Текст книги "Занимательная астрономия"
Автор книги: Яков Перельман
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +6
сообщить о неприемлемом содержимом
Текущая страница: 3 (всего у книги 11 страниц) [доступный отрывок для чтения: 3 страниц]
из которой можно образовать так называемую производную пропорцию
или
Значит,
т. е. эксцентриситет земной орбиты равен 0,017. Достаточно, как видите, тщательно измерить видимый диск Солнца, чтобы определить форму земной орбиты.
Покажем теперь, что орбита Земли весьма мало отличается от круга. Вообразим, что мы начертили ее на огромном чертеже, так что большая полуось орбиты равна 1 м. Какой длины окажется другая – малая полуось эллипса? Из прямоугольного треугольника OCF1 (рис. 18) имеем
Но с/a есть эксцентриситет земной орбиты, т.е. 1/60. Выражение a2–b2 заменяем через (a – b) (a + b), а (a+b) – через 2a, так как b мало отличается от a.
Имеем
и, значит,
Мы узнали, что на чертеже даже столь крупного масштаба разница в длине большой и малой полуосей земной орбиты не превышает 1/7 мм. Тонкая карандашная линия имеет толщину, большую, чем эта величина.
Значит, мы практически не делаем никакой ошибки, когда чертим земную орбиту в форме круга.
Куда следует поместить изображение Солнца на таком чертеже? Насколько надо отодвинуть его от центра, чтобы оно оказалось в фокусе орбиты? Другими словами, чему равно расстояние O.F или 0FX на нашем воображаемом чертеже? Расчет несложен:
Центр Солнца должен на чертеже отстоять на 1,7 см от центра орбиты. Но так как само Солнце должно быть изображено кружком в 1 см поперечником, то только опытный глаз художника заметил бы, что оно помещено не в центре круга.
Практический вывод из сказанного тот, что на рисунках можно чертить орбиту Земли в виде круга, помещая Солнце чуть сбоку от центра.
Может ли столь незначительная асимметрия в положении Солнца влиять на климатические условия Земли? Чтобы выяснить, в чем могло бы обнаружиться подобное влияние, произведем опять мысленный опыт, обратимся к «если бы». Допустим, что эксцентриситет земной орбиты возрос до более заметной величины, – например, до 0,5. Это значит, что фокус эллипса делит его полуось пополам; такой эллипс будет иметь вытянутость примерно куриного яйца. Ни одна из орбит главных планет солнечной системы не обладает столь значительным эксцентриситетом; орбита Плутона, самая вытянутая, имеет эксцентриситет 0,25. (Но астероиды и кометы движутся и по более вытянутым эллипсам.)
Если бы путь Земли был вытянут сильнее
Вообразим же, что орбита Земли заметно вытянута и фокус делит ее большую полуось пополам. На рис. 19 изображена эта новая орбита. Земля по-прежнему бывает 1 января в точке А, ближайшей к Солнцу, а 1 июля в точке 5, наиболее удаленной. Так как FB втрое больше, чем FA, то в январе Солнце было бы втрое ближе к нам, чем в июле. Январский поперечник Солнца втрое превышал бы июльский, а количество посылаемого тепла было бы в январе в 9 раз больше, чем в июле (обратно пропорционально квадрату расстояния). Что осталось бы тогда от нашей северной зимы? Только то, что Солнце стояло бы низко на небе и дни были бы короткие, а ночи долгие. Но холодов не было бы: большая близость Солнца с избытком покрыла бы невыгодные условия освещения.
Рис. 19. Какую форму имела бы орбита Земли, если бы эксцентриситет земной орбиты был равен 0,5. В фокусе F – Солнце.
Сюда присоединится еще обстоятельство, вытекающее из второго закона Кеплера, который гласит, что площади, описываемые радиусом-вектором в равные промежутки времени, равны.
«Радиусом-вектором» орбиты называется прямая линия, соединяющая Солнце с планетой, в нашем случае – с Землей. Так как Земля перемещается по орбите, то движется и радиус-вектор, который описывает при этом некоторую площадь; закон Кеплера устанавливает, что части площади эллипса, описываемые в равные времена, равны между собой. В точках своего пути, близких к Солнцу, Земля должна двигаться по орбите быстрее, чем в точках, удаленных от Солнца; иначе площадь, описанная коротким радиусом-вектором, не могла бы равняться площади, образованной более длинным радиусом-вектором (рис. 20).
