. Он выделяется под контролем гипоталамуса, но волевым усилием еще ни одному йогу не удалось вырасти хотя бы на 10 сантиметров. Существование закрытых от сознания «компьютеров» связано с тем, что соответствующие блоки мозга отвечают за нечто столь важное, что сознанию туда нельзя влезать, иначе можно наломать дров. Наш сознательный контроль умеет отслеживать только часть нервных процессов. Мы можем контролировать прежде всего движения, мысли, отчасти – эмоции, но в вегетативную сферу сознанию вход затруднен.

Вернемся к схеме нейросети. Нейроны 2 и 3 – промежуточные нервные клетки (интернейроны), и они в этом ансамбле главные. От них зависит, пойдет ли сигнал «на выход» и вызовет ли, скажем, прикосновение, какую-нибудь реакцию. Именно интернейроны принимают решение о запуске реакций, они же отвечают за такое свойство, как память. В мозге больше всего именно этих клеток, которые связывают вход и выход. В сложном мозге типа человеческого 95 % промежуточных клеток, а на входе и выходе, соответственно, не более 5 % нейронов.

Промежуточные клетки способны обмениваться между собой информацией: на нашей схеме отросток аксона, принадлежащий клетке 2, идет к клетке 3. Следовательно, даже сеть, состоящая всего из пяти нейронов, способна к весьма разнообразным операциям. А если это не 5 нейронов, а 500 или 5 млн? Здесь информационные потоки могут возникать самые разные, очень сложные и интересные, непредсказуемые. Поэтому наш мозг сравнивают не просто с компьютером, а с шумящим компьютером. Это в компьютере всегда 5 × 5 = 25, а у нашего мозга иногда 24, а иногда 27, и это правильно.

Мозг должен «шуметь». Он должен генерировать в определенной степени стохастическое, случайное поведение. Это эволюционно выгодно.

Если бы заяц всегда убегал от лисы предсказуемо, то такого зайца быстро бы поймали и съели. Важна именно непредсказуемость, нужно, чтобы заяц бежал иногда вправо, иногда влево. Это биологически верно, и в итоге наш мозг сделан не для того, чтобы работать с точными цифрами, как компьютер, а для того, чтобы пытаться заглянуть в будущее и так разнообразить поведение, чтобы удовлетворить свои потребности и выжить.

Знания о медиаторах – о тех веществах, которые выделяются в синапсах, – лежат в основе современной психофармакологии. В следующих главах книги будут рассмотрены функции различных медиаторов. Их изучением и занимается наука психофармакология.

Для понимания основной темы книги – мозг и потребности – необходимо перейти на следующий уровень – макроанатомию мозга. Материал о центральной нервной системе, которая состоит из головного мозга и спинного мозга, обычно проходят в школьной программе. Но, так как не каждый взрослый человек помнит о том, что он слышал в школе, кратко повторим строение центральной нервной системы (ЦНС).

Для понимания работы мозга и его центров нам потребуется в первую очередь знание о гипоталамусе, базальных ганглиях, среднем мозге, коре больших полушарий.

Строение мозга. Макроанатомия мозга

Центральная нервная система (ЦНС) – это головной мозг плюс спинной мозг. Головной находится внутри черепа, а спинной идет внутри позвоночника. Устройство спинного мозга в сравнении с головным существенно проще.

Спинной мозг

Наше тело от шеи до копчика делится на 31 этаж, и спинной мозг делится на 31 сегмент. Каждому сегменту примерно соответствует один позвонок, то есть и на уровне скелета все сегментировано. За сегментацию отвечают особые гены, включающиеся на очень ранней стадии развития эмбриона.

Каждый сегмент спинного мозга работает со своим этажом тела. Это значит: получает кожно-болевую чувствительность, управляет мышцами и внутренними органами. На этом уровне мы весьма похожи на дождевого червяка или гусеницу бабочки. Только у гусеницы сегменты видны очень четко, а у нас хоть и не видны, но действительно существуют.

