Текст книги "Для юных физиков. Опыты и развлечения (сборник)"
Автор книги: Яков Перельман
Жанр: Физика, Наука и Образование
Возрастные ограничения: +6
сообщить о неприемлемом содержимом
Текущая страница: 2 (всего у книги 8 страниц) [доступный отрывок для чтения: 2 страниц]
6. Необычайная поломка
Странствующие фокусники выполняют нередко очень красивый опыт, который кажется удивительным и необычайным, хотя довольно просто объясняется законами физики. На двух бумажных кольцах подвешивается довольно длинная палка; она опирается на них своими концами, сами же кольца перекинуты: одно – через лезвее бритвы, другое – через хрупкую курительную трубку (черт. 4). Фокусник берет другую палку и со всего размаха ударяет ею по первой. Лежащая палка ломается, а бумажные кольца… остаются невредимы!
Объяснение этого опыта то же, что и предыдущего: удар настолько краток, что не только бумажные кольца, но даже и концы ударяемой палки не успевают получить никакого перемещения; движется только та часть палки, которая непосредственно подвергалась удару, и палка переламывается. Секрет успеха, следовательно, в том, чтобы удар был быстр, отрывист. Удар медленный, вялый не переломит палки, а разорвет бумажные кольца.
Большие мастера среди фокусников ухитряются даже переламывать палку, опирающуюся на края двух тонких стаканов – и стекло остается неповрежденным.
Вам придется примириться с более скромным видоизменением того же опыта. Положите на край низкого стола или скамейки два карандаша так, чтобы часть их свободно выступала, и на эти свободные концы положите тонкую и длинную палочку. Сильный и быстрый удар линейкой по середине лежащей палочки переломит ее пополам, – но карандаши, на которые она опиралась концами, останутся на прежних местах.
Опыт этого рода объясняет вам, почему орех невозможно расколоть плавным, хотя и сильным давлением ладони, но очень легко раздробить сильным ударом кулака (черт. 2): в последнем случае удар не успевает распространиться по мясистой части кулака, и мягкие мускулы наши, не уступая напору ореха, действуют на него, как твердое тело.
По той же причине пуля пробивает в окне маленькую круглую дырочку, а брошенный рукой камешек, менее стремительно летящий, разбивает в осколки все стекло (черт. 3); еще более медленный толчок сможет повернуть оконную раму в петлях, чего ни пуля, ни камень сделать не могут.
Наконец, еще пример такого же явления представляет перерезывание стебля ударом прута (черт. 1). Напирая медленно прутом, хотя бы и с большой силой, вы стебля не перережете и только отклоните в сторону; ударив же с размаха, вы перережете его наверняка, если только, конечно, стебель не слишком толст. И здесь, как в предыдущих случаях, быстротой движения прута достигается то, что удар не успевает передаться всему стеблю и сосредоточивается только на небольшом, непосредственно затронутом участке, который и принимает на себя все последствия удара.
7. Наподобие подводной лодки
Свежее яйцо в воде тонет – это знает каждая опытная хозяйка и, когда желает убедиться, свежи ли яйца, испытывает их именно таким образом. Физик выводит из этого наблюдения то, что свежее яйцо весит больше, чем такой же объем чистой воды. Прибавляю: «чистой» потому, что нечистая – например соленая – вода весит больше. Можно приготовить такой густой раствор соли в воде, что яйцо будет легче вытесняемого им рассола, и тогда – по физическому закону плавания, открытому еще в древности знаменитым Архимедом – самое свежее яйцо будет в такой воде всплывать. Вы можете сыграть коварную шутку с хозяйкой, испугав ее тем, что вся сейчас купленная ею партия яиц нехороша: яйца всплывают в воде! (Разумеется, вы скроете от нее, что вода у вас соленая.)
Но лучше используйте ваши познания для следующего поучительного опыта, при котором вы заставите яйцо ни тонуть, ни всплывать, а, так сказать, висеть внутри жидкости; физик назвал бы такое состояние яйца «взвешенным». Для этого вы должны приготовить такой раствор соли в воде, чтобы погруженное в него яйцо вытесняло ровно столько рассола, сколько оно само весит. Получить подобный раствор можно только рядом проб, то немного подливая воды – если яйцо всплывает, то немного прибавляя более крепкого рассола – если яйцо тонет. При некотором терпении вы всегда найдете, наконец, требуемую крепость рассола, в котором погруженное яйцо не всплывает и не тонет, а остается неподвижным в том месте, куда его поместили.