Рис. 20. Иллюстрация второго закона Кеплера: если дуги АВ, CD и EFпройдены планетой в одинаковые промежутки времени, то заштрихованные площади равны.
Применяя сказанное к нашей воображаемой орбите, заключаем, что в декабре – феврале, когда Земля значительно ближе к Солнцу, она должна двигаться по своей орбите быстрее, чем в июне – августе. Другими словами, зима должна на севере промчаться скоро, лето же, напротив, должно тянуться долго, как бы вознаграждая этим за скупо изливаемую Солнцем теплоту.
На рис. 21 дается более точное представление о продолжительности времен года при наших воображаемых условиях. Эллипс изображает форму новой земной орбиты (с эксцентриситетом 0,5). Числа 1—12 делят путь Земли на части, пробегаемые ею в равные промежутки времени; по закону Кеплера, доли эллипса, на которые он рассекается начерченными в нем радиусами-векторами, равны по площади.
Рис. 21. Как двигалась бы вокруг Солнца Земля по сильно вытянутому эллипсу (расстояния между соседними точками, отмеченными цифрами, проходятся планетой за равные промежутки времени – за месяц).
В точке 1 Земля бывает 1 января, в точке 2–1 февраля, в точке 3–1 марта и т. д. Из чертежа видно, что весеннее равноденствие (A) должно наступить на подобной орбите уже в первых числах февраля, а осеннее (В) – в конце ноября. Значит, зимнее время года длилось бы в северном полушарии лишь два с небольшим месяца – от конца ноября до начала февраля. Период же долгих дней и высокого полуденного Солнца в странах северного полушария – от весеннего до осеннего равноденствия – охватывал бы более 9½ месяцев.
В южном полушарии Земли происходило бы как раз обратное. Низкое стояние Солнца и короткие дни совпадали бы с удалением от дневного светила и 9-кратным оскудением теплового потока, им изливаемого; высокое же стояние Солнца и длинные дни – с 9-кратным усилением солнечного излучения. Зима была бы значительно суровее, чем северная, и длилась бы гораздо дольше ее. Лето, напротив, было бы невыносимо знойное, хотя и короткое.
Отметим еще одно следствие нашего «если бы». В январе быстрое движение Земли по орбите создало бы значительные расхождения между моментами среднего и истинного полудня, – расхождение, достигающее целых часов. Жить по среднему солнечному времени, как мы живем, было бы тогда неудобно.
Мы знаем теперь, в чем может сказаться для нас эксцентрическое положение Солнца в земной орбите: в том прежде всего, что зима северного полушария должна быть короче и мягче, а лето – длиннее, чем в южном. Наблюдается ли это в действительности? Безусловно. Земля в январе ближе к Солнцу, чем в июле на 2х1/60, т.е. на 1/30; количество получаемого от него тепла возрастает поэтому в (61/59)2 раз, т.е. на 6%. Это несколько смягчает суровость северных зим. С другой стороны, северные осень и зима вместе примерно на 8 суток короче южных; лето северного полушария вместе с весной на столько же длиннее, чем в южном. Большее обледенение южного полюса объясняется, вероятно, этим обстоятельством. Вот точная продолжительность времен года в северном и в южном полушариях:
Вы видите, что северное лето длиннее зимы на 4,6 суток, а северная весна длиннее осени на 3,0 суток.
Такое преимущество северного полушария не будет сохраняться вечно. Большая ось земной орбиты медленно перемещается в пространстве: она переносит наиболее удаленные от Солнца и ближайшие к нему точки земного пути в другие места. Полный цикл этих движений завершается в 21 тысячу лет. Вычислено, что около 10 700 г. нашей эры указанное сейчас преимущество северного полушария Земли перейдет к южному.
Самый эксцентриситет земной орбиты не остается неизменным: его величина подвержена медленным вековым колебаниям почти от нуля (0,003), когда орбита Земли превращается почти в круг, до 0,077, когда она получает наибольшую растянутость и уподобляется по форме орбите Марса. В настоящее время ее эксцентриситет находится в периоде убывания; он будет уменьшаться еще 24 тысячелетия – до 0,003, затем станет увеличиваться в течение 40 тысячелетий. Разумеется, что столь медлительные изменения имеют для нас только теоретическое значение.