Выделяют восемь шейных сегментов (шея, руки, дыхание), двенадцать грудных («этажи» грудной и брюшной полостей, мышцы туловища), пять поясничных сегментов (ноги) и шесть крестцово-копчиковых (область таза). Если, например, сместился шестой грудной позвонок относительно седьмого, он передавит те нервы, которые выходят из шестого грудного сегмента спинного мозга. Что может произойти дальше? Человек ощутит боль где-нибудь в районе ребер, и эта боль будет связана не с реальным повреждением, а с тем, что спинной мозг плохо передает сигналы. А еще может ухудшиться работа сердца или кишечника…

Когда врачи говорят, что половина болезней от позвоночника, они оказываются правы, потому что передача информации в спинной мозг и из спинного мозга, к сожалению, довольно легко нарушается при деформациях позвоночника. Если позвонки, например из-за сколиоза, сдвинулись в сторону, что часто случается, то существует шанс, что они нажмут на веточку какого-нибудь нерва. Это происходит из-за того, что мы – прямоходящие существа, и за те несколько миллионов лет эволюции, что прошли с момента, когда наши предки встали на задние лапы, позвоночник так и не приспособился окончательно к прямохождению. Поэтому к 40 годам у большинства людей спина уже болит.

Каждый сегмент спинного мозга работает со своим этажом тела, а еще общается с головным мозгом, как с «большим начальником». Существуют, например, информационные потоки, связывающие ладонь со спинным мозгом, с его шейными сегментами, а потом эта информация уходит в головной мозг. Если мы ощущаем прикосновение, например, к большому пальцу руки, это означает, что импульс сначала добежал до спинного мозга, а потом поднялся в кору больших полушарий, где находятся высшие психические центры, которые, собственно, и отвечают за возникновение ощущения. А если человек шевелит большим пальцем, это означает, что импульс сначала возник в коре больших полушарий, потом опустился в соответствующий сегмент спинного мозга, а потом уже ушел на эту мышцу. И нервно-мышечный синапс заставил мышцу сокращаться.

У взрослого человека все это происходит достаточно быстро и автоматически, потому что мы этому учимся в первые годы нашей жизни. Ребенок же появляется на свет почти без двигательных навыков (хотя некоторые из них начинают закладываться еще в утробе матери). Младенец в первые месяцы жизни тратит массу усилий на то, чтобы овладеть своей мышечной системой на уровне отдельных движений, с полугода приступает к «шлифовке» локомоторной активности (ползания, ходьбы).

Головной мозг

Можно выделить три основные зоны головного мозга: это ствол, мозжечок и большие полушария. Ствол – центральная древняя область головного мозга, древняя структура, которая имеется уже у рыб. От ствола мозга, как от ствола дерева, отрастают две «кроны»: одна крупнее – большие полушария, а другая поменьше – мозжечок, то есть малый мозг. У всех позвоночных головной мозг устроен по одному и тому же плану. Все мы родственники, а интенсивная эволюция млекопитающих происходила последние 60–70 млн лет.

У человека, как известно, не самый большой мозг, у слона или у кашалота мозг в несколько раз больше нашего. Если существо крупное и у него крупное тело, то и мозг для управления этим телом тоже нужен большой, но он в основном занимается внутренними органами, движениями, кожной чувствительностью. А вот высшие ассоциативные зоны уникальны для человеческого мозга, только у нас они такие большие.

Ствол головного мозга включает четыре отдела: (1–2) продолговатый мозг и мост – это две самые нижние стволовые структуры, и они находятся под мозжечком; (3) средний мозг; (4) промежуточный мозг, находится «промеж» полушарий – от него во время развития эмбриона как бы отрастают два больших полушария.

Большие полушария называют также конечным мозгом. Итого получается шесть основных отделов головного мозга, которые показаны на рис. 1.2.

На рис. 1.2. изображены шесть отделов головного мозга, две крупные полости внутри него – третий и четвертый желудочки, а также соединяющий эти полости канал (мозговой водопровод).

Продолговатый мозг и мост мы будем все время объединять, потому что с точки зрения функций это единая зона. Они вместе занимаются важнейшими для организма функциями: дыханием, работой сердца. Мозжечок – важнейший двигательный центр. Средний мозг находится между мостом и промежуточным мозгом.