В подобном состоянии находится подводная лодка. Она может держаться ниже уровня воды, не падая на дно, только тогда, когда весит ровно столько, сколько вытесняет воды. Чтобы придать ей как раз такой вес, экипаж лодки напускает внутрь ее, в особые вместилища, воду извне; когда же нужно подняться, воду выкачивают.
Дирижабль – не аэроплан, а именно дирижабль – плавает в воздухе на определенной высоте по той же самой причине: подобно яйцу в соленой воде, дирижабль вытесняет ровно столько пудов воздуха, сколько пудов он сам весит.
8. Бездонный стакан
Вы налили воды в стакан до самых краев. Больше не поместится ни одной капли. Что же будет, если в этот стакан с водой опустить булавку? Вода, скажете вы, должна перелиться через край. И уж, конечно, она перельется, если вздумаем опустить в полный стакан целую сотню булавок.
На деле же оказывается совсем не то, что вы ожидаете. Если осторожно, без сотрясений, опускать в наполненный водой стакан одну булавку за другой, то не только после десятой или после сотой, даже после двухсотой и трехсотой булавки вода не перельется за края стакана.
Как же это? Булавки разве не занимают никакого объема и не вытесняют воды? Конечно, они ее вытесняют. Так куда же она в таком случае девается? Не бездонный же у нас, в самом деле, стакан! Вы найдете разгадку, если внимательно всмотритесь в свободную поверхность воды вашего стакана. До опыта она была плоская, теперь же заметно вздулась, – и это вздутие воды занимает объем, равный объему всех потонувших булавок, вместе взятых.
При некоторой осторожности можно стакан с водою густо наполнить доверху булавками, так что они будут даже торчать выше его краев, – а вода все-таки не будет переливаться, и только сильное вздутие ее поверхности покажет, что булавки тоже занимают место. Картина получается для глаз удивительная: стакан воды и стакан булавок одновременно помещаются в одном стакане!
9. Плавучая игла
Можно ли заставить стальную иглу плавать на поверхности воды, как соломинку? Как будто бы невозможно: кусочек металла, хотя бы и самый маленький, должен непременно потонуть в воде. Так думают многие, и если вы думаете так же, то следующий опыт заставит вас переменить свое мнение.
Возьмите обыкновенную, только не слишком толстую швейную иголку, обмажьте ее слегка маслом или жиром и положите аккуратно на поверхность воды в ведерке или стакане. К вашему изумлению, игла не пойдет ко дну, а будет держаться на поверхности, наглядно опровергая всеобщую уверенность в том, что игла не может плавать.
Почему же, однако, она не тонет? Ведь сталь все-таки тяжелее воды? Безусловно, в 7–8 раз тяжелее, и, чтобы плавать, игла должна, по физическому закону плавания, вытеснять воды во столько же раз больше объемом, чем сама занимает. В нашем случае так и есть: если вы внимательно рассмотрите поверхность воды возле вашей плавающей иглы, то увидите, что близ нее вода образует вогнутость, небольшую долину, на дне которой и лежит игла (как показано в разрезе на рисунке в левом нижнем углу рисунка). Изгибается же водная поверхность возле нашей иглы потому, что игла, покрытая тонким слоем жира, не смачивается водой. Вы заметили, вероятно, что когда у вас руки жирные, то вода, налитая на них, оставляет кожу сухой, т. е. не смачивает ее. Перья гуся и всех вообще плавающих птиц всегда покрыты жиром, выделяемым особой железой; вот почему вода не пристает к ним («что с гуся вода»). Оттого-то без мыла – которое растворяет слой жира и удаляет его с кожи, – нельзя вымыть жирных рук даже и горячей содой. Жирная иголка тоже не смачивается водой и потому оказывается на дне водяной лощинки, объем которой настолько превышает объем иглы, что она поддерживается выталкивающей силой жидкости, как стальной дредноут на океане.
Так как руки наши всегда немного жирны, то и без намеренного обмазывания жиром игла в наших руках тоже покрыта тонким слоем его. Поэтому можно заставить иглу плавать, и не покрывая ее специально жиром, – надо только изловчиться очень осторожно положить ее на воду. Это можно сделать так: положить иглу на лоскуток папиросной бумаги, а затем, постепенно отгибая вниз края лоскутка другой иглой, погрузить всю бумажку под воду. Лоскуток упадет на дно, а игла останется на поверхности.