Когда мы ближе к Солнцу: в полдень или вечером?
Если бы Земля двигалась по строго круговой орбите, в центре которой находится Солнце, то ответить на поставленный в заголовке вопрос было бы очень просто: мы ближе к Солнцу в полдень, когда соответствующие точки земной поверхности вследствие вращения Земли вокруг оси выступают по направлению к Солнцу. Наибольшая величина этого приближения к Солнцу была бы для точек экватора 6400 км (длина земного радиуса).
Но орбита Земли – эллипс, а Солнце помещается в его фокусе (рис. 22). Земля бывает поэтому то ближе к Солнцу, то дальше от него. В течение полугодия (с 1 января по 1 июля) Земля удаляется от Солнца, в течение другого полугодия – приближается к нему. Разница между наибольшим и наименьшим расстоянием достигает 2х1/60х150 000 000, т.е. 5 000 000 км.
Это изменение расстояния составляет в среднем около 28 000 км в сутки. Поэтому за время от полудня до заката Солнца (четверть суток) расстояние точек земной поверхности от дневного светила успевает измениться в среднем на 7500 км, т. е. больше, чем от вращения Земли вокруг оси.
Рис. 22. Схематическое изображение пути Земли вокруг Солнца
Значит, на вопрос, поставленный в заголовке, приходится ответить так: в период с января до июля мы бываем в полдень ближе к Солнцу, чем вечером, а с июля до января – наоборот.
На один метр дальше
ЗАДАЧА
Земля обращается вокруг Солнца на расстоянии 150 000 000 км. Вообразите, что расстояние это увеличилось на 1 м. Насколько удлинился бы при этом путь Земли вокруг Солнца и насколько возросла бы от этого продолжительность года (принимая что скорость движения Земли по орбите не изменилась) (см. рис. 23)?
РЕШЕНИЕ
1м – величина сама по себе небольшая; но, вспоминая об огромном протяжении орбиты Земли, мы склонны думать, что эта незначительная прибавка расстояния должна дать весьма заметную прибавку длины, а следовательно, и продолжительности года.
Рис. 23. Насколько удлинилась бы земная орбита, если бы наша планета удалилась от Солнца еще на 1 м? (Решение задачи в тексте)
Однако, выполнив вычисление, мы получаем настолько ничтожный результат, что готовы заподозрить ошибку в выкладках. Удивляться незначительности разницы не приходится; она и должна быть весьма мала. Разность длины двух концентрических окружностей зависит не от величины радиусов этих окружностей, а только от разности этих радиусов. У двух окружностей, начерченных на полу комнаты, она совершенно та же, что и у окружностей космических размеров, если радиусы в обоих случаях разнятся на 1 м. В этом убеждает нас расчет. Если радиус земной орбиты (принимаемой за круг) равен R м, то длина ее равна 2πR. При удлинении радиуса на 1 м новая длина орбиты будет равна 2π(R + 1) = 2πR + 2π. Прибавка длины орбиты составляет, как видим, всего 2π, т. е. 6,28 м, и не зависит от величины радиуса.
Итак, путь Земли около Солнца при увеличении расстояния на 1 м удлинился бы всего на 61/4 м. На длине года это почти не отразилось бы, так как Земля делает по орбите 30 000 м в секунду: год удлинился бы всего на 5000-ю долю секунды – величину, конечно, неощутимую.
С разных точек зрения
Роняя из рук вещь, вы видите ее падающей по отвесной линии, и вам странно думать, что кому-нибудь другому путь ее падения может представиться не прямой линией. А между тем именно так и произойдет для каждого наблюдателя, не участвующего вместе с нами в движении земного шара.
Попробуем мысленно взглянуть на падение тела глазами такого наблюдателя. На рис. 24 изображен тяжелый шар, свободно падающий с высоты 500 м. Падая, он, конечно, участвует одновременно во всех движениях земного шара. Этих привходящих и притом гораздо более быстрых движений падающего тела мы не замечаем потому только, что сами в них участвуем. Освободимся от участия в одном из движений нашей планеты, и мы увидим то же тело движущимся уже не отвесно вниз, а по совершенно иной линии.