Рис. 1.2. Схема продольного среза через головной мозг человека. Показаны шесть отделов головного мозга, две крупные полости внутри него – третий и четвертый желудочки, а также соединяющий эти полости канал (мозговой водопровод)


Верхняя часть промежуточного мозга называется таламус, нижняя – гипоталамус, а под гипоталамусом находится гипофиз – эндокринная железа. Здесь же в промежуточном мозге имеется и вторая эндокринная железа – эпифиз.

Наиболее крупная область ЦНС человека – большие полушария. Правое и левое полушария соединяет крупнейшее скопление аксонов – мозолистое тело. Мозолистое тело «собирает» полушария в цельный вычислительный комплекс. Если у человека повреждается мозолистое тело, у него могут возникать симптомы, сходные с «раздвоением личности», когда правое и левое полушарие начинают работать отдельно. Одно свое думает, другое – свое, правое полушарие одни движения запускает, левое – другие…

Что же конкретно делают продолговатый мозг и мост? Обобщая, можно сказать, что они занимаются жизненно важными функциями, без которых невозможно существовать. Понятно, что эти функции эволюционно самые древние, с них все начиналось. Уже у рыб эти отделы устроены примерно так же, как у нас. Что это за жизненно важные функции?

Во-первых, здесь находится дыхательный центр. Каждый наш вдох, каждый наш выдох запускается из продолговатого мозга и моста.

Во-вторых, здесь находится центр, который нейрофизиологи называют сосудодвигательным. Состоит он из нейронов, управляющих работой сердца, тонусом сосудов, сердечно-сосудистой системой. Это огромное хозяйство, с помощью которого, например, регулируется кровоток в разных частях нашего тела, кровяное давление. Руководство этими процессами является жизненно важной задачей.

В-третьих, здесь находится все, что связано с врожденным пищевым поведением. Центры вкуса, центры, запускающие глотание, слюноотделение, сосательный рефлекс, выплевывание, рвоту – то, что у младенца должно работать сразу, иначе он не сможет питаться.

В-четвертых, продолговатый мозг и мост содержат главный центр бодрствования. Этот центр собирает сигналы от всех сенсорных систем и будит человека, если, например, зазвонил будильник или кто-то потряс нас за плечо. Любой сильный входящий сенсорный сигнал способен разбудить мозг, а потом из продолговатого мозга и моста волны активации расходятся по всей ЦНС, от спинного мозга до коры больших полушарий. И мы меняем состояние с сонного на бодрствующее. Если эту зону повредить, возникнет коматозное состояние. Любое повреждение продолговатого мозга и моста, даже самое маленькое, смертельно опасно, потому что может выключиться дыхание или нарушиться глотание.

Мозжечок – это прежде всего двигательный центр. Движения нашего тела очень разнообразны. Бывают произвольные движения, бывают движения, связанные с перемещением в пространстве, бег и шаг (локомоция). Особо выделяют рефлекторные движения. Мозжечок отвечает не за все группы движений, а за автоматизированные движения. За движения, которые мы вначале не умели четко и эффективно реализовать, они были для нас новыми, но потом мы их повторяли, повторяли – и выучили. Именно на уровне мозжечка происходит запоминание двигательных программ, их автоматизация. При повторах движений нейроны мозжечка запоминают, как эти движения качественно, быстро выполнять. А пока мозжечок не запомнил, движениями в основном управляет кора больших полушарий.

Кора больших полушарий осуществляет произвольный контроль. Вы должны смотреть, как берете предмет, какие манипуляции совершаете. Но если вы повторите эти движения сто или тысячу раз, то возникнет двигательный автоматизм. Если в пять-шесть лет ребенок старательно писал в тетрадке первые палочки и кружочки, то в десятом классе он пишет автоматически. Это значит, что уже не кора больших полушарий управляет движениями руки, а мозжечок. Мозжечок водит пальцами, а кора больших полушарий в это время, например, слушает учителя, старается понять, что он рассказывает. Смысл автоматизации состоит в том, чтобы разгрузить большие полушария и передать рутинные, повторяющиеся часто и помногу движения под управление мозжечка.