Если теперь вам случится наблюдать насекомое водомерку, шагающую по воде «яко по суху» (см. рис. на стр. 32, внизу), то вы уже не будете поставлены в тупик этим фактом, а догадаетесь, что лапки насекомого покрыты жиром и оттого не смачиваются водой. Шесть лапок водомерки, вместе взятые, вытесняют, благодаря этому, такой объем воды, который весит столько, сколько само насекомое, и тогда оно поддерживается на поверхности по мере движения.
10. Водолазный колокол
Для этого опыта годится обыкновенный умывальный таз, а если вы сможете получить глубокую и широкую банку, то опыт проделать еще удобнее. Кроме того, нужен высокий стакан или большой бокал – это и будет ваш «водолазный колокол», в то время как таз с водой представит уменьшенное подобие моря или озера.
Едва ли есть опыт проще этого: вы поворачиваете стакан вверх дном, погружаете его на дно таза, продолжая придерживать стакан рукой (чтобы вода его не вытолкнула). При этом будет видно, что вода внутрь стакана почти не проникает: воздух не допускает ее. Это становится гораздо нагляднее, когда под вашим «колоколом» находится какой-нибудь легко намокающий предмет, – например, кусочек сахара: положите на воду пробковый кружок, на него – сахар, и прикройте сверху стаканом. Теперь смело опускайте стакан в воду. Сахар очутится ниже уровня воды, но останется сухим, потому что вода под стакан не проникает. Вы видите на этом простом опыте, что воздух не есть «ничто», как мы привыкли думать; он занимает определенное место и неохотно уступает его другим вещам.
Этот опыт должен наглядно объяснить вам также, как могут люди находиться и работать под водой в водолазном колоколе или внутри тех широких труб, которые называются «кессонами», и как они погружаются ниже уровня воды в реке или озере: вода не проникает внутрь их по той же причине, по какой не втекает она под стакан в нашем опыте.
11. Тяжелая газета
Тонкую узкую дощечку длиною в руку или старую, ненужную чертежную линейку положите на стол так, чтобы половина ее свободно выступала за край. Стоит подуть на этот выступающий конец – и линейка падает. Показав вашим гостям, как легко линейку опрокинуть, предложите им сделать это ударом кулака по выступающему концу, если остальная часть линейки прикрыта листом газетной бумаги. Много ли весу в газете? Между тем окажется, что ее присутствие совершенно меняет дело: самый сильный удар не сможет опрокинуть линейки, словно она прибита к столу гвоздями. Нужно только позаботиться о том, чтобы газета была распластана аккуратно, прилегала к столу и самый лист был достаточно велик.
Чем же объяснить такое действие газеты? Почему она становится настолько тяжелой, что скорее можно сломать линейку, чем ее приподнять?
Загадка объясняется тем, что здесь приходится преодолевать не только вес самой газеты, но главным образом – вес опирающегося на нее столба воздуха. При стремительном ударе прикрытый конец линейки поднимается так быстро, что успевает увлечь за собой только непосредственно прилегающие части газетного листа, края же его по-прежнему лежат на столе и мешают наружному воздуху заполнять образовавшуюся пустоту. При таких условиях давление воздуха на газету сверху не уравновешивается давлением его снизу, приходится поднимать газету вместе с давящим на нее воздухом, – а это не под силу самому сильному человеку. Воздух давит с силою 16 фунтов на каждый квадратный дюйм поверхности[5]5
Или – в мерах метрических – с силою одного килограмма на каждый квадратный сантиметр.
[Закрыть], и сколько квадратных дюймов газетной бумаги приподнимается при быстром ударе, столько раз по 16 фунтов приходится преодолеть. Не удивительно, что линейка гнется, ломается, – а газета остается на месте.
Для успеха опыта необходимы, повторяем, два условия: чтобы газета была аккуратно разложена на столе и чтобы удар был очень быстр.
12. Почему не выливается?
Описываемый далее опыт – один из самых легких для исполнения. Это первый физический опыт, который я проделал в дни моей юности. Наполните стакан водой, покройте его почтовой карточкой или бумажкой и, слегка придерживая карточку пальцами, переверните стакан вверх дном. Теперь можете руку убрать: бумажка не отпадет, вода не выльется, – если только бумажка в горизонтальном положении.