Рис. 24. Для земного наблюдателя путь свободно падающего тела – прямая линия
Вообразим, например, что мы следим за падением тела не с земной поверхности, а с Луны. Луна сопутствует Земле в ее движении вокруг Солнца, но не разделяет вращательного ее движения вокруг оси. Поэтому, наблюдая с Луны за падением, мы увидели бы тело, совершающее два движения: одно – отвесно вниз и второе движение, прежде не замечавшееся, – по касательной к земной поверхности на восток. Оба одновременных движения, конечно, складываются по правилам механики, и так как одно из них (падение) неравномерное, а другое равномерное, то результирующее движение будет происходить по кривой линии. На рис. 25 изображена эта кривая: по такому пути двигалось бы падающее на Земле тело для достаточно зоркого наблюдателя, помещающегося на Луне.
Рис. 25. Тот же путь представляется лунному наблюдателю искривленным
Сделаем еще шаг: перенесемся мысленно на Солнце, захватив с собой сверхмощный телескоп, чтобы следить за падением на Землю тяжелого шара. Находясь на Солнце, мы не участвуем уже не только во вращении Земли вокруг оси, но и в ее обращении по орбите. Следовательно, с Солнца мы можем заметить три движения, совершаемые падающим телом одновременно (рис. 26):
Рис. 26. Тело, свободно падающее на Землю, движется одновременно в направлении касательной к тому круговому пути, который описывают точки земной поверхности вследствие вращения Земли.
1) отвесное падение к земной поверхности;
2) движение на восток по касательной к земной поверхности;
3) движение вокруг Солнца.
Первое перемещение равно 0,5 км. Второе – за 10 секунд времени падения тела – равно по широте Москвы 0,3x10 = 3 км. Третье движение – самое быстрое – 30 км в одну секунду. За 10 с, пока длится падение, тело переместится по земной орбите на 300 км. По сравнению со столь значительным перемещением оба предыдущих движения – ½ км вниз и 3 км в сторону – будут едва заметны; наблюдая с Солнца, мы обратим внимание лишь на самое значительное перемещение. Что же мы увидим? Примерно то, что показано (без соблюдения масштаба) на рис. 27. Земля переместится налево, а падающее тело – из точки на Земле в правом положении в соответствующую точку (только чуть пониже) на Земле в левом положении. На рисунке, мы сказали, масштаб не соблюден: центр Земли за 10 сек. передвинется не на 14 000 км, как изобразил для наглядности художник, а только на 300 км.
Рис. 27. Что видел бы наблюдатель, следящий с Солнца за отвесным падением тела на Землю, как показано на рис. 24 (масштаб не соблюден)
Остается сделать еще шаг: перенестись на какую-нибудь звезду, т. е. на отдаленное солнце, освободив себя от участия в движении нашего собственного Солнца. Оттуда мы заметим, что, помимо трех рассмотренных ранее движений, падающее тело совершает еще и четвертое – по отношению к этой звезде. Величина и направление четвертого движения зависят от того, на какую именно звезду мы перенеслись, т. е. какое движение совершает вся солнечная система по отношению к этой звезде.
На рис. 28 изображен один из возможных случаев, когда солнечная система движется по отношению к выбранной звезде под острым углом к плоскости земной орбиты со скоростью 100 км в секунду (скорости такого порядка у звезд наблюдаются и в действительности). Движение это за 10 с. перенесет падающее тело на 1000 км по своему направлению и, конечно, еще более усложнит его путь. При наблюдении с другой звезды путь этот имел бы иную величину и иное направление.
Рис. 28. Как представлялось бы падение тела на Землю наблюдателю, следящему за ним с отдаленной звезды
Можно было бы идти и еще дальше: поставить вопрос о том, какой вид имеет путь падающего на Землю тела для наблюдателя, расположенного вне Млечного Пути и не участвующего в быстром движении, которое увлекает нашу звездную систему по отношению к другим островам вселенной. Но нет нужды забираться так далеко. Читателю ясно теперь, что с каждой новой точки зрения путь одного и того же падающего тела представляется совершенно иным.
Неземное время
Вы час работали, час отдыхали. Одинаковы ли оба промежутка времени? Безусловно одинаковы, если они измерены с помощью хорошо выверенного часового механизма, – ответит большинство людей. Какой же часовой механизм мы должны считать верным? Тот, конечно, который проверен астрономическими наблюдениями, иначе говоря, согласован с движением земного шара, вращающегося идеально равномерно: он повертывается на равные углы в строго одинаковые промежутки времени.