Если посмотреть на мозжечок, то можно увидеть, что в нем находится несколько зон, которые занимаются разными типами движений. Есть центральная часть, она называется червь и отвечает за поддержание равновесия («автоматизация вестибулярных рефлексов»). Ее обучение стартует с того момента, когда ребенок начинает держать голову, учится сидеть. Средняя зона мозжечка, внутренняя часть полушарий отвечает за автоматизацию локомоции и учится, когда мы начинаем ползать, ходить, бегать, плавать, то есть перемещаться в пространстве, ритмически сгибая руки и ноги. Самая наружная часть мозжечка (внешняя область полушарий), ее называют новой частью, в эволюции возникает позже всего. Она отвечает за движения, присущие только человеку, прежде всего за тонкую моторику пальцев и речь. Мы довольно долго и трудно учимся говорить, постепенно овладеваем фонемами и словами.

Мозжечок занимается автоматизацией самых разных движений, и если что-то в нем ломается, то движение опять становится произвольным. После травмы мозжечка приходится произвольным усилием воли поддерживать равновесие, сгибать и разгибать ноги во время ходьбы и т. п.

Помимо мозжечка, автоматизацией движений занимается еще одна обширная зона нашего мозга, которая называется базальные ганглии. Базальные ганглии находятся в глубине больших полушарий (см. рис. 2.1 в главе 2).

Все знают, что снаружи больших полушарий располагается кора. Она представляет собой идущие параллельно поверхности мозга слои нейронов, выполняющих самые важные и сложные функции, связанные с сенсорным анализом, речью, принятием решений, произвольными движениями. Но в глубине больших полушарий находится еще несколько скоплений серого вещества. Их объединяют в целостный комплекс, именуемый базальными ганглиями. Основная часть нейронов базальных ганглиев работает вместе с мозжечком, запоминает повторяющиеся двигательные программы. Кроме того, часть структур, относящихся к базальным ганглиям, связана с функциями потребностей, эмоций и мотиваций.

Рассмотрим теперь средний мозг. В его верхней части находится так называемое четверохолмие – зона, которая реагирует на новизну стимулов. Нейроны четверохолмия выделяют новые зрительные и слуховые сигналы. Четверохолмию, строго говоря, все равно, что мы видим и слышим, – важно, что произошло изменение. Когда что-то меняется, то именно четверохолмие детектирует эту новизну и заставляет нас поворачивать глаза и голову в сторону пошевелившегося или внезапно зазвучавшего объекта. Благодаря четверохолмию наш организм эффективно собирает новую информацию. По сути дела, с четверохолмием связано любопытство на самом его древнем уровне.

В центре среднего мозга находится структура, которая так и называется – центральное серое вещество, и это главная область, которая запускает сон.

Если вы помните, наш главный центр бодрствования находится в мосте и продолговатом мозге, а вот главный центр сна – в среднем мозге. И они все время друг с другом конкурируют.

В зависимости от того, кто победил, мы впадаем либо в сонное состояние, либо бодрствуем. А если никто не победил, мы находимся в некой полудреме, особенно с утра или при монотонной и скучной деятельности.

В нижней части среднего мозга расположены красное ядро и черная субстанция – две структуры, которые тоже связаны с двигательной сферой. Красное ядро работает вместе с мозжечком и помогает, например, сгибать руки и ноги, когда мы куда-то бежим или идем. Черная субстанция реализует свои функции вместе с базальными ганглиями, во многом определяя общий уровень нашей двигательной активности. Более того, от нее зависят те положительные эмоции, которые мы испытываем, когда двигаемся. Если у вас активная черная субстанция, то вам, скорее всего, нравится двигаться. Значит, нравится гулять, заниматься спортом, танцевать. Танец, казалось бы, совершенно бессмысленное занятие, но многие люди любят танцевать. Причем речь идет не о танцах на дискотеке, где человек перед особями противоположного пола показывает, какой он замечательный, а о ситуации, когда в доме никого нет, а он танцует и радуется. Вот за это отвечает черная субстанция. Но, как будет показано ниже, у нас в мозге есть и конкурирующая программа лени, которая говорит: «Не надо двигаться, давай экономить силы». Баланс радости движений и лени индивидуален и зависит от генов и гормонов. Получается, что один человек более ленив, а другой очень подвижный, моторный. Для кого-то предложение пойти погулять в воскресенье по парку – это прекрасно, а кто-то говорит: «Нет, мне и на диване хорошо». Это уже область конкретных характеристик личности, которые во многом связаны в данном случае с черной субстанцией и с веществом-медиатором, которое называется дофамин.