Вы думаете, бумажка просто прилипла к краям стакана? Нет; если проделаете тот же опыт с пустым стаканом, края которого смочены, то убедитесь, что бумажка держаться не будет. В вашем же опыте на нее еще давит сверху вес полного стакана воды, т. е. около полуфунта, и все-таки она держится.
В таком виде вы можете смело переносить стакан с места на место, даже, пожалуй, с большим удобством, чем при обычных условиях. При случае вам нетрудно будет изумить ваших знакомых, принеся – в ответ на просьбу дать напиться – воду в опрокинутом стакане…
Что же удерживает карточку от падения, преодолевая вес стоящей над ней воды? Давление воздуха: оно давит на карточку снаружи с силою, которая, как легко рассчитать, гораздо больше, чем полфунта[6]6
Теоретически, бумажка должна держаться, даже если бы стакан имел 10 метров в высоту, и только при большей высоте водяного столба она должна отпасть.
[Закрыть].
Это объяснение я узнал в школе от учителя. Он указал также на одно необходимое условие успешности опыта: вода должна наполнять стакан весь, от дна до краев. Если она занимает часть стакана, а остальное занято воздухом, то опыт не удастся: воздух внутри стакана будет давить на бумажку, уравновешивая давление наружного воздуха, и, следовательно, она должна отпасть.
Придя домой, я решил тотчас же проделать опыт с неполным стаканом, чтобы увидеть, как бумажка отпадет. Представьте же мое удивление, когда я увидел, что она и тогда не отпадает! Повторив опыт несколько раз, я убедился, что карточка держится так же хорошо, как и при полном стакане.
Это послужило для меня наглядным уроком того, как следует изучать явления природы. Высшим, непререкаемым судьей в естествознании должен быть опыт. Каждую теорию, какой бы ясной и правдоподобной она ни представлялась нашему уму, следует проверять опытом. «Поверяя и проверяя» – таково было правило первых исследователей природы (флорентийских академиков) в XVII веке, таков он и для физика XX века. И если при поверке теории окажется, что опыт ее не подтверждает, то надо доискаться, в чем именно теория погрешает.
В нашем случае нетрудно найти ошибку в рассуждении, на первый взгляд таком убедительном и ясном. Отогнем осторожно один угол бумажки в тот момент, когда она закрывает отверстие опрокинутого стакана, только частью занятого водой. Мы увидим, что через воду пройдет воздушный пузырь. Что это показывает? Конечно, то, что воздух в стакане более разрежен, чем воздух снаружи: иначе наружный воздух не устремлялся бы в пространство над водой. В этом и вся разгадка: в стакане хотя и остается воздух, но меньшей плотности, чем наружный, и, следовательно, давящий слабее него. Очевидно, при опрокидывании стакана вода, опускаясь вниз, вытесняет из него часть воздуха; оставшаяся часть, распространяясь в прежнем объеме, разрежается и давит слабее.
Вы видите, что даже простейшие физические опыты, при внимательном к ним отношении, могут навести на серьезные размышления. Это те малые вещи, которые поучают великому.
13. Сухим из воды
Сейчас вы убедились, что воздух, окружающий нас со всех сторон, давит со значительной силой на все вещи, с которыми он соприкасается. Опыт, который мы собирается описать, еще нагляднее докажет вам существование этого, как физики говорят, «атмосферного давления».
Положите на плоскую тарелку металлическую пуговицу и налейте воды. Пуговица очутится под водой. Вынуть ее теперь голыми руками, не замочив пальцев и не выливая воды из тарелки, конечно, невозможно, – скажете вы. И ошибетесь, – потому что это вполне возможно.
Вот как надо это сделать. Зажгите внутри стакана бумажку и, когда воздух в стакане нагреется, опрокиньте его на тарелку рядом с пуговицей, но так, чтобы пуговица не очутилась под стаканом. Теперь смотрите, что будет. Ждать придется недолго. Бумага под стаканом, конечно, сразу погаснет, и воздух начнет в стакане остывать. По мере же его остывания вода будет как бы втягиваться стаканом, и вскоре вся соберется там, обнажив дно тарелки. Подождите минуту, чтобы пуговица обсохла – и берите ее, не замочив пальцев.