Но откуда, собственно говоря, известно, что земной шар вращается равномерно? Почему мы уверены, что два последовательных оборота вокруг оси совершаются нашей планетой в одинаковое время? Проверить это нет возможности до тех пор, пока вращение Земли само служит мерой времени.
В последнее время астрономы сочли полезным для некоторых целей этот издавна узаконенный образец равномерного движения временно заменять другим. Изложим поводы и последствия такой замены.
Тщательное изучение небесных движений обнаружило, что некоторые светила в своем движении отступают от теоретически предуказанного, и эти отступления нельзя объяснить законами небесной механики. Такие как бы беспричинные отклонения установлены для Луны, для первого и второго спутников Юпитера, для Меркурия и даже для видимого годового движения Солнца, т. е. для движения нашей собственной планеты по ее орбите. Луна, например, уклоняется от теоретического пути на величину, достигающую в некоторые эпохи до 1/6 минуты дуги, а Солнце – до 1 секунды дуги. Анализ этих неправильностей обнаружил в них общую черту: все движения в некоторый период времени совершались ускоренно, а затем, в следующий период, опять-таки все разом стали замедляться. Естественно возникает мысль об общей причине, вызывающей такие уклонения.
Не кроется ли общая причина в «неверности» наших природных часов, в неудачном выборе вращения Земли как образца равномерного движения?
Был поставлен вопрос о замене земных часов. «Земные часы» были временно отвергнуты, и исследуемые движения были измерены другими природными часами, основанными либо на движениях того или другого спутника Юпитера, либо на движениях Луны или Меркурия.
Оказалось, что такие замены сразу вносят удовлетворительную правильность в движение названных небесных тел. Зато вращение Земли, измеренное новыми часами, представляется уже неравномерным: оно то немного замедляется в течение десятков лет, то в следующий ряд десятилетий ускоряется, чтобы затем начать замедляться.
В 1897 г. сутки были на 0,0035 с. длиннее, чем в предшествовавшие годы, ав 1918 г. – на столько же короче, чем в промежутке 1897–1918 гг. Нынешние сутки примерно на 0,002 с. длиннее, чем 100 лет назад.
В этом смысле мы можем сказать, что наша планета вращается неравномерно по отношению к некоторым другим ее движениям, а также к движениям, совершающимся в нашей планетной системе и условно принимаемым за движения равномерные.
Размер уклонений Земли от строго равномерного (в указанном смысле) вращения весьма невелик: в течение целого столетия от 1680 до 1780 г. Земля вращалась замедленно, сутки удлинялись, и планета наша накопила около 30 с. разницы между «своим» и «чужим» временем; затем до начала XIX в. сутки укорачивались, в первые же 20 лет XX в. движение Земли снова замедлялось, сутки опять стали удлиняться, а затем вновь стали укорачиваться (рис. 29).
Рис. 29. Кривая поправок, которые надо прибавить к моментам среднего времени, чтобы скомпенсировать влияние колебаний вращения Земли (по Спенсеру Джонсу). Подъемы кривой соответствуют удлинению суток, т. е. замедлению вращения Земли; понижения – ускорению вращения
Предполагаемые причины этих изменений могут быть различны: лунные приливы, изменение диаметра земного шара[7]7
Изменение длины земного диаметра может ускользать от непосредственных измерений, так как величина эта известна лишь с точностью до 100 м; между тем удлинения или укорочения земного диаметра на несколько метров было бы уже достаточно, чтобы вызвать те изменения продолжительности суток, о которых шла речь.
[Закрыть] и т. п. Здесь возможны важные открытия в будущем, когда явление это получит всестороннее освещение.
Где начинаются месяцы и годы?
В Москве пробило двенадцать, – наступило 1 января. На запад от Москвы простирается еще 31 декабря, а на восток – 1 января. Но на шарообразной Земле восток и запад неизбежно должны встретиться; значит, должна где-то существовать и граница, отделяющая 1-е число от 31-го, январь от декабря, наступивший год от предыдущего.
Граница эта существует и называется «линией перемены даты»; она проходит через Берингов пролив и тянется по водам Тихого океана приблизительно вдоль меридиана 180°. Ее точное положение определяется международным соглашением.