Промежуточный мозг – это прежде всего таламус и гипоталамус – верхняя и нижняя части данного отдела ЦНС. Размер каждого из них около 4 сантиметров. Это очень важные структуры, и их тоже можно увидеть на рис. 2.1 в главе 2.

Таламус – это зона, которая в первую очередь работает с сенсорными сигналами и отвечает за то, что мы называем вниманием. Если вы сосредоточились, например, на чьей-то речи, это значит, что ваш таламус в основном пропускает слуховые сигналы. А если вдруг у вас зачесалась правая пятка и вы обратили внимание на нее, то в этот момент таламус начал пропускать кожную чувствительность. Одновременно слуховая чувствительность отчасти тормозится, так как кора больших полушарий не может все сразу полностью обрабатывать. Поэтому таламус преимущественно пропускает то одно, то другое. Соответственно, если вы начали от души чесаться, в этот момент речь собеседника вы будете слушать не так внимательно. Таламус нужен, так как кора больших полушарий не может одновременно видеть, слышать, осязать, обонять, а еще вспоминать вчерашний день и еще переживать эмоции, связанные с прошлым августом… Таламус – структура, которая помогает перераспределять вычислительные ресурсы коры больших полушарий и показывает, чем сейчас будет человек заниматься.

Гипоталамус – главнейший центр биологических потребностей, эндокринной и вегетативной регуляции. Он следит за выделением гормонов и контролирует работу внутренних органов, например при стрессе. Здесь же, в гипоталамусе, находятся группы нейронов, которые занимаются самыми разными задачами, связанными с потребностями, мотивациями, эмоциями. С гипоталамусом связывают голод, жажду, страх, агрессию, половое и родительское поведение. Это «большая шестерка» биологических потребностей, каждой из них в нашей книге будет посвящена отдельная глава.

Кора больших полушарий делится на древнюю, старую и новую.

Древняя кора – обонятельная. Она возникает в эволюции раньше всего, она уже есть у рыб. Соответственно, получается, что большие полушария возникают для того, чтобы нюхать. Они ближе всего к носовой полости. У рыб кора отвечает прежде всего за обоняние, а у нас этим занимается всего лишь около 2 % коры. К древней коре относятся обонятельная луковица и некоторые области, которые располагаются на внутренней поверхности больших полушарий рядом с передней частью мозолистого тела.

По ходу эволюции кора больших полушарий начинает заниматься и другими задачами. В частности, на уровне амфибий, рептилий (при выходе позвоночных на сушу) в явной форме развивается старая кора. Старая кора – это прежде всего центры кратковременной памяти. Главный из них – так называемый гиппокамп – находится в глубине височной доли на дне особой «гиппокампальной» борозды (см. рис. 3.2 в главе 3).

Но основная часть (более 95 % нашей коры) – это новая кора, которая характерна для млекопитающих, для нашей систематической группы. К новой коре относятся сенсорные, двигательные и ассоциативные («высшие») зоны. При этом новая кора подразделяется на шесть долей. Четыре из них хорошо известны: лобная, теменная, затылочная и височная (рис. 1.3). Кроме того, выделяют еще островковую и лимбическую доли коры больших полушарий.

Посмотрим сбоку на большие полушария. Спереди располагается лобная доля. Ее границей служит центральная борозда, за которой – уже теменная доля. Максимально заднее положение занимает затылочная доля. Ниже всего находится височная доля, которая отделена от остального мозга глубокой боковой бороздой. Дно боковой борозды образует обширное расширение – это и есть островковая доля. Наконец, лимбическая доля находится на внутренней поверхности полушарий. Лимбическая (от слова limb – край, круг) – это область коры, которая окружает место отхода полушарий от промежуточного мозга. В состав лимбической доли часто включают обонятельную (древнюю) кору и центры кратковременной памяти (старая кора).