Понять причину этих явлений вам будет не трудно. Когда воздух в стакане нагрелся, он расширился, как и все нагретые тела, и избыток его нового объема вышел из стакана. Когда же оставшийся воздух начал остывать, его уже стало недостаточно, чтобы в холодном состоянии оказывать прежнее давление, т. е. уравновешивать наружное давление атмосферы. Вода под стаканом теперь испытывает поэтому на каждый дюйм своей поверхности меньшее давление, чем вода в остальной, открытой части тарелки; не удивительно, что она вгоняется вся под стакан, втискиваемая туда избытком давления наружного воздуха. Следовательно, вода, в сущности, не «втягивается» стаканом, не засасывается им, как кажется при первом взгляде, а вдавливается под стакан извне.
Теперь, когда вам известна причина происходящих явлений, вы поймете также, что нет надобности для опыта пользоваться непременно горящей бумажкой или намоченной спиртом ваткой (как часто советуют) и вообще каким-либо пламенем: достаточно просто сполоснуть стакан кипятком или нагреть его возле теплой печки, – и опыт удается так же хорошо. Все дело в том, чтобы каким-нибудь способом нагреть воздух в стакане, а как именно это будет достигнуто – совершенно безразлично.
Легко, например, проделать тот же опыт в таком виде. Выпив горячего чая, опрокиньте стакан, пока он еще не остыл, над блюдцем, в которое вы налили немного чая – заранее, чтобы к моменту опыта он успел уже охладиться. Через две-три минуты весь чай из блюдца соберется под стакан, наглядно доказывая существование атмосферного давления.
14. Парашют
Приготовьте из листа папиросной бумаги круг поперечником в несколько ладоней и вырежьте посередине кружок шириною в несколько пальцев; к краям большого круга привяжите тонкие бечевки, продев их через дырочки; концы бечевок – они должны быть одинаковой длины – привяжите к какому-нибудь легкому грузику. Вот все устройство парашюта.
Чтобы испытать, на что годится ваш миниатюрный парашют, уроните его из окна высшего этажа грузиком вниз. Груз натянет бечевки, бумажный круг расправится, парашют плавно полетит вниз и мягко достигнет земли. Это – в безветреную погоду. А при ветре, даже слабом, ваш парашют будет подхвачен вверх, унесется прочь от дома и спустится где-нибудь далеко.
Чем больше «зонт» парашюта, тем больший груз вы сможете подвесить к нему (груз необходим, чтобы парашют не был перевернут), тем медленнее он будет падать в безветреную погоду и тем дольше будет он путешествовать по ветру.
Но почему парашют удерживается так долго в воздухе? Конечно, вы догадываетесь, что это воздух мешает парашюту падать; не будь при грузе привязанного к нему бумажного листа, груз стремительно упал бы на землю. Бумажный лист увеличивает поверхность падающей вещи, почти ничего не прибавляя к ее весу; а чем больше поверхность предмета, тем значительнее сопротивляется воздух его движению.
Если вы уяснили себе это, вы поймете, почему носятся в воздухе пылинки. Обычно говорят, что пыль плавает в воздухе потому, что она легче него. Это совершенно неверно! Что такое пылинки? Мелкие частицы камня, глины, металла, дерева, угля и т. п. Но все перечисленные материалы в сотни и тысячи раз тяжелее воздуха: камень – в 1500 раз, железо – в 6000 раз, дерево – в 300 раз, и т. п. Значит, пылинки нисколько не легче воздуха, они во много раз тяжелее него и никак не могут плавать в нем, как пробка в воде.
Всякая пылинка твердого или жидкого тела непременно должна падать в воздухе, «тонуть» в нем. Она и падает, но только падение ее происходит примерно так, как падает наш парашют. Дело в том, что у очень маленьких тел поверхность уменьшена не так сильно, как уменьшен их вес, – и потому мельчайшие крупинки обладают поверхностью весьма большой по сравнению с их весом. Если сравните дробинку с круглой пулей, которая в 100 раз тяжелее нее, то поверхность дробинки окажется меньше поверхности пули всего только в 10 раз. Это значит, что у дробинки поверхность по отношению к ее весу вдесятеро больше, чем у пули. Вообразите, что дробинка продолжает уменьшаться, пока не станет в миллион раз легче пули, т. е. превратится в свинцовую пылинку. У этой пылинки поверхность, по отношению к весу, в 1000 раз больше, чем у пули. Воздух мешает ее движению в 1000 раз сильнее, чем мешает он движению пули. И оттого она парит в воздухе, т. е. падает едва заметно, а при малейшем ветерке уносится даже вверх.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?