На этой-то воображаемой линии, пересекающей безлюдные просторы Тихого океана, совершается впервые на земном шаре смена чисел, месяцев, лет. Здесь как бы помещаются входные двери нашего календаря; отсюда приходят на Землю новые числа месяца, здесь же находится и колыбель нового года. Раньше, чем где бы то ни было, наступает здесь каждый новый день месяца; родившись, он бежит на запад, обегает земной шар и снова возвращается к месту рождения, чтобы исчезнуть.
Россия раньше всех стран мира принимает на свою территорию новый день месяца: на мысе Дежнева каждое число месяца, только что родившееся в водах Берингова пролива, вступает в населенный мир, чтобы начать свое шествие через все части света. И здесь же, у восточной оконечности Азии, дни кончаются, исполнив свою 24-часовую службу.
Итак, смена дней происходит на линии перемены даты. Первые кругосветные путешественники, не установившие этой линии, сбились в счете дней. Вот подлинный рассказ Антония Пигафетты, спутника Магеллана в его кругосветном путешествии:
«19 июля, в среду мы увидели острова Зеленого мыса и стали на якорь… Чтобы узнать, правильно ли вели мы наши корабельные журналы, мы велели спросить на берегу, какой сегодня день недели. Ответили, что четверг. Это нас удивило, потому что по нашим журналам была только среда. Нам казалось невозможным, что мы все ошиблись на один день…
Впоследствии мы узнали, что в нашем исчислении не было ни малейшей ошибки: плывя постоянно к западу, мы следовали движению Солнца и, возвратившись в тот же пункт, должны были выгадать 24 часа по сравнению с оставшимися на месте. Нужно только подумать над этим, чтобы согласиться».
Как же поступают теперь мореплаватели, когда пересекают линию даты? Чтобы не сбиваться в счете дней, моряки пропускают один день, если идут с востока на запад; когда же пересекают линию даты с запада на восток, то считают один и тот же день дважды, т. е. после 1-го числа опять считают 1-е. Вот почему невозможна в действительности история, рассказанная Жюлем Верном в романе «Вокруг света в 80 дней», где путешественник, объехавший вокруг света, «привез» на родину воскресенье, когда там был еще только предшествующий день – суббота. Это могло произойти лишь в эпоху Магеллана, потому что тогда не было еще соглашения о «линии даты». Невозможны в наши дни и приключения вроде того, о котором рассказал Эдгар По в шутке «Три воскресенья на одной неделе»: моряк, объехавший Землю с востока на запад, встретился на родине с другим, совершившим кругосветное плавание в обратном направлении. Один утверждал, что воскресенье было вчера, другой – что оно будет завтра, а их приятель, никуда не отправлявшийся, объявил, что воскресенье – сегодня.
Чтобы при кругосветном путешествии не было расхождения с календарем, следует, двигаясь на восток, как бы приостанавливаться немного в счете дней, давая Солнцу себя догнать, т. е. считать одни и те же сутки дважды; при движении же на запад надо, напротив, пропускать одни сутки, чтобы не отстать от Солнца.
Все это как будто не особенно хитрые вещи, однако даже в наше время, спустя четыре столетия после Магеллана, далеко не все умеют в них сознательно разобраться.
Сколько пятниц в феврале?
ЗАДАЧА
Какое наибольшее и какое наименьшее число пятниц возможно в феврале?
РЕШЕНИЕ
Обычно отвечают, что наибольшее число пятниц в феврале – 5, наименьшее – 4. Безусловно верно, что если первое февраля високосного года падает на пятницу, то и 29-е число придется в пятницу, всех пятниц окажется тогда 5.
Однако можно насчитать и вдвое больше пятниц в течение одного февраля. Вообразите корабль, совершающий рейсы между восточным берегом Сибири и Аляской; он регулярно покидает азиатский берег каждую пятницу. Сколько насчитает капитан этого корабля пятниц в феврале такого високосного года, в котором 1-е число пришлось на пятницу? Так как он пересекает линию даты с запада на восток и пересекает в пятницу, то будет иметь еженедельно по две пятницы кряду, а всех пятниц насчитает 10. Напротив, капитан, покидающий берега Аляски каждый четверг и идущий к берегам Сибири, будет в счете дней пропускать как раз пятницу; за весь месяц он не насчитает ни одной пятницы.
Итак, вот правильный ответ на вопрос задачи: наибольшее число пятниц, возможных в феврале, – 10, наименьшее – нуль.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?