Рис. 1.3. Расположение и функции различных областей коры больших полушарий человека. 1 – затылочная кора, зрение; 2 – височная кора, слух; 3 – передняя часть теменной доли, чувствительность тела; 4 – островковая доля, вкус и равновесие; 5 – задняя часть лобной доли, двигательная кора; 6 – ассоциативная теменная кора; 7 – ассоциативная лобная кора


Если схематично описывать функции коры больших полушарий, то список будет следующий.

Затылочная доля – зрительная. Наша «видеокарта» находится в затылке.

Поэтому, если стукнуть по затылку, «из глаз сыплются искры» – возникает зрительная иллюзия, поскольку стимулируется непосредственно затылочная кора.

Височная доля – слуховая кора, и это легко запомнить: уши по бокам, висок рядом.

Передняя часть теменной доли идет от макушки вниз. Это зона чувствительности тела – кожной, болевой, мышечной чувствительности.

Островковая доля – центр вкуса, а также центр вестибулярной чувствительности.

Задняя часть лобной доли – двигательная кора. Это зона, которая реализует новые («произвольные») движения. Именно ориентируясь на двигательную кору, мозжечок запоминает и автоматизирует наши двигательные навыки.

Как работает мозг?

Ассоциативную теменную кору окружают основные сенсорные центры, отвечающие за зрение, слух, кожную чувствительность, вкус. Логично, что сенсорная информация, после того как она обработана, сбрасывается в ассоциативную теменную кору. И в этой зоне возникает то, что в нейропсихологии называют целостный сенсорный образ внешнего мира. Благодаря ассоциативной теменной коре мы одновременно видим, слышим, осязаем.

Мы же не перескакиваем со зрительного канала на слуховой, а потом на осязательный. Мы воспринимаем все одновременно. Это происходит благодаря ассоциативной теменной коре, там располагаются нейроны, которые одновременно способны работать с разными органами чувств, с разными сенсорными системами. Именно на базе этих нейронов у человека возникают речевые системы. Потому что речь, слова – все это требует нервных клеток, которые работали бы одновременно с несколькими сенсорными системами.

Например, стол: я вижу стол – работает зрение, я говорю слово «стол» – работает слух. Объединяют зрительный и слуховой сигнал именно эти нервные клетки. Поэтому у нас с вами в ассоциативной теменной коре находятся еще и центры речи, центры мышления. Получается, что этой зоной мы думаем.

Еще важнее ассоциативная лобная кора. Думать, мечтать мы можем о чем угодно. Важно, что мы в конце концов сделаем. За наше поведение, за выбор программы, принятие решения отвечает ассоциативная лобная кора. Желательно, чтобы мы запускали полезное поведение, позволяющее решать те или иные задачи, удовлетворять те или иные потребности. Поэтому именно в лобную ассоциативную кору приходит информация о потребностях. Гипоталамус посылает сигнал прежде всего в ассоциативную лобную кору. Например: «Хочу есть», или «Хочу размножаться», или «Мне страшно, может быть, пора убегать?»

Ассоциативная лобная кора, приняв информацию о потребностях, обращается к центрам памяти, к индивидуальному опыту и к ассоциативной теменной коре с вопросом: «Что важного творится в окружающем мире?» Получив эти три информационных потока, ассоциативная лобная кора принимает решение о запуске поведения. И если вам стало страшновато в каком-то месте, то вы решаете уйти. Для этого надо встать, начать передвигать ноги и перейти в какое-то более комфортное пространство. Сигнал из ассоциативной лобной коры уйдет в двигательную кору, благо она совсем рядом, а двигательная кора даст сигнал мозжечку и спинному мозгу, и мы начнем шевелить руками, ногами и что-то делать.

На рис. 1.3 в упрощенном виде изображены основные информационные потоки, которые распространяются по нашей коре больших полушарий, когда мы что-то делаем. А мы практически все время что-то совершаем.

Потребности в рамках этой системы играют очень важную запускающую роль, и наличие потребностей часто служит стимулом для старта поведения. А не будет потребностей – так и будет мозг и, соответственно, тело вяло лежать на месте и ничего не предпринимать.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации